Modified Hazelnut Shells as a Novel Adsorbent for the Removal of Nitrate from Wastewater
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Adsorbent Preparation
2.3. Adsorbent Characterization
Determination of pHpzc of MHS
2.4. Batch Adsorption Experiments
2.5. Column Experiments
3. Results and Discussion
3.1. Characterization of the Adsorbent
3.2. Batch Adsorption Studies
3.2.1. Effect of Contact Time
3.2.2. Effect of Adsorbent Concentration
3.2.3. Effect of Initial Nitrate Concentration
3.2.4. Effect of pH
3.3. Adsorption Isotherms
3.4. Thermodynamic Study
3.5. Adsorption Kinetics
3.6. Breakthrough and Desorption Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhatnagar, A.; Sillanpää, M. A review of emerging adsorbents for nitrate removal from water. Chem. Eng. J. 2011, 168, 493–504. [Google Scholar] [CrossRef]
- El Ouardi, M.; Qourzal, S.; Alahiane, S.; Assabbane, A.; Douch, J. Effective Removal of Nitrates Ions from Aqueous Solution Using New Clay as Potential Low-Cost Adsorbent. J. Encapsul. Adsorpt. Sci. 2015, 5, 178–190. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Wang, Y.; Wang, J.; Xu, S.; Yu, L.; Philippe, C.; Wintgens, T. Nitrate removal from water by new polymeric adsorbent modified with amino and quaternary ammonium groups: Batch and column adsorption study. J. Taiwan Inst. Chem. Eng. 2016, 66, 191–199. [Google Scholar] [CrossRef]
- Mehrabi, N.; Soleimani, M.; Yeganeh, M.M.; Sharififard, H. Parameter optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles. RSC Adv. 2015, 5, 51470–51482. [Google Scholar] [CrossRef]
- Palko, J.W.; Oyarzun, D.I.; Ha, B.; Stadermann, M.; Santiago, J.G. Nitrate removal from water using electrostatic regeneration of functionalized adsorbent. Chem. Eng. J. 2018, 334, 1289–1296. [Google Scholar] [CrossRef] [Green Version]
- Kapoor, A.; Viraraghavan, T. Nitrate Removal From Drinking Water—Review. J. Environ. Eng. 1997, 123, 371–380. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J. Enhanced removal of nitrate from water using surface modification of adsorbents—A review. J. Environ. Manag. 2013, 131, 363–374. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment—A review. Chem. Eng. J. 2010, 157, 277–296. [Google Scholar] [CrossRef]
- Öztürk, N.; Bektaş, T.E. Nitrate removal from aqueous solution by adsorption onto various materials. J. Hazard. Mater. 2004, 112, 155–162. [Google Scholar] [CrossRef]
- Hekmatzadeh, A.A.; Karimi-Jashni, A.; Talebbeydokhti, N.; Kløve, B. Adsorption kinetics of nitrate ions on ion exchange resin. Desalination 2013, 326, 125–134. [Google Scholar] [CrossRef]
- Schoeman, J.J.; Steyn, A. Nitrate removal with reverse osmosis in a rural area in South Africa. Desalination 2003, 155, 15–26. [Google Scholar] [CrossRef]
- Elyanow, D.; Persechino, J. Advances in Nitrate Removal. Available online: https://www.gewater.com/kcpguest/documents/TechnicalPapers_Cust/Americas/English/TP1033EN.pdf (accessed on 15 June 2021).
- Pintar, A.; Batista, J.; Levec, J. Catalytic denitrification: Direct and indirect removal of nitrates from potable water. Catal. Today 2001, 66, 503–510. [Google Scholar] [CrossRef]
- Reddy, K.J.; Lin, J. Nitrate removal from groundwater using catalytic reduction. Water Res. 2000, 34, 995–1001. [Google Scholar] [CrossRef]
- Archna; Sharma, S.K.; Sobti, R.C. Nitrate removal from ground water. E-J. Chem. 2012, 9, 1667–1675. [Google Scholar] [CrossRef]
- Battas, A.; El Gaidoumi, A.; Ksakas, A.; Kherbeche, A. Adsorption study for the removal of nitrate from water using local clay. Sci. World J. 2019, 2019, 9529618. [Google Scholar] [CrossRef] [Green Version]
- Katheresan, V.; Kansedo, J.; Lau, S. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng. 2018, 6, 4676–4697. [Google Scholar] [CrossRef]
- Dai, Y.; Sun, Q.; Wang, W.; Lu, L.; Liu, M.; Li, J.; Yang, S.; Sun, Y.; Zhang, K.; Xu, J.; et al. Utilizations of agricultural waste as adsorbent for the removal of contaminants: A review. Chemosphere 2018, 211, 235–253. [Google Scholar] [CrossRef]
- Abdolali, A.; Guo, W.S.; Ngo, H.H.; Chen, S.S.; Nguyen, N.C.; Tung, K.L. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour. Technol. 2014, 160, 57–66. [Google Scholar] [CrossRef]
- Statista Production of Tree Nuts Worldwide in 2020/2021, by Type (in 1000 Metric Tons). Available online: https://www.statista.com/statistics/1030790/tree-nut-global-production-by-type/ (accessed on 19 August 2020).
