Groundwater Quality of Drinking Water Wells in the West Bank, Palestine
Abstract
:1. Introduction
Study Area
2. Material and Methods
2.1. Sampling and Field Work
2.2. Analytical Methods
2.3. Data Presentation and Statistical Analysis
3. Results and Discussion
3.1. Physicochemical and Microbiological Quality of Groundwater
3.1.1. pH, Total Dissolved Solids and Dissolved Oxygen
3.1.2. Chloride and Sodium
3.1.3. Fluoride
3.1.4. Sulphate
3.1.5. Total Hardness, Calcium, Magnesium
3.1.6. Ammonium and Nitrate
3.1.7. Heavy Metals
3.1.8. Microbiology
3.2. Correlation between Different Water Quality Parameters
3.3. Groundwater Types
3.3.1. Durov Diagram
3.3.2. Piper Diagram
- Earth alkaline water with prevailing bicarbonate (Ca-Mg-HCO3).
- Earth alkaline water with increased portion of alkalis and prevailing bicarbonate (Ca-Mg-Na-HCO3 or Ca-Mg-HCO3-Cl).
- Alkaline water with prevailing bicarbonate and alkaline water with prevailing chloride (Na-Ca-Mg-HCO3-Cl or Na-Ca-HCO3-Cl).
3.3.3. Dry vs. Wet Seasons
4. Conclusions
- The concentration of heavy metals (e.g., Cr, Cu, Mn, Pb, Cd, and As) in all samples analyzed are found to be below the detection limit.
- Elevated nitrate, ammonium, chloride, and sodium concentrations are, however, observed in wells tapping both Upper and Lower Cenomanian, including some deep wells tapping from the confined Lower Cenomanian aquifer.
- Elevated concentrations of nitrate, with concentrations in some wells approaching the maximal acceptable level of 50 mg/L, together with high levels of ammonium in approximately half of the wells, is of a serious concern and could introduce severe problems in the future, that can threaten safe drinking water supply in parts of West Bank. Groundwater from wells with high ammonium, and in some cases elevated iron, concentrations should be treated to allow more effective disinfection with chlorine and improve aesthetic quality of drinking water. Additional groundwater sampling and water quality analyses should be done to identify possible presence of nitrite in groundwater given its combined adverse health effect with nitrate.
- The source of groundwater pollution is likely caused by uncontrolled disposal of untreated wastewater and/or agricultural activities. High concentration of ammonium in approximately half of the wells included in this study supports this hypothesis.
- Groundwater quality appropriate for drinking water supply cannot be guaranteed in the future, unless proper environmental management of the sources of pollution is put in place, to assure sustainable availability of this fresh water source also in the future. Further water quality studies are recommended to provide more sampling and/or data points over a period of time. Availability of water quality monitoring data for a few years are very useful to compare the correlations between population, any infiltration from external sources and any other factors that are contributing to the variations in the concentrations of different ions.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shakerkhatibi, M.; Mosaferi, M.; Pourakbar, M.; Ahmadnejad, M.; Safavi, N.; Banitorab, F. Comprehensive investigation of groundwater quality in the north-west of Iran: Physicochemical and heavy metal analysis. Groundw. Sust. Develop. 2019, 8, 156–168. [Google Scholar] [CrossRef]
- Papadopoulou, M.P.; Karatzas, G.P.; Bougioukou, G. Numerical model ling of the environmental impact of landfill leachate leakage on groundwater quality—A field application. Environ. Model. Assess. 2007, 12, 43–54. [Google Scholar] [CrossRef]
- Lalehzari, R.; Tabatabaei, S.H.; Kholghi, M. Simulation of nitrate transport and wastewater seepage in groundwater flow system. Int. J. Environ. Sci. Technol. 2013, 10, 1367–1376. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, K.; Amano, H.; Takao, Y.; Hosono, T.; Berndtsson, R. On the use of coprostanol to identify source of nitrate pollution in groundwater. J. Hydrol. 2017, 550, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Liang, D.; Zhu, H. Optimal control of groundwater pollution combined with source abatement costs and taxes. J. Comp. Sci. 2017, 20, 17–29. [Google Scholar] [CrossRef]
