Land Use Change to Reduce Freshwater Nitrogen and Phosphorus will Be Effective Even with Projected Climate Change
Abstract
:1. Introduction
- To apply, and assess the performance of, process-based, dynamic catchment water quality models at nine sites for the simulation of daily river flow, nitrate (NO3−-N), and total phosphorus (TP), as well as the soluble reactive phosphorus (SRP) concentrations in rivers and lakes and the lake chl-a concentrations.
- To quantify how climate change alone will affect river N and P concentrations and loads, using the current land cover (business as usual) and the down-scaled outputs of three Global Circulation Model-Regional Climate Model combinations, driven by the A1B scenario, to provide projections of future climate (2031–2060) representative of an ensemble mean and extremes.
- To quantify how four scenarios of climate, land use, N-deposition and water use change would affect river N and P concentrations and loads.
- To quantify the effect of the four scenarios on lake chl-a concentrations for five of the study areas, which include major lakes.
2. Study Areas and Observational Datasets
2.1. Yläneenjoki-Pyhäjärvi
2.2. Vansjø-Hobøl
2.3. Tarland Burn
2.4. River Thames
2.5. IJsselmeer
2.6. Vltava-Orlík
2.7. Arbúcies
2.8. Louros
2.9. Beyşehir
3. Materials and Methods
3.1. Modelling Workflows
3.2. Model Performance—Calibration and Testing
3.3. Climate Change Projections
3.4. Land Use, Atmospheric Deposition, and Water Use Projections
4. Results
4.1. Model Performance and Uncertainty Evaluation
4.2. Projected Change in Hydrology
4.3. Projected Change in River Nutrient Concentrations and Loads: Climate Change Only
4.4. Projected Change in River Nutrient Concentrations and Loads: Integrated Scenarios
4.5. Projected Change in Lake Nutrient and Chlorophyll Concentrations
5. Discussion
5.1. The Effect of Climate and Land Cover Change on Stream Water N and P Concentrations
5.2. The Strength of Observational Evidence to Support the Model-Based Assessments
5.3. Comparison with Other Projections of Future Change in Nutrient Concentrations
5.4. Will Reductions in Nutrient Concentrations Lead to Better Freshwater Ecology?
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Smith, V.H.; Tilman, G.D.; Nekola, J.C. Eutrophication: Impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ. Pollut. 1999, 100, 179–196. [Google Scholar] [CrossRef]
- Robins, P.E.; Skov, M.W.; Lewis, M.J.; Gimenez, L.; Davies, A.G.; Malham, S.K.; Neill, S.P.; McDonald, J.E.; Whitton, T.A.; Jackson, S.E.; et al. Impact of climate change on UK estuaries: A review of past trends and potential projections. Estuar. Coast. Shelf Sci. 2016, 169, 119–135. [Google Scholar] [CrossRef] [Green Version]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Ockenden, M.C.; Hollaway, M.J.; Beven, K.J.; Collins, A.L.; Evans, R.; Falloon, P.D.; Forber, K.J.; Hiscock, K.M.; Kahana, R.; Macleod, C.J.A.; et al. Major agricultural changes required to mitigate phosphorus losses under climate change. Nat. Commun. 2017, 8, 161. [Google Scholar] [CrossRef] [Green Version]
- Whitehead, P.G.; Wilby, R.L.; Battarbee, R.W.; Kernan, M.; Wade, A.J. A review of the potential impacts of climate change on surface water quality. Hydrol. Sci. J. 2009, 54, 101–123. [Google Scholar] [CrossRef]
- Michalak, A.M. Study role of climate change in extreme threats to water quality. Nature 2016, 535, 349–350. [Google Scholar] [CrossRef]
