Improved Spectral Water Index Combined with Otsu Algorithm to Extract Muddy Coastline Data
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area Overview
2.2. Data Sources
3. IWI Index Construction and Water Extraction Method
3.1. Analysis of Spectral Characteristics of Ground Objects
3.2. IWI Index Construction
3.3. IWI Index Combined with Otsu Algorithm for Water Extraction
3.4. Coastline Extraction and Accuracy Evaluation
4. Analysis and Evaluation of Results
4.1. Comparison of Extraction Results for Open Water Bodies (Marine)
4.2. Accuracy Analysis of Coastline
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wu, T.; Hou, X.Y. Review of research on coastline changes around the world. Acta Ecol. Sin. 2016, 36, 1170–1182. [Google Scholar]
- Louati, M.; Saïdi, H.; Zargouni, F. Shoreline change assessment using remote sensing and GIS techniques: A case study of the Medjerda delta coast, Tunisia. Arab. J. Geosci. 2015, 8, 4239–4255. [Google Scholar] [CrossRef]
- Chen, Y.; Dong, J.W.; Xiao, X.M.; Zhang, M.; Tian, B.; Zhou, Y.X.; Li, B.; Ma, Z.J. Land claim and loss of tidal flats in the Yangtze Estuary. Sci. Rep. 2016, 6, 24018. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.Q.; Liu, Z.L. Research progress on methods of automatic coastline extraction based on remote sensing images. J. Remote Sens. 2019, 23, 582–602. [Google Scholar]
- Shi, J.J.; Li, W.F.; Liu, Y.L.; Zhou, W.Q.; Han, L.J.; Tian, S.F.; Wang, Y.M.; Niu, X.Q. Impacts of urbanization on coastline and coastal zone in the Guangdong-Hong Kong-Macao Greater Bay Area. Acta Ecol. Sin. 2022, 1, 1–10. [Google Scholar]
- Zhang, X.X.; Yan, C.Q.; Xu, P.; Dai, Y.X.; Yan, W.B.; Ding, X.R.; Zhu, C.X.; Mei, D.D. Historical evolution of tidal flat reclamation in the Jiangsu coastal areas. Acta Geogr. Sin. 2013, 68, 1549–1558. [Google Scholar]
- Ma, X.F.; Zhao, D.Z.; Xing, X.G.; Zhang, F.S.; Wen, S.Y.; Yang, F. Means of with drawing coastline by remote sensing. Mar. Environ. Sci. 2007, 26, 185–189. [Google Scholar]
- Li, Q.Q.; Lu, Y.; Hu, S.B.; Hu, Z.W.; Li, H.Z.; Liu, P.; Shi, T.Z.; Wang, C.S.; Wang, J.J.; Wu, G.F. Review of remotely sensed geo-environmental monitoring of coastal zones. J. Remote Sens. 2016, 20, 1216–1229. [Google Scholar]
- Yan, Z.; Jin-wei, D.; Xiang-ming, X.; Tong, X.; Zhi-qi, Y.; Guo-song, Z.; Zhen-hua, Z.; Yuan-wei, Q. Open Surface Water Mapping Algorithms: A Comparison of Water-Related Spectral Indices and Sensors. Water 2017, 9, 256. [Google Scholar]
- Zhou, Z.; Gui, S.X.; Li, Y.C.; Tao, Y.Q.; Peng, Y. Inversion of typical water quality parameters in Chaohu Lake based on composite spectral indices. Yangtze River 2020, 51, 45–50. [Google Scholar]
- Li, Y.M.; Zhang, X.J. Remote Sensing Monitoring of Leaf Water Contentin Lycium Barbarum Based on Spectral Index. Geogr. Geo-Inf. Sci. 2019, 35, 16–21. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H.Q. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 9, 589–595. [Google Scholar]
- Cao, R.L.; Li, C.J.; Liu, L.Y.; Wang, J.H.; Yan, G.J. Extracting Miyun reservoir’s water area and monitoring its change based on a revised normalized different water index. Sci. Surv. Mapp. 2008, 33, 158–160. [Google Scholar]
- Yan, P.; Zhang, Y.J.; Zhang, Y. A Study on Information Extraction of Water System in Semi-arid Regions with the Enhanced Water Index ( EWI) and GIS Based Noise Remove Techniques. Remote Sens. Inf. 2007, 6, 62–67. [Google Scholar]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Sheng, J.H.; Zhang, C.; Wan, J.H. Automatic coastline extraction method based on multitemporal remote sensing data. Mar. Sci. 2021, 45, 16–22. [Google Scholar]