- Martínez, M.L.; Moiraghi, L.; Agnese, M.; Guzman, C. Making and Some Properties of Activated Carbon Produced from Agricultural Industrial Residues from Argentina. J. Argenitne Chem. Soc. 2003, 91, 103–108. [Google Scholar]
- Demirbaş, Ö.; Karadaǧ, A.; Alkan, M.; Doǧan, M. Removal of copper ions from aqueous solutions by hazelnut shell. J. Hazard. Mater. 2008, 153, 677–684. [Google Scholar] [CrossRef]
- Ferrero, F. Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. J. Hazard. Mater. 2007, 142, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Kusmierek, K.; Swiatkowski, A. Removal of chlorophenols from aqueous solutions by sorption onto walnut, pistachio and hazelnut shells. Pol. J. Chem. Technol. 2015, 17, 23–31. [Google Scholar] [CrossRef] [Green Version]
- Kaya, N.; Arslan, F.; Yildiz Uzun, Z. Production and characterization of carbon-based adsorbents from waste lignocellulosic biomass: Their effectiveness in heavy metal removal. Fuller. Nanotub. Carbon Nanostruct. 2020, 28, 769–780. [Google Scholar] [CrossRef]
- Kazemipour, M.; Ansari, M.; Tajrobehkar, S.; Majdzadeh, M.; Kermani, H.R. Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone. J. Hazard. Mater. 2008, 150, 322–327. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, R.; Chai, H.; Yao, J.; Chen, Y.; Yi, Z. Hazelnut shell activated carbon: A potential adsorbent material for the decontamination of uranium(VI) from aqueous solutions. J. Radioanal. Nucl. Chem. 2016, 310, 1147–1154. [Google Scholar] [CrossRef]
- Sert, S.; Çelik, A.; Tirtom, V.N. Removal of arsenic(III) ions from aqueous solutions by modified hazelnut shell. Desalin. Water Treat. 2017, 75, 115–123. [Google Scholar] [CrossRef]
- Altun, T.; Ecevit, H.; Çiftçi, B. Production of chitosan coated, citric acid modified almond, and hazelnut shell adsorbents for Cr(VI) removal and investigation of equilibrium, kinetics, and thermodynamics of adsorption. Arab. J. Geosci. 2021, 14, 439. [Google Scholar] [CrossRef]
- Kaya, N.; Yıldız, Z.; Ceylan, S. Preparation and Characterisation of Biochar from Hazelnut Shell and Its Adsorption Properties for Methylene Blue Dye. Politek. Derg. 2018, 21, 765–776. [Google Scholar] [CrossRef] [Green Version]
- Al-Ajji, M.A.; Al-Ghouti, M.A. Novel insights into the nanoadsorption mechanisms of crystal violet using nano-hazelnut shell from aqueous solution. J. Water Process Eng. 2021, 44, 102354. [Google Scholar] [CrossRef]
- Bayil Oguzkan, S.; Karadeniz, S.; Karagül, B.; Uzun, A.; Sine Aksoy, E.; Özensoy Güler, Ö.; Çakir, Ü.; Ugras, H.I. Effects of Some Adsorbents on the Pre-purification of Taxol (Anticancer Drug) from Hazelnut Nutshells. Int. J. Pharmacol. 2018, 14, 835–840. [Google Scholar] [CrossRef]
- Kosjek, T.; Heath, E.; Kompare, B. Removal of pharmaceutical residues in a pilot wastewater treatment plant. Anal. Bioanal. Chem. 2007, 387, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Keränen, A.; Leiviskä, T.; Gao, B.Y.; Hormi, O.; Tanskanen, J. Preparation of novel anion exchangers from pine sawdust and bark, spruce bark, birch bark and peat for the removal of nitrate. Chem. Eng. Sci. 2013, 98, 59–68. [Google Scholar] [CrossRef]
