The Influence of Organic Matter Origin on the Chlorine Bulk Decay Coefficient in Reclaimed Water
Abstract
:1. Introduction
2. Materials and Methods
2.1. Relclaimed Water Samples
2.2. Natural Organic Matter (NOM) Standard Solution
2.3. Bulk Decay Coefficient (kb) Measurement Method
2.4. Analysis of Water Quality Parameters and Fluorescence Characteristics
3. Results and Discussion
3.1. Residual Chlorine Decay Characteristics of Reclaimed Water
3.2. Influence of Organic Matter Characteristics on Residual Chlorine Decay
3.3. Influence of Natural Organic Mater on Chlorine Bulk Decay
3.4. Comparison of Bulk Decay Coefficients between Tap Water, Reclaimed Water, and NOM
3.5. Influence of Organic Matter Origin in Reclaimed Water on Chlorine Bulk Decay
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pakmehr, S.; Yazdanpanah, M.; Baradaran, M. How collective efficacy makes a difference in responses to water shortage due to climate change in southwest Iran. Land Use Policy 2020, 99, 104798. [Google Scholar] [CrossRef]
- Adeloye, A.J.; Dau, Q.V. Hedging as an adaptive measure for climate change induced water shortage at the Pong reservoir in the Indus Basin Beas River, India. Sci. Total Environ. 2019, 687, 554–566. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.; Li, H. Impact of climate change and human activities on economic values produced by ecosystem service functions of rivers in water shortage area of Northwest China. Environ. Sci. Pollut. Res. 2020, 27, 26570–26578. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.E.; Mokhtar, M.; Hanafiah, M.M.; Halim, A.A.; Badusah, J. Rainwater harvesting as an alternative water resource in Malaysia: Potential, policies and development. J. Clean. Prod. 2016, 126, 218–222. [Google Scholar] [CrossRef]
- Ayob, S.; Rahmat, S.N. Rainwater harvesting (RWH) and groundwater potential as alternatives water resources in Malaysia: A review. MATEC Web Conf. 2017, 103, 04020. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Kim, H.; Jang, T. Irrigation water quality standards for indirect wastewater reuse in agriculture: A contribution toward sustainable wastewater reuse in South Korea. Water 2016, 8, 169. [Google Scholar] [CrossRef] [Green Version]
- Navarro, T. Water reuse and desalination in Spain—Challenges and opportunities. J. Water Reuse Desal. 2018, 8, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Young, T.A.; Schwab, K.J.; Jacangelo, J.G. Mechanisms of virus removal from secondary wastewater effluent by low pressure membrane filtration. J. Membr. Sci. 2020, 409–410, 1–8. [Google Scholar] [CrossRef]
- Bilinska, L.; Blus, K.; Gmurek, M.; Ledakowicz, S. Coupling of electrocoagulation and ozone treatment for textile wastewater reuse. Chem. Eng. J. 2019, 358, 992–1001. [Google Scholar] [CrossRef]
- Woo, Y.C.; Lee, J.J.; Shim, W.G.; Shon, H.K.; Tijing, L.D.; Yao, M.; Kim, H.S. Effect of powdered activated carbon on integrated submerged membrane bioreactor–nanofiltration process for wastewater reclamation. Bioresour. Technol. 2016, 210, 18–25. [Google Scholar] [CrossRef]
- Mahapatra, A.; Padhi, N.; Mahapatra, D.; Bhatt, M.; Sahoo, D.; Jena, S.; Dash, D.; Chayani, N. Study of biofilm in bacteria from water pipelines. J. Clin. Diagn. Res. 2015, 9, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Hemdan, B.A.; El-Taweel, G.E.; Gowami, P.; Pant, D.; Sevda, D. The role of biofilm in the development and dissemination of ubiquitous pathogens in drinking water distribution systems: An overview of surveillance, outbreaks, and prevention. J. Microbiol. Biotechnol. 2021, 37, 36. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, J.I.; Dignum, M.; Liu, G.; Medema, G.; Hoek, J.P. Changes in biofilm composition and microbial water quality in drinking water distribution systems by temperature increase induced through thermal energy recovery. Environ. Res. 2021, 194, 110648. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, U.; Lee, H.; Kong, M.; Kwak, P. A Study on the corrosion index of Tap Water (TW) and Reclaimed Water (RW) using KWI (Korea Water Index) and KRWI (Korea Reclaimed Index Water) method. Int. J. Eng. Technol. 2018, 7, 209–212. [Google Scholar] [CrossRef]
