Integrating Blue and Green Water to Identify Matching Characteristics of Agricultural Water and Land Resources in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.2. Data Source
3. Results
3.1. Matching Characteristics of AWLR
3.2. Analysis on Scarcity Situation of AWLR
3.2.1. Regional Differences of Agricultural Water Use and Cultivated Land Area
3.2.2. Resource Allocation Characteristics under Two Conditions
3.2.3. Identifying AWLR Scarcity Characteristics
3.2.4. Trends of AWLR Matching
4. Discussion
4.1. Implications for Agricultural Water Management in Different Regions
4.2. Effects of Climate on Agriculture Water Use
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Liu, Y.S.; Zhou, Y. Reflections on China’s food security and land use policy under rapid urbanization. Land Use Policy 2021, 109, 105699. [Google Scholar] [CrossRef]
- Yang, G.Y.; Wang, L.; Wang, H. Thinking of food security in China based on regional water resources and land cultivation. Trans. Chin. Soc. Agric. Eng. 2010, 26, 1–5. [Google Scholar]
- Zhang, Y.; Lei, G.P.; Zhang, H.Q.; Lin, J. Spatiotemporal dynamics of land and water resources matching of cultivated land use based on micro scale in Naoli River Basin. Trans. Chin. Soc. Agric. Eng. 2019, 35, 185–194. [Google Scholar]
- Yu, D.; Hu, S.G.; Tong, L.Y.; Xia, C. Spatiotemporal Dynamics of Cultivated Land and Its Influences on Grain Production Potential in Hunan Province, China. Land 2020, 9, 510. [Google Scholar] [CrossRef]
- Zarei, S.; Bozorg-Haddad, O.; Singh, V.P. Developing water, energy, and food sustainability performance indicators for agricultural systems. Sci. Rep. 2021, 11, 22831. [Google Scholar] [CrossRef]
- Yang, G.Y.; Li, S.Y.; Wang, H.; Wang, L. Study on agricultural cultivation development layout based on the matching characteristic of water and land resources in North China Plain. Agric. Water Manag. 2022, 259, 107272. [Google Scholar] [CrossRef]
- Liu, D.; Liu, C.L.; Fu, Q.; Li, M.; Faiz, M.A.; Khan, M.I.; Li, T.X.; Cui, S. Construction and application of a refined index for measuring the regional matching characteristics between water and land resources. Ecol. Indic. 2018, 91, 203–211. [Google Scholar] [CrossRef]
- Du, J.; Yang, Z.H.; Wang, H.; Yang, G.Y.; Li, S.Y. Spatial-Temporal Matching Characteristics between Agricultural Water and Land Resources in Ningxia, Northwest China. Water 2019, 11, 1460. [Google Scholar] [CrossRef] [Green Version]
- FAO. The State of Food and Agriculture; FAO: Rome, Italy, 2020. [Google Scholar]
- Li, T.T.; Long, H.L.; Zhang, Y.N.; Tu, S.S.; Ge, D.Z.; Li, Y.R.; Hu, B.Q. Analysis of the spatial mismatch of grain production and farmland resources in China based on the potential crop rotation system. Land Use Policy 2017, 60, 26–36. [Google Scholar] [CrossRef]
- Yao, L.M.; Li, Y.L.; Chen, X.D. A robust water-food-land nexus optimization model for sustainable agricultural development in the Yangtze River Basin. Agric. Water Manag. 2021, 256, 107103. [Google Scholar] [CrossRef]
- Sun, Z.; Jia, S.F.; Yan, J.B.; Zhu, W.B.; Liang, Y. Study on the Matching Pattern of Water and Potential Arable Land Resources in China. J. Nat. Resour. 2018, 33, 2057–2066. [Google Scholar]
- Manandhar, S.; Pandey, V.P.; Kazama, F. Application of water poverty index (WPI) in Nepalese context: A case study of Kali Gandaki River Basin (KGRB). Water Resour. Manag. 2012, 26, 89–107. [Google Scholar] [CrossRef]
- Tao, G.F.; Jiang, Z.H.; Qin, L.J. Analysis of balance between water and land resources in Tonghua region using Gini coefficient. Chin. J. Agric. Resour. Reg. Plan. 2012, 33, 67–71. [Google Scholar]
- Li, W.J.; Xu, W.Q.; Bao, A.M.; Lyu, Y. Analysis of cultivated land change and water-land matching characteristics in Amu Darya River Basin. Water Resour Prot. 2021, 37, 80–86, 107. [Google Scholar]
- Druckman, A.; Jackson, T. Measuring resource inequalities: The concepts and methodology for an area-based Gini coefficient. Ecol. Econ. 2008, 65, 242–252. [Google Scholar] [CrossRef] [Green Version]
- Yitzhaki, S. Relative deprivation and the Gini coefficient. Q. J. Econ. 1980, 93, 321–324. [Google Scholar] [CrossRef]
