Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biological Material
2.2. Sample Collection and Characterization
2.3. Effects of Sulfate Reduction Process on Dissolved Fe(III) and As(V) Reduction
2.4. Effects of Sulfate Reduction Process on Migration and Release of Arsenic in Sediments
2.5. Sample Analyses
3. Results and Discussion
3.1. Effects of Sulfate Reduction Process on Dissolved Fe(III) Reduction
3.2. Effects of Sulfate Reduction Process on Dissolved As(V) Reduction
3.3. Effects of Sulfate Reduction Process on Migration and Release of Arsenic in Sediments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ramsay, L.; Petersen, M.M.; Hansen, B.; Schullehner, J.; Wens, P.; Voutchkova, D.; Kristiansen, S.M. Drinking water criteria for arsenic in high-income, low-dose countries: The effect of legislation on public health. Environ. Sci. Technol. 2021, 55, 3483–3493. [Google Scholar] [CrossRef]
- Christodoulidou, M.; Charalambous, C.; Aletrari, M.; Kanari, P.N.; Petronda, A.; Ward, N.I. Arsenic concentrations in groundwaters of cyprus. J. Hydrol. 2012, 468–469, 94–100. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.; Hashimoto, Y.; Hou, D.; Ok, Y.S. Soil amendments for immobilization of potentially toxic elements in contaminated soils: A critical review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef] [PubMed]
- Rasool, A.; Farooqi, A.; Masood, S.; Hussain, K. Arsenic in groundwater and its health risk assessment in drinking water of mailsi, punjab, pakistan. Hum. Ecol. Risk Assess. 2016, 22, 187–202. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Wei, X.; Ren, S.; Yang, X.; Beiyuan, J.; Zhang, W. Escalating health risk of thallium and arsenic from farmland contamination fueled by cement-making activities: A hidden but significant source. Sci. Total Environ. 2021, 782, 146603. [Google Scholar] [CrossRef]
- Sommella, A.; Deacon, C.; Norton, G.; Pigna, M.; Violante, A.; Meharg, A.A. Total arsenic, inorganic arsenic, and other elements concentrations in italian rice grain varies with origin and type. Environ. Pollut. 2013, 181, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Liu, Z.; Ding, S.; Hao, C.; Xiu, W.; Hou, W. Arsenate reduction and mobilization in the presence of indigenous aerobic bacteria obtained from high arsenic aquifers of the hetao basin, inner mongolia. Environ. Pollut. 2015, 203, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Wang, L.Y.; Jing, C.Y. Biotransformation of adsorbed arsenic on iron minerals by coexisting arsenate-reducing and arsenite-oxidizing Bacteria. Environ. Pollut. 2020, 256, 113471. [Google Scholar] [CrossRef] [PubMed]
- Muyzer, G.; Stams, A.J.M. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 2008, 6, 441–454. [Google Scholar] [CrossRef]
- Roy, A.; Sar, P.; Sarkar, J.; Dutta, A.; Kazy, S.K. Petroleum hydrocarbon rich oil refinery sludge of north-east india harbours anaerobic, fermentative, sulfate-reducing, syntrophic and methanogenic microbial populations. BMC Microbiol. 2018, 18, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, Z.; Tianwei, H.; Mackey, H.R.; van Loosdrecht, M.C.M.; Guanghao, C. Recent advances in dissimilatory sulfate reduction: From metabolic study to application. Water Res. 2019, 150, 162–181. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.H.; Wang, S.W.; Liu, C.W.; Wang, P.L.; Wang, C.H.; Maji, S.K. Biogeochemical cycling of arsenic in coastal salinized aquifers: Evidence from sulfur isotope study. Sci. Total Environ. 2011, 409, 4818–4830. [Google Scholar] [CrossRef] [PubMed]
- Katrin, H.; Maher, W.A.; Stott, M.B.; Frank, K.; Simon, F.; Moreau, J.W. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring champagne pool, New Zealand. Front. Microb. 2014, 5, 569. [Google Scholar] [CrossRef]