- Wadowsky, R.M.; Wilson, T.M.; Kapp, N.J.; West, A.J.; States, S.J.; Dowling, J.N.; Yee, R.B. Multiplication of Legionella spp. in tap water containing Hartmannella vermiformis. Appl. Environ. Microbiol. 1991, 57, 1950–1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabral, F.M.; Jamerson, M.; Kaneshiro, E. Free-living amoebae, Legionella and Mychbacterium in tap water supplied by a municipal drinking water utility in the USA. J. Water Health 2010, 8, 71–82. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.W.; Park, E.Z.; Lee, H.D.; Kwak, P.J.; Park, J.H.; Kong, M.S.; Lee, W.T.; Lee, T.Y. Characteristics of microbial community using pyrosequencing in reclaimed water distribution pipes. J. Water Sustain. 2014, 4, 137–145. [Google Scholar] [CrossRef]
- Valdivia-Garcia, M.; Weir, P.; Frogbrook, Z.; Graham, D.W.; Werner, D. Climatic, geographic and operational determinants of trihalomethanes (THMs) in drinking water systems. Sci. Rep. 2016, 6, 35027. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Chen, Z.; She, Q.; Cao, G.; Liu, Y.; Chang, V.W.C.; Tang, C.Y. Regulation, formation, exposure, and treatment of disinfection by-products (DBPs) in swimming pool waters: A critical review. Environ. Int. 2018, 121, 1039–1057. [Google Scholar] [CrossRef]
- Lee, H.D.; Park, J.H.; Kang, S.W.; Kong, M.S. A study on evaluation of the pipe wall decay constants of residual chlorine and affecting factors in reclaimed water supply system. Desalin. Water Treat. 2015, 53, 2378–2387. [Google Scholar] [CrossRef]
- Wang, Y.H.; Wu, Y.H.; Du, Y.; Li, Q.; Cong, Y.; Huo, Z.Y.; Chen, Z.; Yang, H.W.; Liu, S.M.; Hu, H.Y. Quantifying chlorine-reactive substances to establish a chlorine decay model of reclaimed water using chemical chlorine demands. Chem. Eng. J. 2019, 356, 791–798. [Google Scholar] [CrossRef]
- Costa, J.; Mesquita, E.; Ferreira, F.; Rosa, M.J.; Viegas, R.M.C. Identification and modelling of chlorine decay mechanisms in reclaimed water containing ammonia. Sustainability 2021, 13, 13548. [Google Scholar] [CrossRef]
- Kang, S.W.; Lee, J.Y.; Lee, H.D.; Kim, G.E.; Kwak, P.J. Characteristics of corrosion and water quality in simulated reclaimed water distribution pipelines. J. Korean Soc. Environ. Eng. 2012, 34, 473–479. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.W.; Lee, J.Y.; Lee, H.D.; Park, J.H.; Kwak, P.J.; Oh, H. Characteristics of residual free chlorine decay in reclaimed water. J. Korean Soc. Environ. Eng. 2013, 35, 276–282. [Google Scholar] [CrossRef]
- Warton, B.; Heintz, A.; Joll, C.; Kagi, R. A new method for calculation of the chlorine demand of natural and treated waters. Water Res. 2006, 40, 2877–2884. [Google Scholar] [CrossRef] [PubMed]
- Rossman, L.A. The effect of advanced treatment on chlorine decay in metallic pipes. Water Res. 2006, 40, 2493–2502. [Google Scholar] [CrossRef]
- Kim, H.; Kim, S.; Park, J.; Han, M. The fractionation characteristics of organic matter in pollution sources and river. J. Korean Soc. Water Environ. 2017, 33, 580–586. [Google Scholar] [CrossRef]
- Albrektienė, R.; Rimeika, M.; Zalieckienė, E.; Šaulys, V.; Zagorskis, A. Determination of organic matter by UV absorption in the ground water. J. Environ. Eng. Landsc. Manag. 2012, 20, 163–167. [Google Scholar] [CrossRef]
- Xiang, C.; Xu, P.; Wang, J.; Wang, T.; Zhang, Y. Organics and its control in reclaimed water. Appl. Mech. Mater. 2014, 507, 752–756. [Google Scholar] [CrossRef]
