Global-Scale Assessment of Economic Losses Caused by Flood-Related Business Interruption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview
2.2. Model
2.3. Data
2.3.1. Atmospheric Data
2.3.2. Geographical Data
2.3.3. Socioeconomic Data
= (0.9634 × g_bldratio + 0.0011) × country GDP
2.4. Calculation of Inundation Period and Annual Maximum Inundation Depth
2.5. Estimation of BI Loss and Asset Damage
2.5.1. BI Loss Estimation
2.5.2. Asset Damage Estimation
2.6. Validation Dataset
2.7. Simulation Conditions
3. Results
3.1. Reproducibility of Economic Loss Caused by Past Floods
3.2. Assessment of Climate Change Impact on Flood-Related Economic Loss
4. Discussion
4.1. Reanalysis Estimation vs. World Bank Estimation
4.2. Comparsion of Estimated BI Loss against Estimated Asset Damage
4.3. The Impact of Flood Protection on BI Loss Estimation
4.4. Comparison of Future Estimated BI Loss and Asset Damage
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Hirabayashi, Y.; Tanoue, M.; Sasaki, O.; Zhou, X.; Yamazaki, D. Global exposure to flooding from the new CMIP6 climate model projections. Sci. Rep. 2021, 11, 3740. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, L.; Bisselink, B.; Dottori, F.; Naumann, G.; de Roo, A.; Salamon, P.; Wyser, K.; Feyen, L. Global projections of river flood risk in a warmer world. Earth’s Future 2017, 5, 171–182. [Google Scholar] [CrossRef]
- Kinoshita, Y.; Tanoue, M.; Watanabe, S.; Hirabayashi, Y. Quantifying the effect of autonomous adaptation to global river flood projections: Application to future flood risk assessments. Environ. Res. Lett. 2018, 13, 014006. [Google Scholar] [CrossRef] [Green Version]
- Winsemius, H.C.; Aerts, J.C.; Van Beek, L.P.; Bierkens, M.F.; Bouwman, A.; Jongman, B.; Kwadijk, J.C.; Ligtvoet, W.; Lucas, P.L.; Van Vuuren, D.P.; et al. Global drivers of future river flood risk. Nat. Clim. Chang. 2016, 6, 381–385. [Google Scholar] [CrossRef]
- Economic Losses, Powerty & Disasters 1998–2017. Available online: https://www.preventionweb.net/files/61119_credeconomiclosses.pdf (accessed on 31 December 2021).
- Hurricanes, Cold Waves, Tornadoes: Weather Disasters in USA Dominate Natural Disaster Losses in 2021|Munich Re. Available online: https://www.munichre.com/en/company/media-relations/media-information-and-corporate-news/media-information/2022/natural-disaster-losses-2021.html (accessed on 6 January 2022).
- Reisinger, A.; Howden, M.; Vera, C. The Concept of Risk in the IPCC Sixth Assessment Report: A Summary of Cross Working Group Discussions. 2020, p. 15. Available online: https://www.ipcc.ch/event/guidance-note-concept-of-risk-in-the-6ar-cross-wg-discussions/ (accessed on 17 January 2022).
- Zisopoulou, K.; Zisopoulos, D.; Panagoulia, D. Water Economics: An In-Depth Analysis of the Connection of Blue Water with Some Primary Level Aspects of Economic Theory I. Water 2022, 14, 103. [Google Scholar] [CrossRef]
- Fehr, K.; Reichenmiller, P. Flood—An Underestimated Risk. Inspect, Inform, Insure; Swiss Re: Zurich, Switzerland, 2012. [Google Scholar]
- Dottori, F.; Salamon, P.; Bianchi, A.; Alfieri, L.; Hirpa, F.A.; Feyen, L. Development and evaluation of a framework for global flood hazard mapping. Adv. Water Resour. 2016, 94, 87–102. [Google Scholar] [CrossRef]
- Cerullo, V.; Cerullo, M.J. Business Continuity Planning: A Comprehensive Approach. Inf. Syst. Manag. 2004, 21, 70–78. [Google Scholar] [CrossRef]
- Meyer, V.; Becker, N.; Markantonis, V.; Schwarze, R.; van den Bergh, J.C.; Bouwer, L.M.; Bubeck, P.; Ciavola, P.; Genovese, E.; Green, C.; et al. Review article: Assessing the costs of natural hazards—State of the art and knowledge gaps. Nat. Hazards Earth Syst. Sci. 2013, 13, 1351–1373. [Google Scholar] [CrossRef]
- Post Disaster Needs Assessments|GFDRR. Available online: https://www.gfdrr.org/en/post-disaster-needs-assessments (accessed on 6 January 2022).