- Bowes, M.J.; Loewenthal, M.; Read, D.S.; Hutchins, M.G.; Prudhomme, C.; Armstrong, L.K.; Harman, S.A.; Wickham, H.D.; Gozzard, E.; Carvalho, L. Identifying multiple stressor controls on phytoplankton dynamics in the River Thames (UK) using high-frequency water quality data. Sci. Total Environ. 2016, 569, 1489–1499. [Google Scholar] [CrossRef] [Green Version]
- Withers, P.J.A.; Neal, C.; Jarvie, H.P.; Doody, D.G. Agriculture and eutrophication: Where do we go from here? Sustainability 2014, 6, 5853–5875. [Google Scholar] [CrossRef] [Green Version]
- Wilby, R.L.; Whitehead, P.G.; Wade, A.J.; Butterfield, D.; Davis, R.J.; Watts, G. Integrated modelling of climate change impacts on water resources and quality in a lowland catchment: River Kennet, UK. J. Hydrol. 2006, 330, 204–220. [Google Scholar] [CrossRef]
- Crossman, J.; Whitehead, P.G.; Futter, M.N.; Jin, L.; Shahgedanova, M.; Castellazzi, M.; Wade, A.J. The interactive responses of water quality and hydrology to changes in multiple stressors, and implications for the long-term effective management of phosphorus. Sci. Total Environ. 2013, 454, 230–244. [Google Scholar] [CrossRef]
- Mack, L.; Andersen, H.E.; Beklioglu, M.; Bucak, T.; Couture, R.M.; Cremona, F.; Ferreira, M.T.; Hutchins, M.G.; Mischke, U.; Molina-Navarro, E.; et al. The future depends on what we do today—Projecting Europe’s surface water quality into three different future scenarios. Sci. Total Environ. 2019, 668, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Reder, K.; Barlund, I.; Voss, A.; Kynast, E.; Williams, R.; Malve, O.; Florke, M. European scenario studies on future in-stream nutrient concentrations. Trans. Asabe 2013, 56, 1407–1417. [Google Scholar]
- Beusen, A.H.W.; Bouwman, A.F.; Van Beek, L.P.H.; Mogollon, J.M.; Middelburg, J.J. Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 2016, 13, 2441–2451. [Google Scholar] [CrossRef] [Green Version]
- Sinha, E.; Michalak, A.M.; Balaji, V. Eutrophication will increase during the 21st century as a result of precipitation changes. Science 2017, 357, 405–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kronvang, B.; Behrendt, H.; Andersen, H.E.; Arheimer, B.; Barr, A.; Borgvang, S.A.; Bouraoui, F.; Granlund, K.; Grizzetti, B.; Groenendijk, P.; et al. Ensemble modelling of nutrient loads and nutrient load partitioning in 17 European catchments. J. Environ. Monit. 2009, 11, 572–583. [Google Scholar] [CrossRef]
- Hurkmans, R.; Terink, W.; Uijlenhoet, R.; Torfs, P.; Jacob, D.; Troch, P.A. Changes in Streamflow Dynamics in the Rhine Basin under Three High-Resolution Regional Climate Scenarios. J. Clim. 2010, 23, 679–699. [Google Scholar] [CrossRef] [Green Version]
- Wade, A.J.; Skeffington, R.A.; Couture, R.M.; Erlandsson, M.; Groot, S.; Halliday, S.J.; Harelzak, V.; Hejzlar, J.; Jackson-Blake, L.A.; Lepisto, A.; et al. The REFRESH Common Modelling Framework for the Demonstration Catchments; University College London: London, UK, 2013; p. 27. Available online: http://www.refresh.ucl.ac.uk/webfm_send/1968 (accessed on 10 January 2022).
- Schelske, C.L.; Stoermer, E.F.; Fahnenstiel, G.L.; Haibach, M. Phosphorus enrichment, silica utilization, and biogeochemical silica depletion in the Great Lakes. Can. J. Fish. Aquat. Sci. 1986, 43, 407–415. [Google Scholar] [CrossRef]
- Harelzak, V.; Groot, S.; Duel, H. Final Report on the Biophysical Modelling of Lake Ijsselmeer; University College London: London, UK, 2014; p. 44. Available online: http://www.refresh.ucl.ac.uk/webfm_send/2389 (accessed on 10 January 2022).
