An Estimation of the Discharge Exponent of a Drip Irrigation Emitter by Response Surface Methodology and Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Geometry of the Drip Irrigation Emitter
2.2. Experiment Layout and Procedures
2.3. Response Surface Methodology (RSM)
2.4. Artificial Neural Network (ANN)
2.5. Support Vector Regression (SVR)
2.6. Indices for Evaluating Modeling Accuracy
3. Results and Discussion
3.1. RSM Modeling
3.1.1. Statistical Analysis of Experimental Results
3.1.2. The Interactive Effects on the Discharge Exponent
3.2. ANN Modeling
3.3. SVR Modeling
3.4. Comparison of the Applied Models
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kourgialas, N.N. A critical review of water resources in Greece: The key role of agricultural adaptation to climate-water effects. Sci. Total Environ. 2021, 775, 145857. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, L.; Saito, H.; Saefuddin, R.; Simunek, J. Evaluation of subsurface drip irrigation designs in a soil profile with a capillary barrier. Water 2021, 13, 1300. [Google Scholar] [CrossRef]
- Christias, P.; Mocanu, M. A machine learning framework for olive farms profit prediction. Water 2021, 13, 3461. [Google Scholar] [CrossRef]
- Mattar, M.A.; Alamoud, A.I. Artificial neural networks for estimating the hydraulic performance of labyrinth-channel emitters. Comput. Electron. Agric. 2015, 114, 189–201. [Google Scholar] [CrossRef]
- Yu, L.; Li, N.; Liu, X.; Yang, Q.; Long, J. Influence of flushing pressure, flushing frequency and flushing time on the service life of a labyrinth-channel emitter. Biosyst. Eng. 2018, 172, 154–164. [Google Scholar] [CrossRef]
- Li, Y.; Yang, P.; Ren, S.; Xu, W. Hydraulic characterizations of tortuous flow path drip irrigation emitter. J. Hydrodyn. 2006, 18, 449–457. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, W.; Wei, Z.; Tang, Y.; Lu, B. Numerical and experimental study on hydraulic performance of emitters with arc labyrinth channels. Comput. Electron. Agric. 2007, 56, 120–129. [Google Scholar] [CrossRef]
- Xing, S.; Wang, Z.; Zhang, J.; Liu, N.; Zhou, B. Simulation and verification of hydraulic performance and energy dissipation mechanism of perforated drip irrigation emitters. Water 2021, 13, 171. [Google Scholar] [CrossRef]
- Keller, J.; Karmeli, D. Trickle irrigation design parameters. Trans. ASABE 1974, 17, 678–684. [Google Scholar] [CrossRef]
- Karmeli, D.; Keller, J. Trickle Irrigation Design; Rain Bird Sprinkler Manufacturing Corp.: Glendora, CA, USA, 1975; 133p. [Google Scholar]
- ASABE. EP-458: Field Evaluation of Microirrigation Systems; ASABE: St. Joseph, MI, USA, 2005. [Google Scholar]
- Zhang, J.; Zhao, W.; Lu, B. New method of hydraulic performance evaluation on emitters with labyrinth channels. J. Irrig. Drainage Eng.-ASCE 2011, 137, 811–845. [Google Scholar] [CrossRef]
- Li, G.; Wang, J.; Alam, M.; Zhao, Y. Influence of geometrical parameters of labyrinth flow path of drip emitters on hydraulic and anti-clogging performance. Trans. ASABE. 2006, 49, 637–643. [Google Scholar] [CrossRef]
- Niu, W.; Yu, L.; Wu, P.; Fan, X.; Zhang, L. Influence of angle of labyrinth channels on anti-clogging performance of emitter. Trans. Chin. Soc. Agric. Mach. 2009, 40, 51–67, (In Chinese with English Abstract). [Google Scholar]
- Al-Alamoud, A.I.; Mattar, M.A.; Ateia, M.I. Impact of water temperature and structural parameters on the hydraulic labyrinth-channel emitter performance. Span. J. Agric. Res. 2014, 12, 580–593. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Zhang, G.; Wang, J.D.; Gong, S.H.; Wang, H.T.; Mo, Y. Numerical simulation of hydraulic performance of tooth-form channel of labyrinth emitter. J. Drain. Irrig. Mach. Eng. 2019, 38, 71–76, (In Chinese with English Abstract). [Google Scholar]
- Moghaddam, T.B.; Soltani, M.; Karim, M.R.; Baaj, H. Optimisation of asphalt and modifier contents for polyethylene terephthalate modified asphalt mixtures using response surface methodology. Measurement 2015, 74, 159–169. [Google Scholar] [CrossRef]
- Danmaliki, G.I.; Saleh, T.A.; Shamsuddeen, A.A. Response surface methodology optimisation of adsorptive desulfurization on nickel/activated carbon. Chem. Eng. J. 2017, 313, 993–1003. [Google Scholar] [CrossRef]
- Darvishi, H.; Farhudi, Z.; Behroozi-Khazaei, N. Multi-objective optimisation of savory leaves drying in continuous infrared-hot air dryer by response surface methodology and desirability function. Comput. Electron. Agric. 2020, 168, 105112. [Google Scholar] [CrossRef]