- Ward, P.J.; Jongman, B.; Weiland, F.S.; Bouwman, A.; van Beek, R.; Bierkens, M.F.; Ligtvoet, W.; Winsemius, H.C. Assessing flood risk at the global scale: Model setup, results, and sensitivity. Environ. Res. Lett. 2013, 8, 044019. [Google Scholar] [CrossRef]
- Winsemius, H.C.; van Beek, L.P.H.; Jongman, B.; Ward, P.J.; Bouwman, A. A framework for global river flood risk assessments. Hydrol. Earth Syst. Sci. 2013, 17, 1871–1892. [Google Scholar] [CrossRef] [Green Version]
- Scussolini, P.; Aerts, J.C.; Jongman, B.; Bouwer, L.M.; Winsemius, H.C.; de Moel, H.; Ward, P.J. FLOPROS: An evolving global database of flood protection standards. Hydrol. Hazards 2015, 16. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.J.; Jongman, B.; Aerts, J.C.; Bates, P.D.; Botzen, W.J.; Diaz Loaiza, A.; Hallegatte, S.; Kind, J.M.; Kwadijk, J.; Scussolini, P.; et al. A global framework for future costs and benefits of river-flood protection in urban areas. Nat. Clim. Chang. 2017, 7, 642–646. [Google Scholar] [CrossRef]
- Tanoue, M.; Taguchi, R.; Nakata, S.; Watanabe, S.; Fujimori, S.; Hirabayashi, Y. Estimation of Direct and Indirect Economic Losses Caused by a Flood With Long-Lasting Inundation: Application to the 2011 Thailand Flood. Water Resour. Res. 2020, 56, e2019WR026092. [Google Scholar] [CrossRef]
- Thieken, A.H.; Bessel, T.; Kienzler, S.; Kreibich, H.; Müller, M.; Pisi, S.; Schröter, K. The flood of June 2013 in Germany: How much do we know about its impacts? Nat. Hazards Earth Syst. Sci. 2016, 16, 1519–1540. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Kajitani, Y.; Tatano, H.; Jiang, X. A methodology for estimating business interruption loss caused by flood disasters: Insights from business surveys after Tokai Heavy Rain in Japan. Nat. Hazards 2016, 84, 411–430. [Google Scholar] [CrossRef]
- Iizumi, T.; Takikawa, H.; Hirabayashi, Y.; Hanasaki, N.; Nishimori, M. Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes. J. Geophys. Res. Atmos. 2017, 122, 7800–7819. [Google Scholar] [CrossRef] [Green Version]
- Shughrue, C.; Werner, B.T.; Seto, K.C. Global spread of local cyclone damages through urban trade networks. Nat. Sustain. 2020, 3, 606–613. [Google Scholar] [CrossRef]
- Yamazaki, D.; Kanae, S.; Kim, H.; Oki, T. A physically based description of floodplain inundation dynamics in a global river routing model. Water Resour. Res. 2011, 47, 365. [Google Scholar] [CrossRef]
- Takata, K.; Emori, S.; Watanabe, T. Development of the minimal advanced treatments of surface interaction and runoff. Glob. Planet. Chang. 2003, 38, 209–222. [Google Scholar] [CrossRef]
- Trigg, M.A.; Birch, C.E.; Neal, J.C.; Bates, P.D.; Smith, A.; Sampson, C.C.; Yamazaki, D.; Hirabayashi, Y.; Pappenberger, F.; Dutra, E.; et al. The credibility challenge for global fluvial flood risk analysis. Environ. Res. Lett. 2016, 11, 094014. [Google Scholar] [CrossRef]
- Laonamsai, J.; Ichiyanagi, K.; Kamdee, K.; Putthividhya, A.; Tanoue, M. Spatial and temporal distributions of stable isotopes in precipitation over Thailand. Hydrol. Processes 2021, 35, e13995. [Google Scholar] [CrossRef]