- Rankinen, K.; Granlund, K.; Futter, M.N.; Butterfield, D.; Wade, A.J.; Skeffington, R.; Arvola, L.; Veijalainen, N.; Huttunen, I.; Lepisto, A. Controls on inorganic nitrogen leaching from Finnish catchments assessed using a sensitivity and uncertainty analysis of the INCA-N model. Boreal Environ. Res. 2013, 18, 373–386. [Google Scholar]
- Etheridge, J.R.; Lepisto, A.; Granlund, K.; Rankinen, K.; Birgand, F.; Burchell, M.R. Reducing uncertainty in the calibration and validation of the INCA-N model by using soft data. Hydrol. Res. 2014, 45, 73–88. [Google Scholar] [CrossRef]
- Lepistö, A.; Etheridge, J.R.; Granlund, K.; Kotamäki, N.; Malve, O.; Rankinen, K.; Varjopuro, R. Report on the Biophysical Catchment-Scale Modelling of Yläneenjoki–Pyhäjärvi Demonstration Site; University College London: London, UK, 2014; p. 67. Available online: http://www.refresh.ucl.ac.uk/webfm_send/2161 (accessed on 10 January 2022).
- Couture, R.M.; Tominaga, K.; Starrfelt, J.; Moe, S.J.; Kaste, Ø.; Wright, R.; Farkas, C.; Engebretsen, A. Report on the Catchment-scale Modelling of the Vansjø-Hobøl and Skuterud Catchments, Norway; University College London: London, UK, 2014; p. 59. Available online: http://www.refresh.ucl.ac.uk/webfm_send/2209 (accessed on 10 January 2022).
- Couture, R.M.; Tominaga, K.; Starrfelt, J.; Moe, S.J.; Kaste, O.; Wright, R.F. Modelling phosphorus loading and algal blooms in a Nordic agricultural catchment-lake system under changing land-use and climate. Environ. Sci.-Processes Impacts 2014, 16, 1588–1599. [Google Scholar] [CrossRef] [Green Version]
- Couture, R.-M.; Moe, S.J.; Lin, Y.; Kaste, Ø.; Haande, S.; Lyche Solheim, A. Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network. Sci. Total Environ. 2018, 621, 713–724. [Google Scholar] [CrossRef]
- Jackson-Blake, B.M.; Dunn, S.M.; Hershkovitz, Y.; Sample, J.; Helliwell, R.C.; Balana, B. Biophysical Catchment-Scale Modelling in the River Dee Catchment, Scotland; University College London: London, UK, 2014; p. 111. Available online: http://www.refresh.ucl.ac.uk/webfm_send/2163 (accessed on 10 January 2022).
- Jackson-Blake, L.A.; Wade, A.J.; Futter, M.N.; Butterfield, D.; Couture, R.M.; Cox, B.A.; Crossman, J.; Ekholm, P.; Halliday, S.J.; Jin, L.; et al. The Integrated Catchment model of phosphorus dynamics (INCA-P): Description and demonstration of new model structure and equations. Environ. Model. Softw. 2016, 83, 356–386. [Google Scholar] [CrossRef] [Green Version]
- Hejzlar, J.; Jarošík, J.; Kopáček, J. River Vltava Modelling, Final Report; University College London: London, UK, 2014; p. 32. Available online: http://www.refresh.ucl.ac.uk/webfm_send/2387 (accessed on 10 January 2022).
- Erlandsson, M.; Wade, A.J.; Riera, J.L.; Puig, M.; Skeffington, R.A.; Halliday, S.J. River Arbúcies Biophysical Modelling, Final Report; University College London: London, UK, 2014; p. 67. Available online: http://www.refresh.ucl.ac.uk/webfm_send/2255 (accessed on 10 January 2022).
- Erlandsson, M.; Wade, A.J.; Hershkovitz, Y.; Papadaki, C.; Manolaki, P.; Papastergiadou, E. River Louros Modeling, Final Report; University College London: London, UK, 2014; p. 53. Available online: http://www.refresh.ucl.ac.uk/webfm_send/2162 (accessed on 10 January 2022).
- Beklioğlu, M.; Bucak, T.; Erdoğan, S.; Çakıroğlu, A.I.; Trolle, D.; Andersen, H.E.; Thodsen, H.; Elliott, J.A. Lake Beyşehir Modelling: Final Report; University College London: London, UK, 2014; p. 30. Available online: http://www.refresh.ucl.ac.uk/webfm_send/2158 (accessed on 10 January 2022).
