Application of DPSIR and Tobit Models in Assessing Freshwater Ecosystems: The Case of Lake Malombe, Malawi
Abstract
:1. Introduction
1.1. The Theory Underpinning the DPSIR Model
1.2. The Debate over the DPSIR as a Policy Supporting Tool
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.2.1. Grey Literature Search Strategy and Documentation
2.2.2. Primary Data
2.3. Construction of DPSIR Framework and Data Weighting
2.4. Tobit Model
2.5. Data Analysis
3. Results
3.1. Drivers and Pressures
3.2. State and Impacts
3.3. Responses
3.4. Lake Malombe Ecosystem Resilience and Influencing Factors
4. Discussion
4.1. Drivers and Pressures
4.2. State and Impacts
4.3. Response
4.4. Lake Malombe Ecosystem Resilience and Influencing Factor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reid, A.J.; Carlson, A.K.; Creed, I.F.; Eliason, E.J.; Gell, P.A.; Johnson, P.T.J.; Kidd, K.A.; MacCormack, T.J.; Olden, J.D.; Ormerod, S.J.; et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 2019, 94, 849–873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, L.; Goethals, P. Opportunities and Challenges for the Sustainability of Lakes and Reservoirs in Relation to the Sustainable Development Goals (SDGs). Water 2019, 11, 1462. [Google Scholar] [CrossRef] [Green Version]
- Duggan, I.; Rixon, C.; Maclssac, H. Popularity and propagule pressure: Determinants of introduction and establishment of aquarium fish. Biol. Invasion 2006, 8, 377–382. [Google Scholar] [CrossRef]
- Martins, J.; Camanho, M.; Gaspar, M. A review of the application of driving forces-Pressure-State-Impact-Response framework to fisheries management. Ocean Coast. Manag 2012, 69, 273–281. [Google Scholar] [CrossRef]
- Makwinja, R.; Kaunda, E.; Mengistou, S.; Alamirew, T. Impact of land use/land cover dynamics on ecosystem service value—A case from Lake Malombe, Southern Malawi. Environ. Monit. Assess. 2021, 193, 1–23. [Google Scholar] [CrossRef]
- Fetahi, T. Eutrophication of Ethiopian water bodies: A serious threat to water quality, biodiversity, and public health. Afr. J. Aquat. Sci. 2019, 44, 303–312. [Google Scholar] [CrossRef]
- Olaka, L.A.; Ogutu, J.O.; Said, M.Y.; Oludhe, C. Projected Climatic and Hydrologic Changes to Lake Victoria Basin Rivers under Three RCP Emission Scenarios for 2015–2100 and Impacts on the Water Sector. Water 2019, 11, 1449. [Google Scholar] [CrossRef] [Green Version]
- Ogutu-Ohwayo, R.; Hecky, R.E.; Cohen, A.S.; Kaufman, L. Human impacts on the African Great Lakes. Environ. Boil. Fishes 1997, 50, 117–131. [Google Scholar] [CrossRef]
- Njiru, J.; van der Knaap, M.; Kundu, R.; Nyamweya, C. Lake Victoria fisheries: Outlook and management. Lakes Reserv. 2018, 23, 52–162. [Google Scholar] [CrossRef]
- Dersseh, M.G.; Kibret, A.A.; Tilahun, S.A.; Worqlul, A.W.; Moges, M.A.; Dagnew, D.C.; Abebe, W.B.; Melesse, A.M. Potential of Water Hyacinth Infestation on Lake Tana, Ethiopia: A Prediction Using a GIS-Based Multi-Criteria Technique. Water 2019, 11, 1921. [Google Scholar] [CrossRef] [Green Version]