- Borja, S.P.V.; Miguel, O.S. Automatic methodology to detect the coastline from landsat images with a new water index assessed on three different spanish mediterranean deltas. Remote Sens. 2019, 11, 44. [Google Scholar]
- Yun, D.; Zhang, Y.; Feng, L.; Wang, Q.; Li, W.; Li, X. Water bodies’ mapping from sentinel-2 imagery with modified normalized difference water index at 10-m spatial resolution produced by sharpening the swir band. Remote Sens. 2016, 354, 354. [Google Scholar]
- Wu, J.P.; Zhang, Y.; Zhang, J.; Fan, S.L.; Yang, C.; Zhang, X.F. Comparison and analysis of water indexes in muddy coasts based on MODIS data: A case study of the Yellow River Delta coast. Remote Sens. Land Resour. 2019, 31, 242–249. [Google Scholar]
- Zhang, X.; Wang, X.P.; Huang, A.Q.; Li, Y.S.; Zhang, S.; Bai, Y.; Malak, H.; Zhang, J.H. Extraction of complex coastline feature and its multi-year changes in Shandong Peninsula Based on remote sensing image. Trans. Oceanol. Limnol. 2021, 43, 171–181. [Google Scholar]
- Paravolidakis, V.; Ragia, L.; Moirogiorgou, K.; Zervakis, M.E. Automatic coastline extraction using edge detection and optimization procedures. Geosciences 2018, 8, 407. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Won, J.S.; Min, K.D. Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea. Remote Sens. Environ. 2002, 83, 442–456. [Google Scholar] [CrossRef]
- Ding, X.R.; Kang, Y.Y.; Mao, Z.B.; Sun, Y.L.; Li, S.; Gao, X.; Zhao, X.X. Analysis of largest tidal range in radial sand ridges southern Yellow Sea. Acta Oceanol. Sin. 2014, 36, 12–20. (In Chinese) [Google Scholar]
- Zhang, X.X.; Wang, W.W.; Yang, C.Q.; Yan, W.B.; Dai, Y.X.; Xu, P.; Zhu, C.X. Historical Coastline Spatio-temporal Evolution Analysis in Jiangsu Coastal Area During the Past 1000 Years. Sci. Geogr. Sin. 2014, 34, 344–351. [Google Scholar]
- Chen, W.T.; Zhang, D.; Shi, S.J.; Zhou, J.; Kang, M. Research on monitoring coastline changes by remote sensing in muddy coast, central Jiangsu coast. HaiyangXuebao 2017, 39, 138–148. [Google Scholar]
- Otsu, N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.X.; Liu, Y.X.; Jin, S.; Sun, C.; Wei, X.L. Evolution of the topography of tidal flats and sandbanks along the Jiangsu coast from 1973 to 2016 observed from satellites. ISPRS J. Photogramm. Remote Sens. 2019, 150, 27–43. [Google Scholar] [CrossRef]
- Chen, W.T.; Zhang, D.; Cui, D.D.; Lv, L.; Xie, W.J.; Shi, S.J.; Hou, Z.Y. Monitoring spatial and temporal changes in the continental coastline and the intertidal zone in Jiangsu province, China. Acta Geogr. Sin. 2018, 73, 1365–1380. [Google Scholar]
- Li, Y.F.; Liu, H.Y.; Sun, X.B.; Zhu, L.J. Assessment of ecological functions for coastal wetlands based on hydrogeomorphic units: A case study on coastal wetland of Yancheng, Jiangsu Province, China. Acta Ecol. Sin. 2010, 30, 1718–1724. [Google Scholar]
- Liao, H.J.; Li, G.S.; Wang, S.H.; Cui, L.L.; OuYang, N.L. Evolution and spatial patterns of tidal wetland in North Jiangsu Province in the past 30 Years. Prog. Geogr. 2014, 33, 1209–1217. [Google Scholar]
- USGS. Product Guide: Landsat 8 Surface Reflectance Code (LaSRC) Product. Available online: https://www.usgs.gov/media/files/landsat-8-collection-1-land-surface-reflectance-code-product-guide (accessed on 18 January 2022).