- Farmaki, E.G.; Thomaidis, N.S. Current status of the metal pollution of the environment of Greece—A review. Glob. NEST J. 2008, 10, 366–375. [Google Scholar]
- Goldscheider, N.; Chen, Z.; Auler, A.S.; Bakalowicz, M.; Broda, S.; Drew, D.; Hartmann, J.; Jiang, G.; Moosdorf, N.; Stevanovic, Z.; et al. Global distribution of carbonate rocks and karst water resources. Hydrogeol. J. 2020, 28, 1661–1677. [Google Scholar] [CrossRef] [Green Version]
- Medici, G.; Smeraglia, L.; Torabi, A.; Botter, C. Review of modeling approaches to groundwater flow in deformed carbonate aquifers. Groundwater 2021, 59, 334–351. [Google Scholar] [CrossRef]
- Palestinian Water Authority (PWA). Annual Water Status Report 2011; The Palestinian National Authority: Ramallah, Palestine, 2012. [Google Scholar]
- Palestinian Water Authority (PWA). Water Supply Report 2010; The Palestinian National Authority: Ramallah, Palestine, 2012. [Google Scholar]
- Ministry of Agriculture (MoA). Agricultural Sector Policy—Palestine (2017–2022); The Palestinian National Authority: Ramallah, Palestine, 2017. [Google Scholar]
- Environment Quality Authority (EQA). Environment Sector Strategy—Executive Summary; The Palestinian National Authority: Ramallah, Palestine, 2010. [Google Scholar]
- Goldscheider, N. Karst groundwater vulnerability mapping: Application of a new method in the Swabian Alb, Germany. Hydrogeol. J. 2005, 13, 555–564. [Google Scholar] [CrossRef]
- Leyland, R.C. Vulnerability Mapping in Karst Terrains, Exemplified in the Wider Cradle of Humankind World Heritage Site. Master’s Thesis, University of Pretoria, Pretoria, South Africa, 2008. [Google Scholar]
- Mandal, A.; Haiduk, A. Hydrochemical characteristics of groundwater in the Kingston Basin, Kingston, Jamaica. Environ. Earth Sci. 2011, 63, 415–424. [Google Scholar] [CrossRef]
- Qannam, Z. Environmental Status and Water Quality Evaluation of the Groundwater Resources in Bethlehem-Hebron Region/Palestine. Master’s Thesis, University of Jordan, Amman, Jordan, 1997. [Google Scholar]
- World Bank. Securing Water for Development in West Bank and Gaza; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Abbas, M.; Barbieri, M.; Battistel, M.; Brattini, G.; Garone, A.; Parisse, B. Water Quality in the Gaza Strip: The Present Scenario. J. Water Res. Prot. 2013, 5, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Petrusevski, B.; Al-Adwan, R.; Gharaibeh, M.Y.M.; Slokar, Y.M. Drinking water production from arsenic contaminated groundwater in Jordan. In Proceedings of the IWA Groundwater Specialist Conference, Belgrade, Serbia, 9–11 June 2016. [Google Scholar]
- Rofe & Raffety. West Bank Hydrology (1963–1965); Report for the Central Water Authority of Jordan; Westminster: London, UK, 1965. [Google Scholar]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater; The American Public Health Association, American Water Works Association and the Water Environment Federation: Washington, DC, USA, 2012. [Google Scholar]
- Durov, S.A. Classification of natural water and graphic representation of their composition. Doklady Ak. SSSR 1948, 59, 87–90. [Google Scholar]
- Palestine Standards Institute (PSI). The Second Working Draft of the Amended Drinking Water Standard, Ramallah; Palestine Standards Institute: Ramallah, Palestine, 2004. [Google Scholar]
- World Health Organization (WHO). Guidelines for Drinking-Water Quality, 4th ed.; Incorporating the first addendum; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Xu, Y.; Usher, B. Groundwater Pollution in Africa; CRC Press: London, UK, 2006. [Google Scholar] [CrossRef]
- British Geological Survey (BGS). Assessing Risk to Groundwater from On-Site Sanitation: Scientific Review and Case Studies; BGS: Keyworth, UK, 2002. Available online: http://r4d.dfid.gov.uk/pdf/outputs/r68692.pdf (accessed on 1 February 2020).