- IPBES. Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; IPBES: Bonn, Germany, 2019. [Google Scholar]
- Earles, J.M.; Yeh, S.; Skog, K.E. Timing of carbon emissions from global forest clearance. Nat. Clim. Chang. 2012, 2, 682–685. [Google Scholar] [CrossRef]
- Makwinja, R.; Mengistou, S.; Kaunda, E.; Alamirew, T. Land use/land cover dynamics, trade-offs and implications on tropical inland shallow lakes’ ecosystems’ management: Case of Lake Malombe, Malawi. Sustain. Environ. 2021, 7, 1969139. [Google Scholar] [CrossRef]
- Bi, W.; Weng, B.; Yuan, Z.; Ye, M.; Zhang, C.; Zhao, Y.; Yan, D.; Xu, T. Evolution Characteristics of Surface Water Quality Due to Climate Change and LUCC under Scenario Simulations: A Case Study in the Luanhe River Basin. Int. J. Environ. Res. Public Health 2018, 15, 1724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miles, A.; DeLonge, M.S.; Carlisle, L. Triggering a positive research and policy feedback cycle to support a transition to agroecology and sustainable food systems. Agroecol. Sustain. Food Syst. 2017, 41, 855–879. [Google Scholar] [CrossRef]
- Yang, X.-E.; Wu, X.; Hao, H.-L.; He, Z.-L. Mechanisms and assessment of water eutrophication. J. Zhejiang Univ. Sci. B 2008, 9, 197–209. [Google Scholar] [CrossRef] [PubMed]
- Davidson, N.C.; Finlayson, C.M. Extent, regional distribution and changes in area of different classes of wetland. Mar. Freshw. Res. 2018, 69, 1525. [Google Scholar] [CrossRef] [Green Version]
- Makwinja, R.; Kosamu, I.B.M.; Kaonga, C.C. Determinants and Values of Willingness to Pay for Water Quality Improvement: Insights from Chia Lagoon, Malawi. Sustainability 2019, 11, 4690. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhang, Z.; Shi, M. Restrictive Effects of Water Scarcity on Urban Economic Development in the Beijing-Tianjin-Hebei City Region. Sustainability 2019, 11, 2452. [Google Scholar] [CrossRef] [Green Version]
- Ogutu-Ohwayo, R.; Balirwa, J. Management challenges of freshwater fisheries in Africa. Lakes Reserv. Res. Manag. 2006, 11, 215–226. [Google Scholar] [CrossRef]
- Hall, N.D.; Stuntz, B.B.; Abrams, R.H. Climate Change and Freshwater Resources. Nat. Resour. Environ. 2008, 22, 30–35. [Google Scholar]
- Djoudi, H.; Brockhaus, M.; Locatelli, B. Once there was a lake: Vulnerability to environmental changes in northern Mali. Reg. Environ. Change 2013, 13, 493–508. [Google Scholar] [CrossRef] [Green Version]
- Makwinja, R.; Chapotera, M.; Likongwe, P.; Banda, J.; Chijere, A. Location and Roles of Deep Pools in Likangala River during 2012 Recession Period of Lake Chilwa Basin. Int. J. Ecol. 2014, 2014, 294683. [Google Scholar] [CrossRef] [Green Version]