- Chen, C.N.; Tsaur, T.W.; Rhai, T.S. The Gini coefficient and negative income. Oxf. Econ. Pap. 1982, 34, 473–478. [Google Scholar] [CrossRef]
- Geng, Q.L.; Ren, Q.F.; Nolan, R.H.; Wu, P.T.; Yu, Q. Assessing China’s agricultural water use efficiency in a green-blue water perspective: A study based on data envelopment analysis. Ecol. Indic. 2019, 96, 329–335. [Google Scholar] [CrossRef]
- Nan, J.Q.; Wang, J.L.; Qin, A.Z.; Liu, Z.D.; Ning, D.F.; Zhao, B. Study on Utilization Potential of Agricultural Soil and Water Resources’ in Northwest Arid Area. J. Nat. Resour. 2017, 32, 292–300. [Google Scholar]
- Aldaya, M.M.; Hoekstra, A.Y.; Allan, J.A. Strategic importance of green water in international crop trade. Ecol. Econ. 2010, 69, 887–894. [Google Scholar] [CrossRef] [Green Version]
- Oki, T. Global hydrological cycles and world water resources. Oyo Buturi 2011, 80, 862–867. [Google Scholar] [CrossRef] [Green Version]
- Feng, C.; Mao, D.H.; Yang, L.; Zhou, H.; Hu, G.W. Research progress and commentary of green water resources. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 173–184. [Google Scholar]
- Cao, X.C.; Shao, G.C.; Wang, X.J.; Wang, Z.C.; He, X.; Yang, C.Y. Generalized water efficiency and strategic implications for food security and water management: A case study of grain production in China. Adv. Water Sci. 2017, 28, 14–21. [Google Scholar]
- Zang, C.F.; Liu, J.; van der Velde, M.; Kraxner, F. Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China. Hydrol. Earth Syst. Sci. 2012, 16, 2859–2870. [Google Scholar] [CrossRef] [Green Version]
- Cole, S. Environmental Compensation Using Resource Equivalency Analysis (REA) and Habitat Equivalency Analysis (HEA): Is It Just for the Birds? Master’s Thesis, Sveriges Lantbruksuniv, Umeå, Switzerland, 2010. [Google Scholar]
- Guinée, J.B.; Heijungs, R. A proposal for the definition of resource equivalency factors for use in product life-cycle assessment. Environ. Toxicol. Chem. 1995, 14, 917–925. [Google Scholar] [CrossRef]
- Li, J.M.; Li, Y.C. International research and application of habitat and resource equivalency analyses. Resour. Sci. 2019, 41, 2059–2070. [Google Scholar] [CrossRef]
- Duffield, J.; Neher, C.; Patterson, D. Estimating compensation ratios for tribal resources within a habitat equivalency framework. Ecol. Econ. 2021, 179, 106862. [Google Scholar] [CrossRef]
- Pavanelli, D.D.; Voulvoulis, N. Habitat Equivalency Analysis, a framework for forensic cost evaluation of environmental damage. Ecosyst. Serv. 2019, 38, 100953. [Google Scholar] [CrossRef]
- Li, J.M.; Hou, H.Z.; Yao, H.Y.; Wang, X.L. Marine biological damage assessment of oil spill based on resources equivalency analysis. Acta Ecol. Sin. 2014, 34, 3762–3770. [Google Scholar]
- Hoekstra, A.Y. Green-blue water accounting in a soil water balance. Adv. Water Resour. 2019, 129, 112–117. [Google Scholar] [CrossRef]
- Quinteiro, P.; Rafael, S.; Villanueva-Rey, P.; Ridoutt, B.; Lopes, M.; Arroja, L.; Dias, A.C. A characterisation model to address the environmental impact of green water flows for water scarcity footprints. Sci. Total Environ. 2018, 626, 1210–1218. [Google Scholar] [CrossRef] [PubMed]
- Schyns, J.F.; Hoekstra, A.Y.; Booij, M.J.; Hogeboom, R.J.; Mekonnen, M.M. Limits to the world’s green water resources for food, feed, fiber, timber, and bioenergy. Proc. Natl. Acad. Sci. USA 2019, 116, 4893–4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, K.H.; Zhuo, L.; Yang, X.; Yue, Z.W.; Zhao, D.Y.; Wu, P.T. Emergy analysis of the blue and green water resources in crop production systems. J. Clean. Prod. 2021, 319, 128666. [Google Scholar] [CrossRef]
- Ma, W.J.; Wei, F.L.; Zhang, J.P.; Karthe, D.; Opp, C. Green water appropriation of the cropland ecosystem in China. Sci. Total Environ. 2019, 806, 150597. [Google Scholar] [CrossRef]
- FAO. CROPWAT, a Computer Program for Irrigation Planning and Management. In Irrigation and Drainage Paper 46; Smith, M., Ed.; FAO: Rome, Italy, 1992. [Google Scholar]
- Chapagain, A.K.; Orr, S. An improved water footprint methodology linking global consumption to local water resources: A case of Spanish tomatoes. J. Environ. Manag. 2009, 90, 1219–1228. [Google Scholar] [CrossRef]