- Graham, J.P.; Polizzotto, M.L. Pit latrines and their impacts on groundwater quality: A systematic review. Environ. Health Perspect. 2013, 121, 521–530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Atawneh, N.; Mahmoud, N.; van der Steen, P.; Lens, P.N.L. Characterisation of septage in partially sealed cesspit. J. Water Sanit. Hyg. Dev. 2016, 6, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Fawell, J.; Bailey, K.; Chilton, J.; Dahi, E.; Fewtrell, L.; Magara, Y. Fluoride in Drinking-Water; WHO/IWA Publishing: Cornwall, UK, 2006. [Google Scholar]
- Raj, D.; Shaji, E. Fluoride contamination in groundwater resources of Alleppey, southern India. Geosci. Front. 2017, 8, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Abed, A.; Al-Wishahi, S.K. Geology of Palestine: The West Bank and Gaza Strip; Palestinian Hydrology Group: Ramallah, Palestine, 1999. [Google Scholar]
- Godet, A.; Föllmi, K.B. Sedimentary Phosphate Deposits. In Encyclopedia of Geology, 2nd ed.; Alderton, D., Elias, S.A., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 922–930. ISBN 9780081029091. [Google Scholar] [CrossRef]
- Hudak, P.F.; Sanmanee, S. Spatial patterns of nitrate, chloride, sulfate, and fluoride concentrations in the Woodbine Aquifer of north-central Texas. Environ. Monit. Assess. 2003, 82, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Tirkey, P.; Bhattacharya, T.; Chakraborty, S.; Baraik, S. Assessment of groundwater quality and associated health risks: A case study of Ranchi city, Jharkhand, India. Groundw. Sustain. Develop. 2017, 5, 85–100. [Google Scholar] [CrossRef]
- Alam, M.O.; Shaikh, W.A.; Chakraborty, S.; Avishek, K.; Bhattacharya, T. Groundwater arsenic contamination and potential health risk assessment of gangetic plains of Jharkhand, India. Expo. Health 2016, 8, 125–142. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, A. Simultaneous removal of nitrate and hardness ions from groundwater using electrodeionization. Separ. Purif. Technol. 2016, 164, 107–113. [Google Scholar] [CrossRef]
- Khan, R.; Jhariya, D.C. Groundwater Quality Assessment for Drinking Purpose in Raipur City, Chhattisgarh Using Water Quality Index and Geographic Information System. J. Geol. Soc. India 2017, 90, 69–76. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Calcium and Magnesium in Drinking Water: Public Health Significance; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Ghanem, M.; Jebreen, H.; Sege, J.; Rubin, Y. Investigation of spring water quality in the Natuv catchment, Palestine: A component for the regional environmental management system. Euro-Mediterr. J. Environ. Integr. 2019, 4, 2. [Google Scholar] [CrossRef]