- Magrin, G. The disappearance of Lake Chad: History of a myth. J. Political Ecol. 2016, 23, 205–222. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.R.; O’Flynn, H.; Njoku, K.; Crosbie, E.J. Detecting endometrial cancer. Obstet. Gynaecol. 2021, 23, 103–112. [Google Scholar] [CrossRef]
- Dulanya, Z.; Croudace, I.; Reed, J.; Trauth, M. Palaeoliminological reconstruction of recent environmental change in Lake Malombe (S. Malawi) using multiple proxies. Water SA 2014, 40, 717–728. [Google Scholar] [CrossRef] [Green Version]
- Okech, E.; Kitaka, N.; Omondi, S.; Verschuren, D. Water level fluctuations in Lake Baringo, Kenya, during the 19th and 20th centuries: Evidence from lake sediments. Afr. J. Aquat. Sci. 2019, 44, 25–33. [Google Scholar] [CrossRef]
- Bootsma, H.; Hecky, R. The major socio-economic benefits from these three major African conservation of the African Great Lakes: A Limnological Perspective. Conserv. Biol. 1993, 7, 644–656. [Google Scholar] [CrossRef]
- Jordaan, M.; Chakona, A. Protected Areas and Endemic Freshwater Fishes of the Cape Fold Ecoregion: Missing the Boat for Fish Conservation? Front. Environ. Sci. 2020, 8, 502042. [Google Scholar] [CrossRef]
- Swallow, B.M.; Sang, J.; Nyabenge, M.; Bundotich, D.K.; Duraiappah, A.K.; Yatich, T.B. Tradeoffs, synergies and traps among ecosystem services in the Lake Victoria basin of East Africa. Environ. Sci. Policy 2009, 12, 504–519. [Google Scholar] [CrossRef]
- Jamu, D.; Banda, M.; Njaya, F.; Hecky, R.E. Challenges to sustainable management of the lakes of Malawi. J. Great Lakes Res. 2011, 37, 3–14. [Google Scholar] [CrossRef]
- FISH. Environmental Threats and Opportunities Assessment (ETOA) of Four Major Lakes in Malawi; USAID/FISH Project; Pact Publication: Lilongwe, Malawi, 2015. [Google Scholar]
- Makwinja, R.; Kaunda, E.; Mengistou, S.; Alemiew, T.; Njaya, F.; Kosamu, I.B.M.; Kaonga, C.C. Lake Malombe fishing communities’ livelihood, vulnerability, and adaptation strategies. Curr. Res. Environ. Sustain. 2021, 3, 100055. [Google Scholar] [CrossRef]
- Makwinja, R.; Mengistou, S.; Kaunda, E.; Alamirew, T. Lake Malombe fish stock fluctuation: Ecosystem and fisherfolks. Egypt. J. Aquat. Res. 2021, 47, 321–327. [Google Scholar] [CrossRef]
- Makwinja, R.; Mengistou, S.; Kaunda, E.; Alamirew, T. Economic value of tropical inland freshwater shallow lakes: Lesson from Lake Malombe, Malawi. Afr. J. Ecol. 2021, 29, 1–15. [Google Scholar] [CrossRef]
- Hara, M.; Njaya, F. Between a rock and a hard place: The need for and challenges to implementation of Rights-Based Fisheries Management in small-scale fisheries of southern Lake Malawi. Fish. Res. 2016, 174, 10–18. [Google Scholar]
- Makwinja, R.; Mengistou, S.; Kaunda, E.; Alamirew, T. Spatial distribution of zooplankton in response to ecological dynamics in tropical shallow lake: Insight from Lake Malombe, Malawi. J. Freshw. Ecol. 2021, 36, 127–147. [Google Scholar] [CrossRef]
- Government of Malawi. Mangochi District State of Environment and Outlook; Mangochi District Council: Mangochi, Malawi, 2014.