- Bucak, T.; Trolle, D.; Andersen, H.E.; Thodsen, H.; Erdogan, S.; Levi, E.E.; Filiz, N.; Jeppesen, E.; Beklioglu, M. Future water availability in the largest freshwater Mediterranean lake is at great risk as evidenced from simulations with the SWAT model. Sci. Total Environ. 2017, 581, 413–425. [Google Scholar] [CrossRef] [PubMed]
- Bucak, T.; Trolle, D.; Tavsanoglu, U.N.; Cakiroglu, A.I.; Ozen, A.; Jeppesen, E.; Beklioglu, M. Modeling the effects of climatic and land use changes on phytoplankton and water quality of the largest Turkish freshwater lake: Lake Beysehir. Sci. Total Environ. 2017, 621, 802–816. [Google Scholar] [CrossRef] [PubMed]
- Skarbøvik, E.; Haande, S.; Bechmann, M. Overvåking Vansjø/Morsa 2011–2012; Resultater fra overvåkingen I perioden oktober 2011 til oktober 2012; Bioforsk: Ås, Norway, 2013; Volume 8, p. 212. [Google Scholar]
- Skarbøvik, E.; Bechmann, M.E. Some Characteristics of the Vansjø-Hobøl (Morsa) Catchment; Bioforsk Soil and Environment: Ås, Norway, 2010; p. 44. [Google Scholar]
- Jin, L.; Whitehead, P.G.; Futter, M.N.; Lu, Z.L. Modelling the impacts of climate change on flow and nitrate in the River Thames: Assessing potential adaptation strategies. Hydrol. Res. 2012, 43, 902–916. [Google Scholar] [CrossRef]
- Ovezikoglou, V.; Ladakis, M.; Dassenakis, M.; Skoullos, M. The fluctuation of nutrients and organic carbon in the waters of some rivers in the Western Greece. In Proceedings of the 8th International Conference on Environmental Science and Technology, Lemnos Island, Greece, 8–10 September 2003; pp. 628–632. [Google Scholar]
- Mackereth, F.J.H.; Heron, J.; Talling, J.F. Water Analysis: Some revised methods for limnologists. Freshw. Biol. Assoc. Sci. Publ. 1978, 36, 117. [Google Scholar]
- Jespersen, A.M.; Christoffersen, K. Measurements of chlorophyll-a from phytoplankton using ethanol as extraction solvent. Arch. Hydrobiol. 1987, 109, 445–454. [Google Scholar]
- Wade, A.J.; Durand, P.; Beaujouan, V.; Wessel, W.W.; Raat, K.J.; Whitehead, P.G.; Butterfield, D.; Rankinen, K.; Lepisto, A. A nitrogen model for European catchments: INCA, new model structure and equations. Hydrol. Earth Syst. Sci. 2002, 6, 559–582. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. Asabe 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Dunn, S.M.; McDonnell, J.J.; Vache, K.B. Factors influencing the residence time of catchment waters: A virtual experiment approach. Water Resour. Res. 2007, 43, W06408. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, D.P.; Schladow, S.G. Prediction of water quality in lakes and reservoirs. 1. Model description. Ecol. Model. 1997, 96, 91–110. [Google Scholar] [CrossRef]
- Schladow, S.G.; Hamilton, D.P. Prediction of water quality in lakes and reservoirs. 2. Model calibration, sensitivity analysis and application. Ecol. Model. 1997, 96, 111–123. [Google Scholar] [CrossRef]
- Elliott, J.A.; Irish, A.E.; Reynolds, C.S. Modelling phytoplankton dynamics in fresh waters: Affirmation of the PROTECH approach to simulation. Freshw. Rev. 2010, 3, 75–96. [Google Scholar] [CrossRef]
- Janse, J.H. A model of nutrient dynamics in shallow lakes in relation to multiple stable states. Hydrobiologia 1997, 342, 1–8. [Google Scholar]