- Kohpaei, A.J.; Sathasivan, A. Chlorine decay prediction in bulk water using the parallel second order model: An analytical solution development. Chem. Eng. J. 2011, 171, 232–241. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Ahn, K. Monitoring of COD as organic indicator in waste water and treated effluent by fluorescence excitation-emission matrix (FEEM). J. Korean Soc. Water Qual. 2002, 18, 461–470. [Google Scholar] [CrossRef]
- Bieroza, M.Z.; Bridgeman, J.; Baker, A. Fluorescence spectroscopy as a tool for determination of organic matter removal efficiency at water treatment works. Drink. Water Eng. Sci. 2010, 3, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Jemba, P.K.; Weinrich, L.; Cheng, W.; Giraldo, E.; Lechevallier, M.W. Guidance Document on the Microbiological Quality and Biostability of Reclaimed Water following Storage and Distribution; WateReuse Foundation: Alexandria, VA, USA, 2010; pp. 68–80. [Google Scholar]
- Funamizu, N.; Iwamoto, T.; Takakuwa, T. Mathematical model for describing reactions of residual chlorine with organic matter in reclaimed wastewater. Water Sci. Technol. 2004, 50, 195–201. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Equipment/Method |
---|---|---|
Temperature | °C | Istek 720P, Istek, Seoul, Korea |
pH | pH meter, Istek pH-250L | |
Cl− | mg/L | DR 4000, HACH, USA |
SO42− | mg/L | DR 4000, HACH, USA |
NH4+-N, NO3−-N | mg/L | DR 4000, HACH, USA |
TOC, DOC | mg/L | TOC-VCPH, Shimadzu, Kyoto, Japan |
Hardness | mg/L as CaCO3− | DR 4000, HACH, USA |
Alkalinity | mg/L as CaCO3− | Standard method (2320) |
Cu2+, Fe2+, Mn2+, Zn2+ | mg/L | IRIS intrepid II XDL, Thermo Electron Corp, Waltham, MA, USA |
Parameter | Tap Water | IRW A | IRW B | GRW |
---|---|---|---|---|
Temp (°C) | 15.2 | 22.7 | 16.0 | 17.5 |
pH | 7.25 | 7.50 | 6.89 | 7.32 |
Cl− (mg/L) | 10.1 | 1197.0 | 1011.0 | 357.0 |
SO42− (mg/L) | 12.0 | 171.5 | 130.0 | 143.0 |
NH4+-N (mg/L) | 0.07 | 0.03 | 1.40 | 0.00 |
NO3-N (mg/L) | 1.10 | 7.35 | 7.85 | 12.80 |
TOC (mg/L) | 1.75 | 3.710 | 1.270 | 3.444 |
DOC (mg/L) | 1.62 | 3.675 | 1.174 | 3.127 |
UV254 (abs./cm) | 0.021 | 0.055 | 0.032 | 0.060 |
Hardness (mg/L as CaCO3) | 82 | 440 | 420 | 280 |
Alkalinity (mg/L as CaCO3) | 30 | 85 | 77 | 89 |
Cu2+ (mg/L) | 0.004 | 0.0239 | 0.0231 | 0.0037 |
Fe2+ (mg/L) | 0.010 | 0.0293 | 0.0436 | 0.0065 |
Mn2+ (mg/L) | 0.009 | 0.0418 | 0.0413 | 0.0009 |
Zn2+ (mg/L) | 0.068 | 0.0247 | 0.0256 | 0.0046 |
Temp. (°C) | Initial Chlorine ion Injection (mg/L) | kb (day−1) | |||
---|---|---|---|---|---|
Tap Water | IRW-A | IRW-B | GRW | ||
5 | 1 | 1.785 | 605.290 | 2.018 | 397.138 |
2 | 1.454 | 459.130 | 1.669 | 60.350 | |
4 | 1.326 | 320.458 | 1.432 | 11.362 | |
15 | 1 | 2.658 | 694.886 | 3.122 | 512.510 |
2 | 2.211 | 542.074 | 2.675 | 97.157 | |
4 | 1.762 | 427.608 | 2.159 | 19.181 | |
25 | 1 | 3.276 | 906.12 | 3.887 | 652.882 |
2 | 2.878 | 754.661 | 3.488 | 118.411 | |
4 | 2.501 | 555.134 | 3.095 | 29.837 |
TOC (mg/L) | 1.16 | 2.30 | 4.73 |
kb (day−1) | 0.512 | 2.119 | 9.173 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.-W.; Ahn, K.-H. The Influence of Organic Matter Origin on the Chlorine Bulk Decay Coefficient in Reclaimed Water. Water 2022, 14, 765. https://doi.org/10.3390/w14050765
Kang S-W, Ahn K-H. The Influence of Organic Matter Origin on the Chlorine Bulk Decay Coefficient in Reclaimed Water. Water. 2022; 14(5):765. https://doi.org/10.3390/w14050765
Chicago/Turabian StyleKang, Sung-Won, and Kwang-Ho Ahn. 2022. "The Influence of Organic Matter Origin on the Chlorine Bulk Decay Coefficient in Reclaimed Water" Water 14, no. 5: 765. https://doi.org/10.3390/w14050765
APA StyleKang, S. -W., & Ahn, K. -H. (2022). The Influence of Organic Matter Origin on the Chlorine Bulk Decay Coefficient in Reclaimed Water. Water, 14(5), 765. https://doi.org/10.3390/w14050765