- Njaya, F. Ecosystem approach to fisheries in southern Lake Malawi: Status of the fisheries co-management. Aquat. Ecosyst. Health Manag. 2018, 21, 159–167. [Google Scholar] [CrossRef]
- Njaya, F.; Donda, S.; Béné, C. Analysis of Power in Fisheries Co-Management: Experiences from Malawi. Soc. Nat. Resour. 2012, 25, 652–666. [Google Scholar] [CrossRef]
- Makwinja, R.; Mengistou, S.; Kaunda, E.; Alemiew, T.; Phiri, T.; Kosamu, I.; Kaonga, C. Modeling of Lake Malombe Annual Fish Landings and Catch per Unit Effort (CPUE). Forecasting 2021, 3, 39–55. [Google Scholar] [CrossRef]
- Mandić, A. Structuring challenges of sustainable tourism development in protected natural areas with driving force–pressure–state–impact–response (DPSIR) framework. Environ. Syst. Decis. 2020, 40, 560–576. [Google Scholar] [CrossRef]
- Tscherning, K.; Helming, K.; Krippner, B.; Sieber, S.; Paloma, S.G.Y. Does research applying the DPSIR framework support decision making? Land Use Policy 2012, 29, 102–110. [Google Scholar] [CrossRef]
- Rodrigues, J.M.G. Cultural Services in Aquatic Ecosystems. In Ecosystem Services and River Basin Ecohydrology; Springer: Dordrecht, The Netherland, 2015; pp. 35–56. [Google Scholar]
- Nguyen, A.T.; Hens, L. Human Ecology of Climate Change Hazards: Concepts, Literature Review, and Methodology. In Human Ecology of Climate Change Hazards in Vietnam; Springer: Cham, Switzerland, 2018; pp. 3–36. [Google Scholar]
- Ma, X.; Wang, C.; Yu, Y.; Li, Y.; Dong, B.; Zhang, X.; Niu, X.; Yang, Q.; Chen, R.; Li, Y.; et al. Ecological efficiency in China and its influencing factors-a super-efficient SBM metafrontier-Malmquist-Tobit model study. Environ. Sci. Pollut. Res. 2018, 25, 20880–20898. [Google Scholar] [CrossRef]
- Gabrielsen, P.; Bosch, P. Internal Working Paper Environmental Indicators: Typology and Use in Reporting; European Environment Agency: Copenhagen, Denmark, 2003. [Google Scholar]
- Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Friend, A.; Rapport, D. Evolution of macro-information systems for sustainable development. Ecol. Econ. 1991, 3, 59–76. [Google Scholar] [CrossRef]
- Borja, Á.; Galparsoro, I.; Solaun, O.; Muxika, I.; Tello, E.M.; Uriarte, A.; Valencia, V. The European Water Framework Directive and the DPSIR, a methodological approach to assess the risk of failing to achieve good ecological status. Estuar. Coast. Shelf Sci. 2006, 66, 84–96. [Google Scholar] [CrossRef]
- Mangi, S.C.; Roberts, C.M.; Rodwell, L.D. Reef fisheries management in Kenya: Preliminary driver–pressure–state–impacts–response (DPSIR). Ocean Coast. Manag. 2007, 50, 463–480. [Google Scholar]
- Bell, R.J.; Collie, J.S.; Jamu, D.; Banda, M. Changes in the biomass of chambo in the southeast arm of Lake Malawi: A stock assessment of Oreochromis spp. J. Great Lakes Res. 2012, 38, 720–729. [Google Scholar] [CrossRef]
- Pinto, R.; de Jonge, V.; Neto, J.; Domingos, T.; Marques, J.; Patrício, J. Towards a DPSIR driven integration of ecological value, water uses and ecosystem services for estuarine systems. Ocean Coast. Manag. 2013, 72, 64–79. [Google Scholar] [CrossRef]
- Sarmin, N.; Hasmadi, I.M.; Pakhriazad, H.; Khairil, W. The DPSIR framework for causes analysis of mangrove deforestation in Johor, Malaysia. Environ. Nanotechnol. Monit. Manag. 2016, 6, 214–218. [Google Scholar] [CrossRef]
- Gari, S.R.; Guerrero, C.E.O.; A-Uribe, B.; Icely, J.D.; Newton, A. A DPSIR-analysis of water uses and related water quality issues in the Colombian Alto and Medio Dagua Community Council. Water Sci. 2018, 32, 318–337. [Google Scholar] [CrossRef] [Green Version]
- Zare, F.; Elsawah, S.; Bagheri, A.; Nabavi, E.; Jakeman, A.J. Improved integrated water resource modelling by combining DPSIR and system dynamics conceptual modelling techniques. J. Environ. Manag. 2019, 246, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Gebremedhin, S.; Getahun, A.; Anteneh, W.; Bruneel, S.; Goethals, P. A Drivers-Pressure-State-Impact-Responses Framework to Support the Sustainability of Fish and Fisheries in Lake Tana, Ethiopia. Sustainability 2018, 10, 2957. [Google Scholar] [CrossRef] [Green Version]
- Government of Malawi. Review of Decentralized Environment Management Guidelines; Ministry of Local Government and Rural Development: Lilongwe, Malawi, 2011.