- Khan, M.N.; Sarwar, A. Determination of points of zero charge of natural and treated adsorbents. Surf. Rev. Lett. 2007, 14, 461–469. [Google Scholar] [CrossRef]
- Xu, X.; Gao, B.; Yue, Q.; Li, Q.; Wang, Y. Nitrate adsorption by multiple biomaterial based resins: Application of pilot-scale and lab-scale products. Chem. Eng. J. 2013, 234, 397–405. [Google Scholar] [CrossRef]
- Yang, W.; Wang, J.; Shi, X.; Tang, H.; Wang, X.; Wang, S.; Zhang, W.; Lu, J. Preferential Nitrate Removal from Water Using a New Recyclable Polystyrene Adsorbent Functionalized with Triethylamine Groups. Ind. Eng. Chem. Res. 2020, 59, 5194–5201. [Google Scholar] [CrossRef]
- Naushad, M.; Sharma, G.; Kumar, A.; Sharma, S.; Ghfar, A.A.; Bhatnagar, A.; Stadler, F.J.; Khan, M.R. Efficient removal of toxic phosphate anions from aqueous environment using pectin based quaternary amino anion exchanger. Int. J. Biol. Macromol. 2018, 106, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banu, H.T.; Meenakshi, S. Synthesis of a novel quaternized form of melamine–formaldehyde resin for the removal of nitrate from water. J. Water Process Eng. 2017, 16, 81–89. [Google Scholar] [CrossRef]
- Wang, W.Y.; Yue, Q.Y.; Xu, X.; Gao, B.Y.; Zhang, J.; Li, Q.; Xu, J.T. Optimized conditions in preparation of giant reed quaternary amino anion exchanger for phosphate removal. Chem. Eng. J. 2010, 157, 161–167. [Google Scholar] [CrossRef]
- Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chem. Eng. J. 2015, 281, 1–10. [Google Scholar] [CrossRef]
- Divband Hafshejani, L.; Hooshmand, A.; Naseri, A.A.; Mohammadi, A.S.; Abbasi, F.; Bhatnagar, A. Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecol. Eng. 2016, 95, 101–111. [Google Scholar] [CrossRef]
- Chauhan, K.; Kaur, J.; Singh, P.; Sharma, P.; Sharma, P.; Chauhan, G.S. An Efficient and Regenerable Quaternary Starch for Removal of Nitrate from Aqueous Solutions. Ind. Eng. Chem. Res. 2016, 55, 2507–2519. [Google Scholar] [CrossRef]
- Stjepanović, M.; Velić, N.; Habuda-Stanić, M. Modified grape seeds: A promising alternative for nitrate removal from water. Materials 2021, 14, 4791. [Google Scholar] [CrossRef] [PubMed]
- Nur, T.; Shim, W.G.; Loganathan, P.; Vigneswaran, S.; Kandasamy, J. Nitrate removal using Purolite A520E ion exchange resin: Batch and fixed-bed column adsorption modelling. Int. J. Environ. Sci. Technol. 2015, 12, 1311–1320. [Google Scholar] [CrossRef]
- Keränen, A.; Leiviskä, T.; Hormi, O.; Tanskanen, J. Preparation of cationized pine sawdust for nitrate removal: Optimization of reaction conditions. J. Environ. Manag. 2015, 160, 105–112. [Google Scholar] [CrossRef]
- Kalaruban, M.; Loganathan, P.; Shim, W.G.; Kandasamy, J.; Ngo, H.H.; Vigneswaran, S. Enhanced removal of nitrate from water using amine-grafted agricultural wastes. Sci. Total Environ. 2016, 565, 503–510. [Google Scholar] [CrossRef]
- Naushad, M.; Khan, M.A.; ALOthman, Z.A.; Khan, M.R. Adsorptive removal of nitrate from synthetic and commercially available bottled water samples using De-Acidite FF-IP resin. J. Ind. Eng. Chem. 2014, 20, 3400–3407. [Google Scholar] [CrossRef]