- Kotamaki, N.; Patynen, A.; Taskinen, A.; Huttula, T.; Malve, O. Statistical dimensioning of nutrient loading reduction: LLR assessment tool for lake managers. Environ. Manag. 2015, 56, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Saloranta, T.M.; Andersen, T. MyLake—A multi-year lake simulation model code suitable for uncertainty and sensitivity analysis simulations. Ecol. Model. 2007, 207, 45–60. [Google Scholar] [CrossRef]
- Cole, T.M.; Wells, S.A. CE-QUAL-W2: A Two-Dimensional, Laterally Averaged, Hydrodynamic and Water Quality Model, 3.7; Department of Civil and Environmental Engineering, Portland State University: Portland, OR, USA, 2011. [Google Scholar]
- Jackson-Blake, L.A.; Starrfelt, J. Do higher data frequency and Bayesian auto-calibration lead to better model calibration? Insights from an application of INCA-P, a process-based river phosphorus model. J. Hydrol. 2015, 527, 641–655. [Google Scholar] [CrossRef]
- Jolliff, J.K.; Kindle, J.C.; Shulman, I.; Penta, B.; Friedrichs, M.A.M.; Helber, R.; Arnone, R.A. Summary diagrams for coupled hydrodynamic-ecosystem model skill assessment. J. Mar. Syst. 2009, 76, 64–82. [Google Scholar] [CrossRef]
- van der Linden, P.; Mitchell, J.F.B. ENSEMBLES: Climate Change and Its Impacts: Summary of Research and Results from the ENSEMBLES Project; Met Office Hadley Centre: Exeter, UK, 2009; p. 160. [Google Scholar]
- Nakicenovic, N.; Alcamo, J.; Davis, G.; de Vries, H.J.M.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grubler, A.; Jung, T.Y.; Kram, T.; et al. IPCC Special Report: Emissions Scenarios; Cambridge University Press: Cambridge, UK, 2000; p. 570. [Google Scholar]
- Jackson-Blake, L.A.; Dunn, S.M.; Helliwell, R.C.; Skeffington, R.A.; Stutter, M.I.; Wade, A.J. How well can we model stream phosphorus concentrations in agricultural catchments? Environ. Model. Softw. 2015, 64, 31–46. [Google Scholar] [CrossRef]
- Kumar, D.; Kodra, E.; Ganguly, A.R. Regional and seasonal intercomparison of CMIP3 and CMIP5 climate model ensembles for temperature and precipitation. Clim. Dyn. 2014, 43, 2491–2518. [Google Scholar] [CrossRef]
- Skeffington, R.A.; Wade, A.J.; Couture, R.M.; Erlandsson, M.; Groot, S.; Halliday, S.J.; Harelzak, V.; Hejzlar, J.; Jackson-Blake, L.A.; Lepisto, A.; et al. Integrated Catchment Biophysical Modelling: Synthesis Report; University College London: London, UK, 2014; p. 44. Available online: http://www.refresh.ucl.ac.uk/webfm_send/2383 (accessed on 10 January 2022).
- Arnell, N.W.; Halliday, S.J.; Battarbee, R.W.; Skeffington, R.A.; Wade, A.J. The implications of climate change for the water environment in England. Prog. Phys. Geogr. 2015, 39, 93–120. [Google Scholar] [CrossRef] [Green Version]
- Wade, A.J.; Palmer-Felgate, E.J.; Halliday, S.J.; Skeffington, R.A.; Loewenthal, M.; Jarvie, H.P.; Bowes, M.J.; Greenway, G.M.; Haswell, S.J.; Bell, I.M.; et al. Hydrochemical processes in lowland rivers: Insights from in situ, high-resolution monitoring. Hydrol. Earth Syst. Sci. 2012, 16, 4323–4342. [Google Scholar] [CrossRef] [Green Version]