- Wang, Z.; Zhou, J.; Loaiciga, H.; Guo, H.; Hong, S. A DPSIR Model for Ecological Security Assessment through Indicator Screening: A Case Study at Dianchi Lake in China. PLoS ONE 2015, 10, e0131732. [Google Scholar] [CrossRef] [PubMed]
- Niemeijer, D.; de Groot, R. Framing environmental indicators: Moving from causal chains to causal networks. Environ. Dev. Sustain. 2008, 10, 89–106. [Google Scholar] [CrossRef]
- Carr, E.; Wingard, P.M.; Yorty, S.C.; Thompson, M.C.; Jensen, N.K.; Roberson, J. Applying DPSIR to sustainable development. Int. J. Sustain. Dev. World Ecol. 2007, 14, 543–555. [Google Scholar] [CrossRef]
- Heal, G. Valuing ecosystem services. Ecosystems 2000, 3, 24–30. [Google Scholar] [CrossRef]
- Svarstad, H.; Kjeruff, P.; Rothman, D.; Sieple, H.; Watzold, F. Discursive biases of the environmental research framework DPSIR. Land Use Policy 2008, 25, 116–125. [Google Scholar]
- Jury, M.R. Malawi’s Shire River Fluctuations and Climate. J. Hydrometeorol. 2014, 15, 2039–2049. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, J.; Sun, F. Evaluation of Water Environment Performance Based on a DPSIR-SBM-Tobid Model. Water Resour. Hydrol. Eng. 2020, 24, 1641–1654. [Google Scholar]
- Amore, M.; Murtinu, S. Tobit models in strategy research: Critical issues and applications. Glob. Strategy J. 2021, 11, 331–355. [Google Scholar] [CrossRef] [Green Version]
- Hara, M.; Jul-Larsen, E. The “Lords” of Malombe; An Analysis of Fishery Development and Changes in Fishing Effort on Lake Malombe, Malaw1. In Management, Co-Management or no Management? Major Dilemas in Southern African Freshwater Fisheries; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2003; pp. 179–201. [Google Scholar]
- Salas, S.; Bjørkan, M.; Bobadilla, F.; Cabrera, M.A. Addressing Vulnerability: Coping Strategies of Fishing Communities in Yucatan, Mexico. In Poverty Mosaics: Realities and Prospects in Small-Scale Fisheries; Springer: Cham, The Switzerland, 2011; pp. 195–220. [Google Scholar]
- Sandhu, H.; Sandhu, S. Poverty development, and Himalayan ecosystems. AMBIO 2015, 44, 297–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suich, H.; Howe, C.; Mace, G. Ecosystem services and poverty alleviation: A review of the empirical links. Ecosyst. Serv. 2015, 12, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Cawthorn, D.; Hoffman, L. The bushmeat and food security nexus: A global account of the contributions, conundrums, and ethical collisions. Food Res. Int. 2015, 76, 906–925. [Google Scholar]
- Welcomme, R.; Cowx, I.; Coates, D.; Béné, C.; Simon, F.; Ashley, H.; Kai, L. Inland capture fisheries. Philos. Trans. R. Soc. B 2010, 365, 2881–2896. [Google Scholar] [CrossRef] [PubMed]