- Sowmya, A.; Meenakshi, S. An efficient and regenerable quaternary amine modified chitosan beads for the removal of nitrate and phosphate anions. J. Environ. Chem. Eng. 2013, 1, 906–915. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Giles, C.H.; MacEwan, T.H.; Nakhwa, S.N.; Smith, D. Studies in Adsorption. Part XI.* A System. J. Chem. Soc. 1960, 846, 3973–3993. [Google Scholar] [CrossRef]
- Sowmya, A.; Meenakshi, S. A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate. Chem. Eng. J. 2014, 257, 45–55. [Google Scholar] [CrossRef]
- Karachalios, A.; Wazne, M. Nitrate removal from water by quaternized pine bark using choline based ionic liquid analogue. J. Chem. Technol. Biotechnol. 2013, 88, 664–671. [Google Scholar] [CrossRef] [Green Version]
- Keränen, A.; Leiviskä, T.; Hormi, O.; Tanskanen, J. Removal of nitrate by modified pine sawdust: Effects of temperature and co-existing anions. J. Environ. Manag. 2015, 147, 46–54. [Google Scholar] [CrossRef]
- Darajeh, N.; Alizadeh, H.; Leung, D.W.M.; Nodeh, H.R.; Rezania, S.; Farraji, H. Application of modified spent mushroom compost biochar (Smcb/fe) for nitrate removal from aqueous solution. Toxics 2021, 9, 277. [Google Scholar] [CrossRef]
- Morghi, M.; Abidar, F.; Soudani, A.; Zerbet, M.; Chiban, M.; Kabli, H.; Sinan, F. Removal of nitrate ions from aqueous solution using chitin as natural adsorbent. Int. J. Res. Environ. Stud. 2015, 2, 8–20. [Google Scholar]
- Stjepanović, M.; Velić, N.; Lončarić, A.; Gašo-Sokač, D.; Bušić, V.; Habuda-Stanić, M. Adsorptive removal of nitrate from wastewater using modified lignocellulosic waste material. J. Mol. Liq. 2019, 285, 535–544. [Google Scholar] [CrossRef]
- Alagha, O.; Manzar, M.S.; Zubair, M.; Anil, I.; Mu’azu, N.D.; Qureshi, A. Magnetic Mg-Fe/LDH intercalated activated carbon composites for nitrate and phosphate removal from wastewater: Insight into behavior and mechanisms. Nanomaterials 2020, 10, 1361. [Google Scholar] [CrossRef] [PubMed]
- Ebelegi, A.N.; Ayawei, N.; Wankasi, D. Interpretation of Adsorption Thermodynamics and Kinetics. Open J. Phys. Chem. 2020, 10, 166–182. [Google Scholar] [CrossRef]
- Weber, W.J., Jr. Evolution of a Technology. J. Environ. Eng. 1984, 110, 899–917. [Google Scholar] [CrossRef]
Experiment | Process Parameters |
---|---|
Effect of initial MHS concentration | γnitrate = 30 mg L−1, γadsorbent = 1−10 g L−1, V = 50 mL, pH = native (6.3 (MS), 7.5 (MW), 5.7 (CW), and 9.4 (DW), respectively), Θ = 25 °C, t = 120 min, v = 130 rpm. |
Effect of contact time | γnitrate = 30 mg L−1, γadsorbent = 4 g L−1, V = 50 mL, pH = native (6.3 (MS), 7.5 (MW), 5.7 (CW), and 9.4 (DW), respectively), Θ = 25 °C, t = 2−1440 min, v = 130 rpm. |
Effect of initial nitrate concentration | γnitrate = 10−300 mg L−1, γadsorbent = 4 g L−1, V = 50 mL, pH = native (6.3 (MS), 7.5 (MW), 5.7 (CW), and 9.4 (DW), respectively), Θ = 25 °C, t = 120 min, v = 130 rpm. |
Effect of initial solution pH | γnitrate = 30 mg L−1, γadsorbent = 4 g L−1, V = 50 mL, pH = 2, 4, 6, 7, 8, 10, Θ = 25 °C, t = 120 min, v = 130 rpm. |
Parameter % Mass | HS | MHS |
---|---|---|
C | 48.91 | 45.91 |
H | 6.28 | 8.76 |
N | 0.1 | 8.14 |
Isotherm Model | MS | MW | CW | DW |
---|---|---|---|---|
qm exp./mg g−1 | 25.79 | 11.57 | 21.47 | 13.73 |
Langmuir | ||||
qm cal./mg g−1 | 26.508 | 16.031 | 756.6 | 66.204 |