- Howden, N.J.K.; Burt, T.P.; Worrall, F.; Whelan, M.J.; Bieroza, M. Nitrate concentrations and fluxes in the River Thames over 140 years (1868–2008): Are increases irreversible? Hydrol. Processes 2010, 24, 2657–2662. [Google Scholar] [CrossRef]
- UNEP. A Snapshot of the World’s Water Quality: Towards a Global Assessment; United Nations Environment Programme: Nairobi, Kenya, 2016; p. 162. [Google Scholar]
- Shoda, M.E.; Sprague, L.A.; Murphy, J.C.; Riskin, M.L. Water-quality trends in US rivers, 2002 to 2012: Relations to levels of concern. Sci. Total Environ. 2019, 650, 2314–2324. [Google Scholar] [CrossRef]
- Stalnacke, P.; Aakeroy, P.A.; Blicher-Mathiesen, G.; Iital, A.; Jansons, V.; Koskiaho, J.; Kyllmar, K.; Lagzdins, A.; Pengerud, A.; Povilaitis, A. Temporal trends in nitrogen concentrations and losses from agricultural catchments in the Nordic and Baltic countries. Agric. Ecosyst. Environ. 2014, 198, 94–103. [Google Scholar] [CrossRef]
- Longphuirt, S.N.; O’Boyle, S.; Stengel, D.B. Environmental response of an Irish estuary to changing land management practices. Sci. Total Environ. 2015, 521, 388–399. [Google Scholar] [CrossRef] [Green Version]
- Cheng, P.; Li, X.Y.; Su, J.J.; Hao, S.N. Recent water quality trends in a typical semi-arid river with a sharp decrease in streamflow and construction of sewage treatment plants. Environ. Res. Lett. 2018, 13, 014026. [Google Scholar] [CrossRef] [Green Version]
- Chen, B.H.; Chang, S.X.; Lam, S.K.; Erisman, J.W.; Gu, B.J. Land use mediates riverine nitrogen export under the dominant influence of human activities. Environ. Res. Lett. 2017, 12, 094018. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, A.; Jarvie, H.P.; Buda, A.; May, L.; Spears, B.; Kleinman, P. Phosphorus Legacy: Overcoming the Effects of Past Management Practices to Mitigate Future Water Quality Impairment. J. Environ. Qual. 2013, 42, 1308–1326. [Google Scholar] [CrossRef] [Green Version]
- Bussi, G.; Janes, V.; Whitehead, P.G.; Dadson, S.J.; Holman, I.P. Dynamic response of land use and river nutrient concentration to long-term climatic changes. Sci. Total Environ. 2017, 590, 818–831. [Google Scholar] [CrossRef]
- Jackson, B.M.; Browne, C.A.; Butler, A.P.; Peach, D.; Wade, A.J.; Wheater, H.S. Nitrate transport in Chalk catchments: Monitoring, modelling and policy implications. Environ. Sci. Policy 2008, 11, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Bowes, M.J.; Jarvie, H.P.; Halliday, S.J.; Skeffington, R.A.; Wade, A.J.; Loewenthal, M.; Gozzard, E.; Newman, J.R.; Palmer-Felgate, E.J. Characterising phosphorus and nitrate inputs to a rural river using high-frequency concentration-flow relationships. Sci. Total Environ. 2015, 511, 608–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Hare, M.T.; Baattrup-Pedersen, A.; Baumgarte, I.; Freeman, A.; Gunn, I.D.M.; Lazar, A.N.; Sinclair, R.; Wade, A.J.; Bowes, M.J. Responses of Aquatic Plants to Eutrophication in Rivers: A Revised Conceptual Model. Front. Plant Sci. 2018, 9, 451. [Google Scholar] [CrossRef]
- Powers, S.M.; Bruulsema, T.W.; Burt, T.P.; Chan, N.I.; Elser, J.J.; Haygarth, P.M.; Howden, N.J.K.; Jarvie, H.P.; Lyu, Y.; Peterson, H.M.; et al. Long-term accumulation and transport of anthropogenic phosphorus in three river basins. Nat. Geosci. 2016, 9, 353–356. [Google Scholar] [CrossRef]