- Nagoli, J.; Mulwafu, W.; Green, E.; Likongwe, P.; Chiwona-Karltun, L. Conflicts over Natural Resource Scarcity in the Aquatic Ecosystem of the Lake Chilwa. Environ. Ecol. Res. 2016, 4, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Christia, C.; Giordani, G.; Papastergiadou, E. Environmental Variability and Macrophyte Assemblages in Coastal Lagoon Types of Western Greece (Mediterranean Sea). Water 2018, 10, 151. [Google Scholar] [CrossRef] [Green Version]
- Thanh, H.T.; Tschakert, P.; Hipsey, M.R. Tracing environmental and livelihood dynamics in a tropical coastal lagoon through the lens of multiple adaptive cycles. Ecol. Soc. 2020, 25, 31. [Google Scholar] [CrossRef]
- Okpara, U.T.; Stringer, L.C.; Dougill, A.J.; Bila, M.D. Conflicts about water in Lake Chad: Are environmental, vulnerability and security issues linked? Prog. Dev. Stud. 2015, 15, 308–325. [Google Scholar] [CrossRef] [Green Version]
- Lemoalle, J.; Bader, J.-C.; Leblanc, M.; Sedick, A. Recent changes in Lake Chad: Observations, simulations and management options (1973–2011). Glob. Planet. Chang. 2012, 80–81, 247–254. [Google Scholar] [CrossRef]
- Likoya, E. Climate Change in the Context of Changing Land Use and Cover: Case Study of the Shire River Basin Flood of 2015. Master’s Thesis, University of Cape Town, Cape Town, South Africa, 2019. [Google Scholar]
- Limuwa, M.M.; Sitaula, B.K.; Njaya, F.; Storebakken, T. Evaluation of Small-Scale Fishers’ Perceptions on Climate Change and Their Coping Strategies: Insights from Lake Malawi. Climate 2018, 6, 34. [Google Scholar] [CrossRef] [Green Version]
- Desta, H.; Lemma, B.; Albert, G.; Stellmacher, T. Degradation of Lake Ziway, Ethiopia: A study of the environmental perceptions of school students. Lakes Reserv. Res. Manag. 2015, 20, 243–255. [Google Scholar] [CrossRef]
- Cowx, I.G.; Aya, M.P. Paradigm shifts in fish conservation: Moving to the ecosystem services concept. J. Fish. Biol. 2011, 79, 1663–1680. [Google Scholar] [CrossRef]
- Wood, A.; Dixon, A.; McCartney, M. Wetland Management and Sustainable Livelihoods in Africa; Routledge: London, UK; New York, NY, USA, 2013. [Google Scholar]
- Williams, M.; Ryan, C.; Rees, R.; Sambane, E.; Fernando, J.; Grace, J. Carbon sequestration and biodiversity of re-growing miombo woodlands in Mozambique. For. Ecol. Manag. 2008, 254, 145–155. [Google Scholar] [CrossRef]
- Nkwanda, I.S.; Feyisa, G.L.; Zewge, F.; Makwinja, R. Impact of land-use/land-cover dynamics on water quality in the Upper Lilongwe River basin, Malawi. Int. J. Energy Water Resour. 2021, 5, 193–204. [Google Scholar] [CrossRef]
- Guo, H.; Hu, Q.; Jiang, T. Annual and seasonal streamflow responses to climate and land-cover changes in the Poyang Lake basin, China. J. Hydrol. 2008, 355, 106–122. [Google Scholar] [CrossRef]
- Li, K.; Coe, M.; Ramankutty, N.; De Jong, R. Modeling the hydrological impact of land-use change in West Africa. J. Hydrol. 2007, 337, 258–268. [Google Scholar] [CrossRef]
- Dasgupta, R.; Shaw, R. Cumulative Impacts of Human Interventions and Climate Change on Mangrove Ecosystems of South and Southeast Asia: An Overview. J. Ecosyst. 2013, 2013, 1–15. [Google Scholar] [CrossRef]