KL/L mg−1 | 0.051 | 0.017 | 1.4∙10−4 | 0.301 |
RL | 0.061 | 0.164 | 0.959 | 0.011 |
R2 | 0.961 | 0.950 | 0.968 | 0.878 |
MSE | 2.617 | 0.935 | 1.865 | 49.595 |
RMSE | 1.618 | 0.967 | 1.366 | 7.042 |
Freundlich | ||||
KF/(mg g−1 (L/mg)1/n) | 4.081 | 1.044 | 0.099 | 23.154 |
n | 2.803 | 2.141 | 0.993 | 4.301 |
R2 | 0.995 | 0.862 | 0.968 | 0.958 |
MSE | 0.312 | 2.587 | 1.871 | 17.005 |
RMSE | 0.558 | 1.609 | 1.368 | 4.124 |
Adsorbent | Adsorption Capacity qm Langmuir/mg g−1 | References |
---|---|---|
Quaternized melamiformaldehydeyde resin | 124.16 | [39] |
Quaternized resin with acrylonitrile/divinylbenzene/vinyl benzyl chloride | 59.7 | [52] |
Quaternized pine bark | 46.9 | [53] |
Quaternized pine sawdust | 29.5 | [54] |
Greenish clay | 27.77 | [16] |
Spent mushroom compost treated with iron(III) chloride hexahydrate | 19.88 | [55] |
Chitin | 2∙10−4 | [56] |
Triethylamine-functionalized polystyrene microsphere | 47.27 | [37] |
Modified brewers’ spent grain | 24.16 | [57] |
Modified grape seeds | 27.47 | [44] |
Modified hazelnut shells | 26.51 | This study |
T/K | Kc | ΔG/kJ mol−1 | ΔH/kJ mol−1 | ΔS/J mol−1K−1 | |
---|---|---|---|---|---|
MS | 298.15 | 3.145 | −2.840 | 20.328 | 78.468 |
308.15 | 5.433 | −4.196 | |||
318.15 | 5.234 | −4.103 | |||
MW | 298.15 | 0.309 | 2.912 | −26.332 | −99.319 |
308.15 | 0.139 | 4.896 | |||
318.15 | 0.160 | 4.542 | |||
CW | 298.15 | 0.145 | 4.786 | −2.104 | −22.436 |
308.15 | 0.181 | 4.240 | |||
318.15 | 0.137 | 4.932 | |||
DW | 298.15 | 0.162 | 4.510 | 2.044 | −8.295 |
308.15 | 0.165 | 4.467 | |||
318.15 | 0.171 | 4.381 |
Kinetic Model | MS | MW | CW | DW |
---|---|---|---|---|
qm exp./mg g−1 | 6.748 | 4.439 | 3.803 | 3.495 |
Pseudo-first order | ||||
qm 1/mg g−1 | 2.077 | 1.711 | 1.560 | 1.190 |
k1/min−1 | 0.009 | 0.011 | 0.005 | 0.010 |
R2 | 0.776 | 0.910 | 0.506 | 0.675 |
Pseudo-second order | ||||
qm 2/mg g−1 | 6.775 | 4.462 | 3.830 | 3.516 |
k2/g mg−1 min−1 | 0.023 | 0.031 | 0.013 | 0.035 |
R2 | 1 | 1 | 0.999 | 0.999 |
Intraparticle Diffusion Model | MS | MW | CW | DW |
---|---|---|---|---|
ki1/mg g−1 min−0.5 | 0.932 | 0.603 | 0.968 | 0.210 |
C1 | 0.961 | 0.540 | <0 | 1.217 |
R12 | 0.965 | 0.833 | 0.972 | 0.890 |
ki2/mg g−1 min−0.5 | 0.013 | 0.015 | 0.032 | 0.004 |
C2 | 6.289 | 3.974 | 2.680 | 3.345 |
R22 | 0.824 | 0.505 | 0.739 | 0.501 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stjepanović, M.; Velić, N.; Habuda-Stanić, M. Modified Hazelnut Shells as a Novel Adsorbent for the Removal of Nitrate from Wastewater. Water 2022, 14, 816. https://doi.org/10.3390/w14050816
Stjepanović M, Velić N, Habuda-Stanić M. Modified Hazelnut Shells as a Novel Adsorbent for the Removal of Nitrate from Wastewater. Water. 2022; 14(5):816. https://doi.org/10.3390/w14050816
Chicago/Turabian StyleStjepanović, Marija, Natalija Velić, and Mirna Habuda-Stanić. 2022. "Modified Hazelnut Shells as a Novel Adsorbent for the Removal of Nitrate from Wastewater" Water 14, no. 5: 816. https://doi.org/10.3390/w14050816
APA StyleStjepanović, M., Velić, N., & Habuda-Stanić, M. (2022). Modified Hazelnut Shells as a Novel Adsorbent for the Removal of Nitrate from Wastewater. Water, 14(5), 816. https://doi.org/10.3390/w14050816