- Gu, B.J.; Zhu, Y.M.; Chang, J.; Peng, C.H.; Liu, D.; Min, Y.; Luo, W.D.; Howarth, R.W.; Ge, Y. The role of technology and policy in mitigating regional nitrogen pollution. Environ. Res. Lett. 2011, 6, 014011. [Google Scholar] [CrossRef] [Green Version]
- Richardson, J.; Miller, C.; Maberly, S.C.; Taylor, P.; Globevnik, L.; Hunter, P.; Jeppesen, E.; Mischke, U.; Moe, S.J.; Pasztaleniec, A.; et al. Effects of multiple stressors on cyanobacteria abundance vary with lake type. Glob. Change Biol. 2018, 24, 5044–5055. [Google Scholar] [CrossRef] [Green Version]
Study Catchment | Lat., Long. | Koppen-Geiger | Area | Altitude | Precipitation | Discharge | Land Use | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min | Max | Mean | Mean | Farmland | Forest | Urban | Other | ||||
Decimal Degrees | km2 | m | m | mm y−1 | m3 s−1 | % | % | % | % | ||
Yläneenjoki (FIN) | 60.99, 22.30 | Cold, without dry season, warm or cold summer (Dfb, Dfc) | 233 | 50 | 100 | 630 | 2.1 | 29 | 47 | 4 | 20 |
Hobøl (NOR) | 59.45, 10.67 | Temperate, without dry season, warm summer (Cfb) | 301 | 0 | 200 | 800 | 4.5 | 15 | 78 | 0 | 7 |
Tarland (GBR) | 57.15, −3.30 | Temperate, without dry season, cold summer (Cfc) | 74 | 150 | 610 | 901 | 0.73 | 53 | 19 | 1 | 27 1 |
Thames (GBR) | 51.40, −1.32 | Temperate, without dry season, warm summer (Cfb) | 9931 | 3 | 330 | 717 | 80 | 68 | 13 | 11 | 8 |
Vltava (CZE) | 50.33, 14.47 | Temperate, without dry season, warm summer (Cfb) | 12,116 | 354 | 1378 | 700 | 90 | 52 | 42 | 3 | 3 |
Arbúcies (ESP) | 41.83, 2.47 | Temperate, dry summer, hot or warm summer (Csa, Csb) | 112 | 65 | 1700 | 830 | 0.57 | 15 | 71 | 3 | 11 |
Louros (GRC) | 39.16, 20.75 | Temperate, dry summer, hot summer (Csa) | 977 | 0 | 2000 | 1367 | 24 | 22 | 4 | 2 | 72 2 |
Beyşehir (TUR) | 37.67, 31.62 | Temperate, dry summer, warm summer (Csb) | 4600 | 1050 | 3000 | 490 | 19 | 30 | 6 | 0 | 64 3 |
Rhine flowing to Ijsselmeer via the River Ijssel (NLD) | 52.82, 5.25 | Temperate, without dry season, warm summer (Cfb) | 185,000 (Rhine) | 0 | 4059 | 968 *** | 340 ** | 50 | 35 * | 15 | * |
Catchment | SRP | TP | NO3− | Period | Land Cover/Use Description | Data References |
---|---|---|---|---|---|---|
mg P L−1 | mg P L−1 | mg N L−1 | ||||
Yläneenjoki (FIN) | 0.02 | 0.08 | 2.4 | 2003–2008 | Arable, mainly forest, mire, some settlements. | [20,21,22] |
Hobøl (NOR) | - | 0.04 | - | 1992–1995 | Arable and grassland, mainly forest, some settlements, low relief. | [23,24,25] |
Tarland (GBR) | 0.01 | 0.05 | 2.9 | 1999–2010 | Arable, heather heath, a little woodland, some settlements, low hills. | [26,27] |
Thames (GBR) | 0.19 | - | - | 2001–2008 | Mainly arable, some woodland and grassland, large population, low hills and floodplain. | [10] |
Vltava (CZE) | 0.07 | 0.15 | 1.6 | 1991–2010 | Arable, forest and grassland, aquaculture, settlements, mountains. | [28] |
Arbúcies (ESP) | 0.04 | 0.09 | 1.1 | 2001–2011 | Small arable area, forested, small settlement, mountainous. | [29] |