- Zafonte, M.; Hampton, S. Exploring welfare implications of resource equivalency analysis in natural resource damage assessments. Ecol. Econ. 2007, 61, 134–145. [Google Scholar] [CrossRef]
- Desvousges, W.H.; Gard, N.; Michael, H.J.; Chance, A.D. Habitat and Resource Equivalency Analysis: A Critical Assessment. Ecol. Econ. 2018, 143, 74–89. [Google Scholar] [CrossRef]
- Dunford, R.W.; Ginn, T.C.; Desvousges, W.H. The use of habitat equivalency analysis in natural resource damage assessments. Ecol. Econ. 2004, 48, 49–70. [Google Scholar] [CrossRef]
- Mo, X.G.; Liu, S.X.; Lin, Z.H.; Guo, R.P. Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agric. Ecosyst. Environ. 2009, 134, 67–78. [Google Scholar] [CrossRef]
- Fan, M.S.; Shen, J.B.; Yuan, L.X.; Jiang, R.F.; Chen, X.P.; Davies, W.J.; Zhang, F.S. Improving crop productivity and resource use efficiency to ensure food security and environmental quality in China. J. Exp. Bot. 2012, 63, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Judicious and optimal use of water and land resources for long-term agricultural sustainability. Resour. Conserv. Recycl. Adv. 2022, 13, 200067. [Google Scholar] [CrossRef]
- Hussain, M.I.; Muscolo, A.; Farooq, M.; Ahmad, W. Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semiarid environments. Agric. Water Manag. 2019, 221, 462–476. [Google Scholar] [CrossRef]
- Richards, S.; Rao, L.; Connelly, S.; Raj, A.; Raveendran, L.; Shirin, S.; Jamwal, P.; Helliwell, R. Sustainable water resources through harvesting rainwater and the effectiveness of a low-cost water treatment. J. Environ. Manag. 2021, 286, 112223. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.C.; Wang, Y.B.; Wu, P.; Zhao, X.N.; Wang, J. An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China. Sci. Total Environ. 2015, 529, 10–20. [Google Scholar] [CrossRef] [PubMed]
- He, G.H.; Zhao, Y.; Wang, L.Z.; Jiang, S.; Zhu, Y.N. China’s food security challenge: Effects of food habit changes on requirements for arable land and water. J. Clean. Prod. 2019, 229, 739–750. [Google Scholar] [CrossRef]
- Li, M.; Cao, X.X.; Liu, D.; Fu, Q.; Li, T.X.; Shang, R.C. Sustainable management of agricultural water and land resources under changing climate and socio-economic conditions: A multi-dimensional optimization approach. Agric. Water Manag. 2022, 259, 107235. [Google Scholar] [CrossRef]
- Jin, H.Y.; Chen, X.H.; Wu, P.; Song, C.; Xia, W.J. Evaluation of spatial-temporal distribution of precipitation in mainland China by statistic and clustering methods. Atmos. Res. 2021, 262, 105772. [Google Scholar] [CrossRef]
- Wang, X.L.; Hou, X.Y.; Zhao, Y.J. Changes in consecutive dry/wet days and their relationships with local and remote climate drivers in the coastal area of China. Atmos. Res. 2021, 247, 105138. [Google Scholar] [CrossRef]
Balanced Levels | Land Deficiency | Relative Balance | Water Scarcity | ||||
---|---|---|---|---|---|---|---|
Severe | Moderate | Slight | Slight | Moderate | Severe | ||
<50% | 50–75% | 75–90% | >90% | 75–90% | 50–75% | <50% | |
RSI | <0.5 | 0.5~0.75 | 0.75~0.9 | 0.9~1.1 | 1.1~1.25 | 1.25~1.5 | >1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, Q.; Liu, H.; He, X.; Tian, Z. Integrating Blue and Green Water to Identify Matching Characteristics of Agricultural Water and Land Resources in China. Water 2022, 14, 685. https://doi.org/10.3390/w14050685
Geng Q, Liu H, He X, Tian Z. Integrating Blue and Green Water to Identify Matching Characteristics of Agricultural Water and Land Resources in China. Water. 2022; 14(5):685. https://doi.org/10.3390/w14050685
Chicago/Turabian StyleGeng, Qingling, Hongling Liu, Xiaohui He, and Zhihui Tian. 2022. "Integrating Blue and Green Water to Identify Matching Characteristics of Agricultural Water and Land Resources in China" Water 14, no. 5: 685. https://doi.org/10.3390/w14050685
APA StyleGeng, Q., Liu, H., He, X., & Tian, Z. (2022). Integrating Blue and Green Water to Identify Matching Characteristics of Agricultural Water and Land Resources in China. Water, 14(5), 685. https://doi.org/10.3390/w14050685