- Lloyd, J.W.; Heathcote, J.A. Natural Inorganic Hydrochemistry in Relation to Groundwater, an Introduction; Clarendon Press: Oxford, UK, 1985. [Google Scholar]
- Appello, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution; Balkema: Rotterdam, The Netherlands, 1990. [Google Scholar]
- Tesoriero, A.J.; Voss, F.D. Predicting the probability of elevated nitrate concentrations in the Puget Sound basin: Implications for aquifer susceptibility and vulnerability. Ground Water 1997, 35, 1029–1039. [Google Scholar] [CrossRef]
Parameter + | Average (STD) | Range | Palestinian Standards [23] | WHO Guideline [24] |
---|---|---|---|---|
pH | 7.2 (0.2) | 6.8–7.9 | 6.5–8.5 | NA |
TDS (mg/L) | 340.0 (56) | 265–449 | 1000 | NA |
F− (mg/L) | 0.3 (0.2) | 0.1–1.2 | 1.5 | 1.5 |
Cl− (mg/L) | 59.8 (27.3) | 33.0–132.0 | 250 | NA |
SO42− (mg/L) | 17.1 (8.7) | 8.0–48.0 | 200 | NA |
HCO3− (mg/L) | 246 (8.8) | 226.0–259.0 | NA | NA |
NO3− (mg/L) | 21.5 (10.9) | 0.0–46.2 | 50 | 50 |
PO43− (mg/L as P) | 0.8 (0.7) | 0.0–3.0 | NA | NA |
Ca2+ (mg/L) | 50.7 (3.3) | 46.0–59.0 | 100 | NA |
Mg2+ (mg/L) | 20.0 (1.7) | 17.0–25.0 | 100 | NA |
Na+ (mg/L) | 39.8 (18.8) | 21–91 | 200 | NA |
K+ (mg/L) | 2.7 (4.5) | 0–19 | 10 | NA |
NH4+ (mg/L as N) | 1.6 (2.4) | 0.0–8.5 | NA | NA |
TH (mg/L as CaCO3) | 208.5 (13.4) | 187.2–250.0 | 500 | |
DO (mg/L) | 7.9 (0.6) | 6.8–9.3 | NA | NA |
TOC (mg/L) | 0.3 (1) | 0.0–5.3 | 80 | NA |
TDS | Ca2+ | Mg2+ | Na+ | HCO3− | Cl− | SO42− | NO3− | Depth | |
---|---|---|---|---|---|---|---|---|---|
TDS | 1 | ||||||||
Ca2+ | 0.23 | 1.00 | |||||||
Mg2+ | 0.40 | 0.60 | 1.00 | ||||||
Na+ | 0.91 | 0.14 | 0.25 | 1.00 | |||||
HCO3− | 0.17 | 0.39 | 0.37 | 0.13 | 1.00 | ||||
Cl− | 0.92 | 0.16 | 0.26 | 0.99 | 0.16 | 1.00 | |||
SO42− | 0.14 | 0.05 | 0.19 | 0.03 | 0.08 | 0.03 | 1.00 | ||
NO3− | 0.28 | 0.17 | 0.04 | 0.20 | −0.29 | 0.21 | −0.22 | 1.00 | |
Depth | −0.50 | −0.34 | −0.27 | −0.39 | 0.04 | −0.39 | −0.16 | −0.48 | 1 |
Upper Cenomanian Aquifer | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Well Code | Depth | pH | Water Type | Ca2+ | Mg2+ | Na+ | K+ | HCO3− | Cl− | SO42− | NO3− | TDS |
18–8/038 | 413 | 7.1 | Ca-Mg-Na-HCO3-Cl | 48 | 21 | 33 | 8 | 246 | 51 | 12 | 11 | 397 |
16–19/002 | 200 | 7.2 | Na-Ca-HCO3-Cl | 53 | 18 | 68 | 5 | 245 | 98 | 28 | 26 | 419 |
17–20/051A | 370 | 6.9 | Ca-Na-Mg-HCO3-Cl | 46 | 21 | 40 | 7 | 247 | 58 | 31 | 26 | 353 |
16–11/001A | 305 | 7.3 | Ca-Mg-Na-HCO3 | 47 | 18 | 25 | 0 | 243 | 36 | 13 | 11 | 271 |
15–19/047 | 188 | 7.1 | Ca-Mg-Na-HCO3-Cl | 52 | 20 | 36 | 0 | 252 | 55 | 21 | 19 | 329 |
18–15/001 | 61 | 7.1 | Ca-Mg-Na-HCO3-Cl | 51 | 19 | 30 | 7 | 248 | 43 | 12 | 24 | 310 |
14–17/052 | 142 | 7.3 | Na-Ca-Mg-HCO3-Cl | 53 | 21 | 84 | 0 | 255 | 124 | 15 | 24 | 449 |
15–18/012 | 163 | 7.2 | Ca-Mg-Na-HCO3-Cl | 59 | 25 | 45 | 1 | 240 | 66 | 16 | 28 | 360 |