- Burton, E.D.; Johnston, S.G.; Planer-Friedrich, B. Coupling of arsenic mobility to sulfur transformations during microbial sulfate reduction in the presence and absence of humic acid. Chem. Geol. 2013, 343, 12–24. [Google Scholar] [CrossRef]
- Luo, T.; Ye, L.; Ding, C.; Yan, J.; Jing, C. Reduction of adsorbed As(V) on nano-TiO2 by sulfate-reducing bacteria. Sci. Total Environ. 2017, 598, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Luo, T.; Tian, H.; Guo, Z.; Zhuang, G.; Jing, C. Fate of arsenate adsorbed on nano-TiO2 in the presence of sulfate reducing bacteria. Environ. Sci. Technol. 2013, 47, 10939–10946. [Google Scholar] [CrossRef] [PubMed]
- Johnston, S.G.; Burton, E.D.; Keene, A.F.; Planer-Friedrich, B.; Voegelin, A.; Blackford, M.G. Arsenic mobilization and iron transformations during sulfidization of As(V)-bearing jarosite. Chem. Geol. 2012, 334, 9–24. [Google Scholar] [CrossRef]
- Rochette, E.A.; Bostick, B.C.; Li, G.; Fendorf, S. Kinetics of arsenate reduction by dissolved sulfide. Environ. Sci. Technol. 2000, 34, 4714–4720. [Google Scholar] [CrossRef]
- Blum, J.S.; Kulp, T.R.; Han, S.; Lanoil, B.; Saltikov, C.W.; Stolz, J.F. Desulfohalophilus alkaliarsenatis gen. nov. sp. nov., an extremely halophilic sulfate- and arsenate-respiring bacterium from Searles lake, California. Extremophiles 2012, 16, 727–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macy, J.M.; Santini, J.M.; Pauling, B.V.; O’Neill, A.H.; Sly, L.I. Two new arsenate/sulfate-reducing bacteria: Mechanisms of arsenate reduction. Arch. Microbiol. 2000, 173, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Gan, Y.; Wang, Y.; Liu, C.; Yu, K.; Deng, Y. Arsenic speciation in aquifer sediment under varying groundwater regime and redox conditions at jianghan plain of central china. Sci. Total Environ. 2017, 607–608, 992–1000. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Dai, L.; Zhang, C.; Zeng, G.; Liu, Y.; Zhou, C. Enhanced biological stabilization of heavy metals in sediment using immobilized sulfate reducing bacteria beads with inner cohesive nutrient. J. Hazard. Mater. 2016, 324, 340–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jing, R.; Kjellerup, B.V. Biogeochemical cycling of metals impacting by microbial mobilization and immobilization. J. Environ. Sci. 2018, 66, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zheng, T.; Deng, Y.; Jiang, H. Microbially mediated mobilization of arsenic from aquifer sediments under bacterial sulfate reduction. Sci. Total Environ. 2021, 768, 144709. [Google Scholar] [CrossRef] [PubMed]
- Pi, K.; Wang, Y.; Xie, X.; Ma, T.; Su, C.; Liu, Y. Role of sulfur redox cycling on arsenic mobilization in aquifers of Datong Basin, northern China. Appl. Geochem. 2016, 77, 31–43. [Google Scholar] [CrossRef]
- Sun, J.; Quicksall, A.N.; Chillrud, S.N.; Mailloux, B.J.; Bostick, B.C. Arsenic mobilization from sediments in microcosms under sulfate reduction. Chemosphere 2016, 153, 254–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, E.D.; Johnston, S.G.; Peter, K.; Bush, R.T.; Salirian, C. Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Environ. Sci. Technol. 2013, 47, 2221–2229. [Google Scholar] [CrossRef]
- Zheng, T.; Deng, Y.; Wang, Y.; Jiang, H.; Xie, X.; Gan, Y. Microbial sulfate reduction facilitates seasonal variation of arsenic concentration in groundwater of Jianghan Plain, Central China. Sci. Total Environ. 2020, 735, 139327. [Google Scholar] [CrossRef] [PubMed]