- Roy, D.P.; Qin, Y.; Kovalskyy, V.; Vermote, E.F.; Ju, J.; Egorov, A.; Hansen, M.C.; Kommareddy, I.; Yan, L. Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction. Remote Sens. Environ. 2014, 140, 433–449. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.Q.; Tang, F. Analysis of new characteristics of the first Landsat 8 image and their eco-environmental significance. Acta Ecol. Sin. 2013, 33, 3249–3257. [Google Scholar]
- Xu, H.Q. Water colour variation analysis of the coastal waters surrounding Xiamen Island of SE China by multispectral and multitem poral remote sensing measurements. Acta Sci. Circumstantiae 2006, 26, 1209–1218. [Google Scholar]
- Tang, K.K.W.; Mahmud, M.R. Imagery-derived bathymetry in Strait of Johor’s turbid waters using multispectral images. Remote Sens. Spat. Inf. Sci. ISPRS Arch 2018, 42, 133–137. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Lai, Z.L.; Sun, J. Coastline extraction of remote sensing image by combining Otsu, regional growth method with morphology. Bull. Surv. Mapp. 2020, 10, 89–92. [Google Scholar]
- Hou, X.Y.; Wu, T.; Hou, W.; Chen, Q.; Wang, Y.D.; Yu, L.J. Characteristics of coastline changes in mainland China since the early 1940s. Sci. China Earth Sci. 2016, 46, 1065–1075. [Google Scholar] [CrossRef]
- Tong, S.S.; Deroin, J.P.; Pham, T.L. An optimal waterline approach for studying tidal flat morphological changes using remote sensing data: A case of the northern coast of Vietnam. Estuarine. Coast. Shelf Sci. 2020, 236, 106613. [Google Scholar] [CrossRef]
Landsat Sensor | Path/Row | Image Time | Tide |
---|---|---|---|
OLI | p120/r036 | 2017/02/11 | High |
OLI | p119/r037 | 2018/02/23 | Low |
OLI | p118/r038 | 2020/02/22 | High |
Index’s Name | Formula |
---|---|
IWI | ((ρb2 + ρb3 − ρb6 − ρb7)/(ρb2 + ρb3 + ρb6 + ρb7))2 |
MNDWI | (ρb3 − ρb6)/(ρb3 + ρb6) |
AWEInsh | 4 × (ρb2 − ρb5) − (0.25 × ρb4 + 2.75 × ρb7) |
AWEIsh | ρb1 + 2.5 × ρb2 − 1.5 × (ρb4 + ρb5) − 0.25 × ρb7 |
RNDWI | (ρb6 − ρb4)/(ρb4 + ρb6) |
EWI | (ρb3 − ρb4 − ρb6)/(ρb3 + ρb4 + ρb6) |
NDWI | (ρb3 − ρb5)/(ρb3 + ρb5) |
Index’s Name | Low- Sediment Water | High- Sediment Water | Land | Silty Mudflat | Coastal Vegetation |
---|---|---|---|---|---|
IWI | 0.664184 | 0.886677 | 0.104329 | 0.116950 | 0.161128 |
MNDWI | 0.812356 | 0.929890 | −0.315410 | 0.335666 | −0.424360 |
AWEInsh1 | 0.115870 | 0.218482 | −0.980530 | −0.259060 | −0.772950 |
AWEIsh 1 | 0.089382 | 0.098988 | −0.285110 | −0.083450 | −0.255600 |
RNDWI | −0.624370 | −0.91626 | 0.297899 | −0.363640 | 0.292325 |
EWI | 0.289268 | 0.070846 | −0.495060 | −0.219730 | −0.585860 |
NDWI | 0.769473 | 0.533013 | −0.405810 | −0.048960 | −0.415590 |
Index’s Name | Validation Distances (m) | Figure 4a | Figure 4b | Figure 4c | Figure 4d | Figure 4e | Figure 4f | Figure 4g | Figure 4h |
---|---|---|---|---|---|---|---|---|---|
0–30 | 91.84 | 82.63 | 77.79 | 91.45 | 83.47 | 92.86 | 87.56 | 99.12 | |
IWI | 0–60 | 96.46 | 84.46 | 84.54 | 94.89 | 86.45 | 95.45 | 91.36 | 100.00 |
0–90 | 98.31 | 90.46 | 91.97 | 98.71 | 89.92 | 98.57 | 100.00 | 100.00 | |