- Kakinuma, K.; Puma, M.J.; Hirabayashi, Y.; Tanoue, M.; Baptista, E.A.; Kanae, S. Flood-induced population displacements in the world. Environ. Res. Lett. 2020, 15, 124029. [Google Scholar] [CrossRef]
- Tanoue, M.; Taguchi, R.; Alifu, H.; Hirabayashi, Y. Residual flood damage under intensive adaptation. Nat. Clim. Chang. 2021, 11, 823–826. [Google Scholar] [CrossRef]
- Tanoue, M.; Hirabayashi, Y.; Ikeuchi, H. Global-scale river flood vulnerability in the last 50 years. Sci. Rep. 2016, 6, 36021. [Google Scholar] [CrossRef]
- He, Y.; Manful, D.; Warren, R.; Forstenhäusler, N.; Osborn, T.J.; Price, J.; Jenkins, R.; Wallace, C.; Yamazaki, D. Quantification of impacts between 1.5 and 4 °C of global warming on flooding risks in six countries. Clim. Chang. 2022, 170, 15. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. Japan. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Jones, P.; Osborn, T.; Lister, D. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Becker, A.; Finger, P.; Meyer-Christoffer, A.; Rudolf, B.; Ziese, M. GPCC Full Data Monthly Product Version 7.0 (at 0.5°, 1.0°, 2.5°): Monthly Land-Surface Precipitation from Rain-Gauges Built on GTS-Based and Historic Data. 2016. Available online: https://doi.org/10.5676/DWD_GPCC/FD_M_V7_050 (accessed on 17 January 2022).
- Tateishi, R.; Hoan, N.T.; Kobayashi, T.; Alsaaideh, B.; Tana, G.; Phong, D.X. Production of Global Land Cover Data—GLCNMO 2008. JGG 2014, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- International Food Policy Research Institute(IFPRI); The W. B. Center for International Earth Science Information Network (CIESIN) and Chartered Institute of Architectural Technologists (CIAT). Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Population Count Grid; Socioeconomic Data and Applications Center (SEDAC), Columbia University: New York, NY, USA, 2011. [Google Scholar]
- Murakami, D.; Yamagata, Y. Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustainability 2019, 11, 2106. [Google Scholar] [CrossRef] [Green Version]
- Broersma, L.; Dijk, J.V. Regional Differences in Productivity Grouth in The Netherlands: An Industry-Level Growth Accounding. 2005, CCSO Working Papers 200504, University of Groningen, CCSO Centre for Economic Research. Available online: https://research.rug.nl/en/publications/regional-differences-in-productivity-growth-in-the-netherlands-an (accessed on 17 January 2022).
- How Should We Measure City Size Theory and Evidence Within and Across Rich and Poor Countries; IMF: Washington, DC, USA. Available online: https://www.imf.org/en/Publications/WP/Issues/2019/09/20/How-Should-We-Measure-City-Size-Theory-and-Evidence-Within-and-Across-Rich-and-Poor-Countries-48671 (accessed on 6 January 2022).
- Molinero, C.; Thurner, S. How the Geometry of Cities Explains Urban Scaling Laws and Determines Their Exponents. arXiv 2019, arXiv:1908.07470. Available online: http://arxiv.org/abs/1908.07470 (accessed on 8 January 2022).