- Planer-Friedrich, B.; Schaller, J.; Wismeth, F. Monothioarsenate occurrence in bangladesh groundwater and its removal by ferrous and zero-valent iron technologies. Environ. Sci. Technol. 2018, 52, 5931–5939. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.; Xie, X.; Li, J.; Qian, K.; Chi, Z. Distribution and formation of thioarsenate in high arsenic groundwater from the Datong Basin, northern china. J. Hydrol. 2020, 590, 125268. [Google Scholar] [CrossRef]
- Shi, W.; Song, W.; Luo, Y.; Qile, G.; He, J. Transformation pathways of arsenic species: Srb mediated mechanism and seasonal patterns chemosphere. Chemosphere 2021, 263, 128255. [Google Scholar] [CrossRef] [PubMed]
- Root, R.A.; Vlassopoulos, D.; Rivera, N.A.; Rafferty, M.T.; Andrews, C.; O’Day, P.A. Speciation and natural attenuation of arsenic and iron in a tidally influenced shallow aquifer. Geochim. Cosmochim. Acta 2009, 73, 5528–5553. [Google Scholar] [CrossRef]
- Johnston, S.G.; Keene, A.F.; Bush, R.T.; Burton, E.D.; Sullivan, L.A.; Isaacson, L.S.; Powell, B. Iron geochemical zonation in a tidally inundated acid sulfate soil wetland. Chem. Geol. 2011, 280, 257–270. [Google Scholar] [CrossRef] [Green Version]
- Burton, E.D.; Johnston, S.G. Impact of silica on the reductive transformation of schwertmannite and the mobilization of arsenic. Geochim. Cosmochim. Acta 2012, 96, 134–153. [Google Scholar] [CrossRef]
- Wang, J.; Xie, Z.; Wang, Y.; Yang, Y.; Chen, M. Synergy between indigenous bacteria and extracellular electron shuttles enhances transformation and mobilization of Fe(III)/As(V). Sci. Total Environ. 2021, 783, 147002. [Google Scholar] [CrossRef] [PubMed]
- Eaton, A.D.; Clesceri, L.S.; Greenberg, A.E.; Franson, M.A.H. Standard methods for the examination of water and wastewater. Am. J. Public Health Nations Health 1966, 56, 387–388. [Google Scholar] [CrossRef] [Green Version]
- Le, X.C.; Yalcin, S.; Ma, M. Speciation of submicrogram per liter levels of arsenic in water: On-site species separation integrated with sample collection. Environ. Sci. Technol. 2000, 34, 2342–2347. [Google Scholar] [CrossRef]
- Keon, N.E.; Swartz, C.H.; Brabander, D.J.; Harvey, C.; Hemond, H.F. Validation of an arsenic sequential extraction method for evaluating mobility in sediments. Environ. Sci. Technol. 2001, 35, 2778–2784. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, E.; Delong, E.F.; Lory, S.; Stackebrandt, E.; Thompson, F. Prokaryotic Physiology and Biochemistry; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar] [CrossRef]
- Alam, R.; McPhedran, K. Applications of biological sulfate reduction for remediation of arsenic—A review. Chemosphere 2019, 222, 932–944. [Google Scholar] [CrossRef]
- Gao, K.; Guo, C.; Dang, Z. Mobilization of arsenic during reductive dissolution of As(V)-bearing jarosite by a sulfate reducing bacterium. J. Hazard. Mater. 2021, 402, 123717. [Google Scholar] [CrossRef]
- Flynn, T.M.; O’Loughlin, E.J.; Mishra, B.; Dichristina, T.J.; Kemner, K.M. Sulfur-mediated electron shuttling during bacterial iron reduction. Science 2014, 344, 1039–1042. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.G.; Jia, S.Y.; Liu, Y.; Wu, S.H.; Han, X. Reductive dissolution of ferrihydrite with the release of As(V) in the presence of dissolved S(-II). J. Hazard. Mater. 2015, 286, 291–297. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wu, X.; Wang, S.; Yuan, Z.; Xiao, F.; Yang, M. Speciation change and redistribution of arsenic in soil under anaerobic microbial activities. J. Hazard. Mater. 2016, 301, 538–546. [Google Scholar] [CrossRef] [PubMed]
- Knappová, M.; Drahota, P.; Falteisek, L.; Culka, A.; Penížek, V.; Trubač, J.; Mihaljevič, M.; Matoušek, T. Microbial sulfidogenesis of arsenic in naturally contaminated wetland soil. Geochim. Cosmochim. Acta 2019, 267, 33–50. [Google Scholar] [CrossRef]