Louros (GRC) | 0.05 | 0.06 | 0.7 | 2005–2010 | Arable on floodplains, no significant settlements, mainly shrubland on karstic uplands. | [30] |
Beyşehir (TUR) | 0.10 | - | 0.4 | 2010–2012 | Arable irrigated mostly, settlements, mainly rangeland, high altitude, mountainous. | [31,32,33] |
Catchment | Study Lake | Area | Depth | Retention Time | SRP | TP | NO3− | Chl-a | Period | Data References |
---|---|---|---|---|---|---|---|---|---|---|
km2 | m | Years | mg P L−1 | mg P L−1 | mg N L−1 | µg L−1 | ||||
Yläneenjoki (FIN) | Pyhäjärvi | 154 | 5.5 | 3.2 | 0.001 | 0.018 | 0.45 * | 7 | 1980–2009 | [20,21,22] |
Hobøl (NOR) | Vansjø | 36 | 3.8 | 0.21 | 0.014 | 0.035 | - | 13 | 2005–2012 | [23,24,25] |
Vltava (CZE) | Orlík reservoir | 27 | 27.0 | 0.25 | 0.030 | 0.048 | 1.45 | 10 | 1991–1995 | [28] |
Beyşehir (TUR) | Beyşehir | 650 | 5.0 | 5.1 | - | - | - | 3 | 2010–2012 | [31,32,33] |
IJsselmeer (NLD) | IJsselmeer | 1140 | 4.5 | 0.30 | 0.030 | 0.116 | 1.81 | 26 | 2000–2013 | [19] |
Catchment | Catchment Models Applied | Lake | Lake Models Applied | Model Application Reference |
---|---|---|---|---|
Yläneenjoki (FIN) | INCA-N, INCA-P | Pyhäjärvi | Lake Load Response, MyLake | [20,21,22] |
Hobøl (NOR) | INCA-N, INCA-P | Vansjø | MyLake | [23,24,25] |
Tarland (GBR) | Stream-N, INCA-P | - | - | [26,27] |
Thames (GBR) | INCA-P | - | - | [10] |
Vltava (CZE) | INCA-N, INCA-P | Orlík reservoir | CE-QUAL-W2 | [28] |
Arbúcies (ESP) | INCA-N, INCA-P | - | - | [29] |
Louros (GRC) | INCA-N, INCA-P | - | - | [30] |
Beyşehir (TUR) | SWAT | Beyşehir | DYRESM-CAEDYM, PROTECH, PCLake | [31,32,33] |
IJsselmeer (NLD) | None | IJsselmeer | DELFT-3D, HABITAT | [19] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wade, A.J.; Skeffington, R.A.; Couture, R.-M.; Erlandsson Lampa, M.; Groot, S.; Halliday, S.J.; Harezlak, V.; Hejzlar, J.; Jackson-Blake, L.A.; Lepistö, A.; et al. Land Use Change to Reduce Freshwater Nitrogen and Phosphorus will Be Effective Even with Projected Climate Change. Water 2022, 14, 829. https://doi.org/10.3390/w14050829
Wade AJ, Skeffington RA, Couture R-M, Erlandsson Lampa M, Groot S, Halliday SJ, Harezlak V, Hejzlar J, Jackson-Blake LA, Lepistö A, et al. Land Use Change to Reduce Freshwater Nitrogen and Phosphorus will Be Effective Even with Projected Climate Change. Water. 2022; 14(5):829. https://doi.org/10.3390/w14050829
Chicago/Turabian StyleWade, Andrew J., Richard A. Skeffington, Raoul-Marie Couture, Martin Erlandsson Lampa, Simon Groot, Sarah J. Halliday, Valesca Harezlak, Josef Hejzlar, Leah A. Jackson-Blake, Ahti Lepistö, and et al. 2022. "Land Use Change to Reduce Freshwater Nitrogen and Phosphorus will Be Effective Even with Projected Climate Change" Water 14, no. 5: 829. https://doi.org/10.3390/w14050829
APA StyleWade, A. J., Skeffington, R. A., Couture, R.-M., Erlandsson Lampa, M., Groot, S., Halliday, S. J., Harezlak, V., Hejzlar, J., Jackson-Blake, L. A., Lepistö, A., Papastergiadou, E., Riera, J. L., Rankinen, K., Shahgedanova, M., Trolle, D., Whitehead, P. G., Psaltopoulos, D., & Skuras, D. (2022). Land Use Change to Reduce Freshwater Nitrogen and Phosphorus will Be Effective Even with Projected Climate Change. Water, 14(5), 829. https://doi.org/10.3390/w14050829