- Makabe, T.; Nakayoshi, M.; Varquez, A.; Kanda, M. Database of meteorological urban geometric parameters of Japan and extension to global scale. J. Jpn. Soc. Civ. Eng. 2014, 70, I325–I330. [Google Scholar]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Messner, F.; Meyer, V. Flood damage, vulnerability and risk perception—Challenges for flood damage research. In Flood Risk Management: Hazards, Vulnerability and Mitigation Measures; Springer Science & Business Media: Dordrecht, The Netherlands, 2006; pp. 149–167. [Google Scholar] [CrossRef] [Green Version]
- Merz, B.; Kreibich, H.; Lall, U. Multi-variate flood damage assessment: A tree-based data-mining approach. Nat. Hazards Earth Syst. Sci. 2013, 13, 53–64. [Google Scholar] [CrossRef]
- The Flood Control Economy Investigation Manual (Proposed) (p. 91). Ministry of Land, Infrastructure, Transport and Tourism (MLIT). 2005. Available online: https://www.mlit.go.jp/river/basic_info/seisaku_hyouka/gaiyou/hyouka/h1704/chisui.pdf (accessed on 31 December 2021).
- Huizinga, J.; de Moel, H.; Szewczyk, W. Global Flood Depth-Damage Functions: Methodology and the Database with Guidelines. Joint Research Centre (Seville Site), JRC105688. April 2017. Available online: https://ideas.repec.org/p/ipt/iptwpa/jrc105688.html (accessed on 9 January 2022).
- Dottori, F.; Szewczyk, W.; Ciscar, J.C.; Zhao, F.; Alfieri, L.; Hirabayashi, Y.; Bianchi, A.; Mongelli, I.; Frieler, K.; Betts, R.A.; et al. Increased human and economic losses from river flooding with anthropogenic warming. Nat. Clim. Chang. 2018, 8, 781–786. [Google Scholar] [CrossRef]
- Damage, Loss and Needs Assessment–Tools and Methodology|Gfdrr. Available online: https://www.gfdrr.org/en/damage-loss-and-needs-assessment-tools-and-methodology (accessed on 9 January 2022).
- Ogilvie, A.; Belaud, G.; Delenne, C.; Bailly, J.S.; Bader, J.C.; Oleksiak, A.; Ferry, L.; Martin, D. Decadal monitoring of the Niger Inner Delta flood dynamics using MODIS optical data. J. Hydrol. 2015, 523, 368–383. [Google Scholar] [CrossRef] [Green Version]
- Carrera, L.; Standardi, G.; Bosello, F.; Mysiak, J. Assessing direct and indirect economic impacts of a flood event through the integration of spatial and computable general equilibrium modelling. Environ. Model. Softw. 2015, 63, 109–122. [Google Scholar] [CrossRef] [Green Version]
Country | Year | Data Source | Reference |
---|---|---|---|
United States | 2017 | Bureau of Economic Analysis | Available online: https://apps.bea.gov/itable/iTable.cfm?ReqID=70&step=1#reqid=70&step=1&isuri=1 (accessed on 17 January 2022) |
India | 2013 | Ministry of Statistics and Programme Implementation | Available online: https://www.mospi.gov.in/download-tables-data (accessed on 17 January 2022) |
Australia | 2016 | Australian Bureau of Statistics | Available online: https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/List_of_Australian_states_and_territories_by_gross_state_product.html (accessed on 17 January 2022) |
Canada | 2015 | Statistics Canada | Available online: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3610048701 (accessed on 17 January 2022) |
Thailand | 2010 | National Economics and Social Development Board | Available online: https://www.nesdc.go.th/nesdb_en/main.php?filename=index (accessed on 17 January 2022) |
Germany | 2015 | Federal Statistical Office | Available online: http://www.de-info.net/kiso/laenderbip.html (accessed on 17 January 2022) |