- Hara, M. Restoring the chambo in Southern Malawi: Learning from the past or reinventing the wheel? Aquat. Ecosyst. Health 2016, 9, 419–432. [Google Scholar] [CrossRef]
- Froese, R.; Walters, C.; Pauly, D.; Winker, H.; Weyl, O.L.F.; Demirel, N.; Tsikliras, A.C.; Holt, S.J. A critique of the balanced harvesting approach to fishing. ICES J. Mar. Sci. 2015, 73, 1640–1650. [Google Scholar] [CrossRef] [Green Version]
- Tweddle, D.; Turner, G. Evidence for lacustrine breeding by sanjika Opsaridium microcephalum (Teleostei: Cyprinidae) in Lake Malawi. Afr. J. Aquat. Sci. 2014, 39, 479–480. [Google Scholar] [CrossRef]
- Weyl, O.; Ribbink, A.J.; Tweddle, D. Lake Malawi: Fishes, fisheries, biodiversity, health and habitat. Aquat. Ecosyst. Health Manag. 2010, 13, 241–254. [Google Scholar] [CrossRef]
- Mkumbo, O.C.; Marshall, B. The Nile perch fishery of Lake Victoria: Current status and management challenges. Fish. Manag. Ecol. 2015, 22, 56–63. [Google Scholar] [CrossRef]
- Stauffer, J.R.; Madsen, H. A one health approach to reducing schistosomiasis transmission in Lake Malawi. Prev. Med. Community Health 2018, 1, 1–4. [Google Scholar] [CrossRef]
- Khonje, A.; Metcalf, C.A.; Diggle, E.; Mlozowa, D.; Jere, C.; Akesson, A.; Corbet, T.; Chimanga, Z. Cholera outbreak in districts around Lake Chilwa, Malawi: Lessons learned. Malawi Med. J. 2012, 24, 29–33. [Google Scholar] [PubMed]
- Derne, B.; Weinstein, P.; Lau, C.L. Wetlands as Sites of Exposure to Water-Borne Infectious Diseases. In Wetlands and Human Health. Wetlands: Ecology, Conservation, and Management; Springer: Dordrecht, The Netherland, 2015; pp. 45–74. [Google Scholar]
- Pullanikkatil, D.; Palamuleni, L.; Ruhiiga, T. Assessment of land-use change in Likangala River catchment, Malawi: A remote sensing and DPSIR approach. Appl. Geogr. 2016, 71, 9–23. [Google Scholar] [CrossRef]
- Gian-Reto, W. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B 2010, 365, 2019–2024. [Google Scholar] [CrossRef]
- Etiegni, C.A.; Irvine, K.; Kooy, M. Participatory governance in Lake Victoria (Kenya) fisheries: Whose voices are heard? Marit. Stud. 2020, 19, 489–507. [Google Scholar] [CrossRef]
- Abebe, G. Cash-for-work and food-for-work programs’ role in household resilience to food insecurity in southern Ethiopia. Dev. Pract. 2020, 30, 1068–1081. [Google Scholar] [CrossRef]
- Yu, H.; Yang, Z.; Li, B. Sustainability Assessment of Water Resources in Beijing. Water 2020, 12, 1999. [Google Scholar] [CrossRef]
- Mann, T.; Gerwat, W.; Batzer, J.; Eggers, K.; Scherner, C.; Wenck, H.; Stäb, F.; Hearing, V.J.; Röhm, K.H.; Kolbe, L. Inhibition of human tyrosinase requires molecular motifs distinctively different from mushroom tyrosinase. J. Investig. Dermatol. 2018, 138, 1601–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Anh, H.; Schneider, P. A DPSIR Assessment on Ecosystem Services Challenges in the Mekong Delta, Vietnam: Coping with the Impacts of Sand Mining. Sustainability 2020, 12, 9323. [Google Scholar] [CrossRef]