17–20/050Q | 686 | 7.4 | Na-Ca-Mg-HCO3-Cl | 50 | 21 | 91 | 0 | 254 | 132 | 13 | 0 | 434 |
15–20/008 | 176 | 7.0 | Ca-Na-Mg-HCO3-Cl | 50 | 20 | 57 | 0 | 242 | 88 | 12 | 42 | 390 |
14–17/051 | 177 | 7.4 | Ca-Mg-Na-HCO3-Cl | 58 | 22 | 38 | 0 | 256 | 59 | 31 | 26 | 362 |
16–19/012 | 466 | 7.1 | Ca-Mg-Na-HCO3-Cl | 47 | 17 | 32 | 0 | 226 | 49 | 18 | 28 | 304 |
15–19/046 | 201 | 6.9 | Na-Ca-Mg-HCO3-Cl | 49 | 21 | 72 | 0 | 246 | 112 | 19 | 46 | 442 |
15–19/010 | 262 | 7.3 | Ca-Na-Mg-HCO3-Cl | 52 | 18 | 50 | 0 | 244 | 75 | 13 | 28 | 358 |
Lower Cenomanian Aquifer | ||||||||||||
16–11/008 | 704 | 7.25 | Ca-Mg-HCO3 | 54 | 20 | 21 | 0 | 254 | 37 | 32 | 6 | 297 |
15–17/004 | 273 | 6.86 | Ca-Mg-Na-HCO3-Cl | 58 | 23 | 35 | 0 | 258 | 53 | 12 | 26 | 336 |
15–19/048 | 295 | 7.2 | Ca-Mg-Na-HCO3-Cl | 51 | 20 | 35 | 19 | 246 | 55 | 18 | 22 | 343 |
15–09/013 | 495 | 7.27 | Ca-Mg-Na-HCO3-Cl | 48 | 21 | 36 | 8 | 238 | 55 | 48 | 4 | 339 |
16–18/003A | 670 | 7.42 | Ca-Mg-HCO3 | 51 | 19 | 21 | 6 | 258 | 33 | 19 | 22 | 300 |
18–15/006 | 616 | 7.15 | Ca-Mg-Na-HCO3-Cl | 48 | 18 | 25 | 3 | 230 | 38 | 8 | 23 | 278 |
16–12/004 | 672 | 7.32 | Ca-Mg-HCO3-Cl | 51 | 19 | 23 | 0 | 241 | 38 | 12 | 19 | 283 |
17–17/003 | 525 | 7.87 | Ca-Mg-HCO3 | 47 | 18 | 23 | 2 | 228 | 34 | 11 | 19 | 268 |
17–12/007 | 741 | 7.09 | Ca-Mg-HCO3 | 49 | 20 | 22 | 0 | 274 | 38 | 14 | 3 | 265 |
17–17/004 | 675 | 7.25 | Ca-Mg-Na-HCO3 | 48 | 20 | 31 | 0 | 236 | 38 | 17 | 25 | 297 |
15–15/004 | 510 | 7.58 | Ca-Mg-HCO3 | 52 | 20 | 23 | 11 | 244 | 38 | 10 | 30 | 306 |
Well Name | NH4+-N | NO3− | ||
---|---|---|---|---|
Dry Season | Rainy Season | Dry Season | Rainy Season | |
Deir Alghsoon | 7.8 | 0.4 | 18.9 | 15.4 |
Qabatia | 0 | 0.5 | 0 | 5.7 |
Tulkarem | 0 | 0 | 46.2 | 44 |
Habla | 0 | 0.5 | 23.5 | 15 |
Balaa | 7 | 0.4 | 21.5 | 20 |
Araba | 0 | 0 | 26.4 | 18.4 |
Deir Sharaf | 8.5 | 3.8 | 21.7 | 10.5 |
Avg. (STD) | 3.3 (4.2) | 0.8 (1.3) | 23 (13.5) | 18.4 (12) |
Range | 0–8.5 | 0–3.8 | 0–46.2 | 5.7–20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, N.; Zayed, O.; Petrusevski, B. Groundwater Quality of Drinking Water Wells in the West Bank, Palestine. Water 2022, 14, 377. https://doi.org/10.3390/w14030377
Mahmoud N, Zayed O, Petrusevski B. Groundwater Quality of Drinking Water Wells in the West Bank, Palestine. Water. 2022; 14(3):377. https://doi.org/10.3390/w14030377
Chicago/Turabian StyleMahmoud, Nidal, Omar Zayed, and Branislav Petrusevski. 2022. "Groundwater Quality of Drinking Water Wells in the West Bank, Palestine" Water 14, no. 3: 377. https://doi.org/10.3390/w14030377
APA StyleMahmoud, N., Zayed, O., & Petrusevski, B. (2022). Groundwater Quality of Drinking Water Wells in the West Bank, Palestine. Water, 14(3), 377. https://doi.org/10.3390/w14030377