Brazil | 2015 | Brazilian Institute of Geography and Statistics | Available online: https://agenciadenoticias.ibge.gov.br/agencia-sala-de-imprensa/2013-agencia-de-noticias/releases/17999-contas-regionais-2015-queda-no-pib-atinge-todas-as-unidades-da-federacao-pela-primeira-vez-na-serie (accessed on 17 January 2022) |
China | 2009 | Chinese Statistical yearbook | Available online: http://www.spc.jst.go.jp/statistics/stats2010/ (accessed on 17 January 2022) |
Japan | 2014 | Cabinet Office, Government of Japan | Available online: http://www.esri.cao.go.jp/jp/sna/data/data_list/kenmin/files/contents/main_h26.html (accessed on 17 January 2022) |
South Africa | 2010 | Statistics South Africa | Available online: https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/List_of_South_African_provinces_by_gross_domestic_product.html (accessed on 17 January 2022) |
Chile | 2017 | Central Bank of Chile | Available online: https://si3.bcentral.cl/siete/EN/Siete/Cuadro/CAP_CCNN/MN_CCNN76/CCNN2013_P0_V2 (accsessed on 17 January 2022) |
Country | Year | Loss (USD 2005 PPP) | Targeted Industry | Characteristics |
---|---|---|---|---|
Namibia | 2009 | 56 million | Infrastructure, Industry, Commerce, Tourism | Floods were caused by heavy rainfalls and exacerbated by drainage system that were unable to handle the volumes of water |
Moldova | 2010 | 5.34 million | Energy, Roads, Railways, Water and Sanitation | Heavy rainfalls breached dams. The overall situation improved slowly since repairing dams was delayed and outflow from inundation area back to river was limited. |
Pakistan | 2010 | 1.21 billion | Transport and Communications, Water Supply and Sanitation, Energy, Private Sector and Industries, Financial Sector | Heavy rainfalls in monsoon season caused landslide and flash flood which broke major embankments and canals. |
Pakistan | 2011 | 121 million | Transport and Communications, Water Supply and Sanitation. Energy, Private Sector, Industries and Financial Sector | Heavy rainfalls in monsoon season caused flash flood. |
Thailand | 2011 | 13.3 billion | Transport, Telecommunication, Electricity, Water Supply and Sanitation, Manufacturing, Tourism, Finance and Banking | Heavy rainfalls overflowed or breached 10 major flood control systems. |
Malawi | 2012 | 0.60 million | Transport, Water and Sanitation | Heavy rainfall caused flood twice. |
Nigeria | 2012 | 1.65 billion | Manufacturing, Commerce, Oil, Electricity | Heavy rainfalls caused river flood which breached irrigation reservoirs. |
Annual Average (Billion USD (2005 PPP)) | Annual Average per GDP | |||||
---|---|---|---|---|---|---|
1971–2000 | 2021–2050 | 2061–2090 | 1971–2000 | 2021–2050 | 2061–2090 | |
BI loss | 27.2 | 435.5 | 940.4 | 0.10% | 0.29% | 0.42% |
Asset damage | 150.0 | 2586.1 | 5201.3 | 0.55% | 1.74% | 2.33% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taguchi, R.; Tanoue, M.; Yamazaki, D.; Hirabayashi, Y. Global-Scale Assessment of Economic Losses Caused by Flood-Related Business Interruption. Water 2022, 14, 967. https://doi.org/10.3390/w14060967
Taguchi R, Tanoue M, Yamazaki D, Hirabayashi Y. Global-Scale Assessment of Economic Losses Caused by Flood-Related Business Interruption. Water. 2022; 14(6):967. https://doi.org/10.3390/w14060967
Chicago/Turabian StyleTaguchi, Ryo, Masahiro Tanoue, Dai Yamazaki, and Yukiko Hirabayashi. 2022. "Global-Scale Assessment of Economic Losses Caused by Flood-Related Business Interruption" Water 14, no. 6: 967. https://doi.org/10.3390/w14060967
APA StyleTaguchi, R., Tanoue, M., Yamazaki, D., & Hirabayashi, Y. (2022). Global-Scale Assessment of Economic Losses Caused by Flood-Related Business Interruption. Water, 14(6), 967. https://doi.org/10.3390/w14060967