0–30 | 89.55 | 2.44 | 20.47 | 1.81 | 11.21 | 7.13 | 1.45 | 94.63 | |
EWI | 0–60 | 93.46 | 5.63 | 24.91 | 3.45 | 24.63 | 9.45 | 67.32 | 97.48 |
0–90 | 95.73 | 7.45 | 30.47 | 9.47 | 32.66 | 11.78 | 84.56 | 99.29 | |
0–30 | 84.69 | 1.30 | 21.35 | 19.54 | 58.13 | 52.68 | 57.41 | 92.66 | |
MNDWI | 0–60 | 91.79 | 4.62 | 26.41 | 24.23 | 64.18 | 57.89 | 76.79 | 98.45 |
0–90 | 93.41 | 8.33 | 32.45 | 30.22 | 74.55 | 61.42 | 84.63 | 99.34 | |
0–30 | 84.77 | 57.24 | 0.00 | 0.00 | 0.00 | 0.00 | 0.47 | 76.85 | |
NDWI | 0–60 | 91.93 | 64.15 | 0.00 | 0.00 | 0.00 | 0.00 | 64.48 | 88.48 |
0–90 | 96.42 | 74.31 | 0.00 | 0.00 | 0.00 | 0.00 | 81.60 | 93.45 | |
0–30 | 33.64 | 1.48 | 9.43 | 2.04 | 7.43 | 8.65 | 1.78 | 17.63 | |
AWEInsh | 0–60 | 70.49 | 3.51 | 15.74 | 8.47 | 15.76 | 9.45 | 46.96 | 26.36 |
0–90 | 81.33 | 8.47 | 24.69 | 9.45 | 19.48 | 10.71 | 62.01 | 37.44 | |
0–30 | 78.38 | 1.72 | 18.49 | 21.46 | 62.13 | 57.43 | 60.47 | 91.46 | |
RNDWI | 0–60 | 82.46 | 4.12 | 23.41 | 27.63 | 72.46 | 63.47 | 64.79 | 94.21 |
0–90 | 88.63 | 9.54 | 26.48 | 31.01 | 78.14 | 71.13 | 68.47 | 98.43 | |
0–30 | 24.95 | 9.46 | 21.36 | 14.32 | 6.77 | 0.00 | 0.58 | 64.57 | |
AWEIsh | 0–60 | 56.64 | 30.46 | 25.46 | 19.76 | 10.65 | 0.00 | 58.46 | 74.93 |
0–90 | 76.49 | 50.84 | 49.78 | 26.87 | 11.24 | 0.00 | 70.42 | 82.36 |
Index’s Name | Figure 1a (0–30 m) | Figure 1a (0–60 m) | Figure 1a (0–90 m) | Figure 1b (0–30 m) | Figure 1b (0–60 m) | Figure 1b (0–90 m) | Figure 1c (0–30 m) | Figure 1c (0–60 m) | Figure 1c (0–90 m) |
---|---|---|---|---|---|---|---|---|---|
IWI | 81.63 | 92.74 | 97.36 | 84.61 | 86.77 | 94.72 | 85.86 | 89.47 | 91.45 |
EWI | 59.00 | 65.55 | 69.29 | 7.18 | 12.97 | 15.13 | 55.25 | 76.91 | 84.23 |
MNDWI | 55.44 | 66.06 | 71.62 | 38.21 | 48.03 | 52.68 | 50.69 | 72.40 | 78.37 |
NDWI | 58.03 | 63.46 | 66.77 | 0.00 | 0.04 | 0.13 | 44.78 | 67.73 | 76.54 |
AWEInsh | 25.69 | 43.41 | 50.17 | 7.04 | 12.81 | 14.65 | 17.65 | 45.75 | 55.94 |
RNDWI | 60.62 | 70.60 | 76.13 | 40.41 | 52.30 | 57.43 | 46.36 | 66.86 | 73.61 |
AWEIsh | 21.30 | 35.44 | 40.88 | 8.81 | 15.74 | 19.67 | 23.88 | 50.24 | 61.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, W.; Zhao, C.; Lin, J.; Jiao, C.; Zheng, G.; Zhu, J.; Pan, X.; Han, X. Improved Spectral Water Index Combined with Otsu Algorithm to Extract Muddy Coastline Data. Water 2022, 14, 855. https://doi.org/10.3390/w14060855
Tang W, Zhao C, Lin J, Jiao C, Zheng G, Zhu J, Pan X, Han X. Improved Spectral Water Index Combined with Otsu Algorithm to Extract Muddy Coastline Data. Water. 2022; 14(6):855. https://doi.org/10.3390/w14060855
Chicago/Turabian StyleTang, Wei, Chengyi Zhao, Jing Lin, Caixia Jiao, Guanghui Zheng, Jianting Zhu, Xishan Pan, and Xue Han. 2022. "Improved Spectral Water Index Combined with Otsu Algorithm to Extract Muddy Coastline Data" Water 14, no. 6: 855. https://doi.org/10.3390/w14060855
APA StyleTang, W., Zhao, C., Lin, J., Jiao, C., Zheng, G., Zhu, J., Pan, X., & Han, X. (2022). Improved Spectral Water Index Combined with Otsu Algorithm to Extract Muddy Coastline Data. Water, 14(6), 855. https://doi.org/10.3390/w14060855