- Xia, X.; Yang, W.; Huang, Y. Dissimilatory iron and sulfate reduction by native microbial communities using lactate and citrate as carbon sources and electron donors. Ecotoxicol. Environ. Saf. 2019, 174, 524–531. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jia, S.; Yu, B.; Liu, Y.; Wu, S.; Han, X. Sulfidization of As(V)-containing schwertmannite and its impact on arsenic mobilization. Chem. Geol. 2016, 420, 270–279. [Google Scholar] [CrossRef]
- Bostick, B.C.; Fendorf, S.; Brown, G.E. In situ analysis of thioarsenite complexes in neutral to alkaline arsenic sulphide solutions. Mineral. Mag. 2005, 69, 781–795. [Google Scholar] [CrossRef]
- de Matos, L.P.; Costa, P.F.; Moreira, M.; Gomes, P.C.S.; de Queiroz Silva, S.; Gurgel, L.V.A.; Teixeira, M.C. Simultaneous removal of sulfate and arsenic using immobilized non-traditional SRB mixed culture and alternative low-cost carbon sources. Chem. Eng. J. 2018, 334, 1630–1641. [Google Scholar] [CrossRef]
- Fendorf, S.; Michael, H.A.; van Geen, A. Spatial and temporal variations of groundwater arsenic in south and southeast Asia. Science 2010, 328, 1123–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnston, S.G.; Keene, A.F.; Burton, E.D.; Bush, R.T.; Sullivan, L.A.; McElnea, A.E.; Ahern, C.R.; Smith, C.D.; Powell, B. Arsenic mobilisation in a seawater inundated acid sulfatesoil. Environ. Sci. Technol. 2010, 44, 1968–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saalfield, S.L.; Bostick, B.C. Changes in iron, sulfur, and arsenic speciation associated with bacterial sulfate reduction in ferrihydrite-rich systems. Environ. Sci. Technol. 2010, 43, 8787–8793. [Google Scholar] [CrossRef] [PubMed]
- Wilkin, R.T.; Wallschläger, D.; Ford, R.G. Speciation of arsenic in sulfidic waters. Geochem. Trans. 2003, 4, 1. [Google Scholar] [CrossRef]
- Bose, P.; Sharma, A. Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Res. 2002, 36, 4916–4926. [Google Scholar] [CrossRef]
- Wolthers, M.; Charlet, L.; Weijden, C.; Linde, P.; Rickard, D. Arsenic mobility in the ambient sulfidic environment: Sorption of arsenic(V) and arsenic(III) onto disordered mackinawite. Geochim. Cosmochim. Acta 2005, 69, 3483–3492. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Silva, B.M.; Briones-Gallardo, R.; Razo-Flores, E.; Celis, L.B. Inhibition of sulfate reduction by iron, cadmium and sulfide in granular sludge. J. Hazard. Mater. 2009, 172, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Postma, D.; Jessen, S.; Hue, N.T.M.; Mai, T.D. Mobilization of arsenic and iron from red river floodplain sediments, vietnam. Geochim. Cosmochim. Acta 2010, 74, 3367–3381. [Google Scholar] [CrossRef]
- Lovley, D.R.; Holmes, D.E.; Nevin, K.P. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 2004, 49, 219–286. [Google Scholar] [CrossRef] [Green Version]
Original Sediment | pH | As mg/kg | Ca g/kg | Mg g/kg | Mn mg/kg | Al g/kg | Fe g/kg |
---|---|---|---|---|---|---|---|
8.47 | 18.4 | 2.71 | 0.818 | 48.1 | 1.64 | 1.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, E.; Yang, Y.; Xie, Z.; Wang, J.; Chen, M. Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment. Water 2022, 14, 942. https://doi.org/10.3390/w14060942
Liu E, Yang Y, Xie Z, Wang J, Chen M. Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment. Water. 2022; 14(6):942. https://doi.org/10.3390/w14060942
Chicago/Turabian StyleLiu, Enyang, Yang Yang, Zuoming Xie, Jia Wang, and Mengna Chen. 2022. "Influence of Sulfate Reduction on Arsenic Migration and Transformation in Groundwater Environment" Water 14, no. 6: 942. https://doi.org/10.3390/w14060942