- Eneyew, B.G.; Assefa, W.W. Anthropogenic effect on wetland biodiversity in Lake Tana Region: A case of Infranz Wetland, Northwestern Ethiopia. Environ. Sustain. Indic. 2021, 12, 100158. [Google Scholar] [CrossRef]
- Elias, E.; Seifu, W.; Tesfaye, B.; Girmay, W. Impact of land use/cover changes on lake ecosystem of Ethiopia central rift valley. Cogent Food Agric. 2019, 5, 1595876. [Google Scholar] [CrossRef]
Dd | Ds | Dc | P | Ss | Se | I | RCBG | RIM | RLI | REI | |
Dd | 1 | ||||||||||
Ds | 0.33 | 1 | |||||||||
Dc | 0.12 | 0.06 | 1 | ||||||||
P | 0.01 | 0.00 | 0.03 | 1 | |||||||
Ss | 0.21 | 0.31 | 0.18 | 0.12 | 1 | ||||||
Se | 0.02 | 0.10 | 0.15 | 0.09 | 0.13 | 1 | |||||
I | 0.07 | 0.01 | 0.21 | 0.10 | 0.11 | 0.20 | 1 | ||||
RCBG | 0.02 | 0.13 | 0.11 | 0.13 | 0.03 | 0.12 | 0.03 | 1 | |||
RIM | 0.02 | 0.12 | 0.02 | 0.03 | 0.02 | 0.09 | 0.02 | 0.07 | 1 | ||
RLI | 0.04 | 0.06 | 0.04 | 0.00 | 0.02 | 0.04 | 0.00 | 0.08 | 0.24 | 1 | |
REI | 0.11 | 0.1 | 0.13 | 0.14 | 0.11 | 0.21 | 0.13 | 0.16 | 0.21 | 0.02 | 1 |
DPSIR Indicators | Coefficient | Std.Error | z-Statistic | p Value |
Dd | −0.060 | 0.010 | −3.201 | 0.003 |
Ds | −0.086 | 0.021 | 2.710 | 0.041 |
Dc | −0.056 | 0.010 | 6.619 | 0.021 |
P | −0.065 | 0.010 | 4.321 | 0.044 |
Ss | −0.089 | 0.007 | 4.120 | 0.004 |
Se | −0.002 | 0.002 | 3.231 | 0.003 |
I | −0.007 | 0.001 | 2.043 | 0.043 |
RCBG | 0.012 | 0.012 | 0.450 | 0.059 |
RIM | 0.094 | 0.001 | 0.013 | 0.048 |
RLI | 0.063 | 0.001 | −4.234 | 0.021 |
REI | 0.012 | 0.012 | 6.450 | 0.012 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosamu, I.B.M.; Makwinja, R.; Kaonga, C.C.; Mengistou, S.; Kaunda, E.; Alamirew, T.; Njaya, F. Application of DPSIR and Tobit Models in Assessing Freshwater Ecosystems: The Case of Lake Malombe, Malawi. Water 2022, 14, 619. https://doi.org/10.3390/w14040619
Kosamu IBM, Makwinja R, Kaonga CC, Mengistou S, Kaunda E, Alamirew T, Njaya F. Application of DPSIR and Tobit Models in Assessing Freshwater Ecosystems: The Case of Lake Malombe, Malawi. Water. 2022; 14(4):619. https://doi.org/10.3390/w14040619
Chicago/Turabian StyleKosamu, Ishmael Bobby Mphangwe, Rodgers Makwinja, Chikumbusko Chiziwa Kaonga, Seyoum Mengistou, Emmanuel Kaunda, Tena Alamirew, and Friday Njaya. 2022. "Application of DPSIR and Tobit Models in Assessing Freshwater Ecosystems: The Case of Lake Malombe, Malawi" Water 14, no. 4: 619. https://doi.org/10.3390/w14040619
APA StyleKosamu, I. B. M., Makwinja, R., Kaonga, C. C., Mengistou, S., Kaunda, E., Alamirew, T., & Njaya, F. (2022). Application of DPSIR and Tobit Models in Assessing Freshwater Ecosystems: The Case of Lake Malombe, Malawi. Water, 14(4), 619. https://doi.org/10.3390/w14040619