- Ma, X.; Lv, S. Financial credit risk prediction in internet finance driven by machine learning. Neural. Comput. Appl. 2019, 31, 8359–8367. [Google Scholar] [CrossRef]
- Hodges, J.; Mohan, S. Machine learning in gifted education: A demonstration using neural networks. Gifted. Child. Q. 2019, 63, 243–252. [Google Scholar] [CrossRef]
- MacEachern, S.; Forkert, D. Machine learning for precision medicine. Genome 2021, 64, 416–425. [Google Scholar] [CrossRef]
- Keshtegar, B.; Bagheri, M.; Yaseen, Z.M. Shear strength of steel fiber-unconfined reinforced concrete beam simulation: Application of novel intelligent model. Compos. Struct. 2019, 212, 230–242. [Google Scholar] [CrossRef]
- Sharma, A.; Jain, A.; Gupta, P.; Chowdary, V. Machine learning applications for precision agriculture: A comprehensive review. IEEE Access 2020, 9, 4843–4873. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, L.; Wu, P.; Cai, Y.; Zhao, X.; Yao, C. Hydraulic performance and parameter optimisation of a microporous ceramic emitter using computational fluid dynamics, artificial neural network and multi-objective genetic algorithm. Biosyst. Eng. 2020, 189, 11–23. [Google Scholar] [CrossRef]
- Wassan, S.; Xi, C.; Gupta, P.; Jhanjhi, N.; Raza, H. A smart comparative analysis for secure electronic websites. Intell. Autom. Soft Comput. 2021, 30, 187–199. [Google Scholar] [CrossRef]
- Fong, J.; Ocampo, R.; Gross, D.; Tavakoli, M. Intelligent robotics incorporating machine learning algorithms for improving functional capacity evaluation and occupational rehabilitation. J. Occup. Rehabil. 2020, 30, 362–370. [Google Scholar] [CrossRef]
- Li, X.; Li, H.; Pan, B.; Law, R. Machine learning in internet search query selection for tourism forecasting. J. Travel Res. 2020, 60, 1213–1231. [Google Scholar] [CrossRef]
- Niu, D.; Diao, L.; Zang, Z.; Che, H.; Zhang, T.; Chen, X. A Machine-Learning Approach Combining Wavelet Packet Denoising with Catboost for Weather Forecasting. Atmosphere 2021, 12, 1618. [Google Scholar] [CrossRef]
- Khanal, S.; Fulton, J.; Klopfenstein, A.; Douridas, N.; Shearer, S. Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Comput. Electron. Agric. 2018, 153, 213–225. [Google Scholar] [CrossRef]
- Chlingaryan, A.; Sukkarieh, S.; Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 2018, 151, 61–69. [Google Scholar] [CrossRef]
- Waheed, A.; Goyal, M.; Gupta, D.; Khanna, A.; Hassanien, A.E.; Pandey, H.M. An optimized dense convolutional neural network model for disease recognition and classification in corn leaf. Comput. Electron. Agric. 2020, 151, 61–69. [Google Scholar] [CrossRef]
- Zhang, X.; He, L.; Zhang, J.; Whiting, M.; Karkee, M.; Zhang, Q. Determination of key canopy parameters for mass mechanical apple harvesting using supervised machine learning and principal component analysis (PCA). Biosyst. Eng. 2020, 193, 247–263. [Google Scholar] [CrossRef]
- Kashyap, P.K.; Kumar, S.; Jaiswal, A.; Prasad, M.; Gandomi, A.H. Towards precision agriculture: IoT-enabled intelligent irrigation systems using deep learning neural network. IEEE Sens. J. 2021, 21, 17479–17491. [Google Scholar] [CrossRef]
- Dutta, R.; Smith, D.; Rawnsley, R.; Bishop-Hurley, G.; Hills, J.; Timms, G.; Henry, D. Dynamic cattle behavioural classification using supervised ensemble classifiers. Comput. Electron. Agric. 2015, 111, 18–28. [Google Scholar] [CrossRef]
- Li, Y.; Yang, P.; Ren, S.; Lei, X.; Wu, X.; Guan, X. Effects of fractal flow path designing and its parameters on emitter hydraulic performance. Chin. J. Mech. Eng. 2007, 43, 109–114. [Google Scholar] [CrossRef]
- Guo, L.; Bai, D.; Wang, X.; Wang, C.; Zhou, W.; Cheng, P. Establishment and validation of flow rate prediction model for drip irrigation emitter based on support vector machine. Trans. Chin. Soc. Agric. Eng. 2018, 34, 74–82, (In Chinese with English Abstract). [Google Scholar]
- Lavanholi, R.; de Camargo, A.P.; Bombardelli, W.W.A.; Frizzone, J.A.; Ait-Mouheb, N.; da Silva, E.A.; de Oliveira, F.C. Prediction of pressure-discharge curves of trapezoidal labyrinth channels from nonlinear regression and artificial neural networks. J. Irrig. Drainage Eng-ASCE 2020, 146, 4020018. [Google Scholar] [CrossRef]
- Mattar, M.A.; Alamoud, A.I.; Al-Othman, A.A.; Elansary, H.O.; Farah, A.H.H. Hydraulic performance of labyrinth-channel emitters: Experimental study, ANN, and GEP modeling. Irrig. Sci. 2020, 38, 1–16. [Google Scholar] [CrossRef]
- Seyedzadeh, A.; Maroufpoor, S.; Maroufpoor, E.; Shiri, J.; Bozorg-Haddad, O.; Gavazi, F. Artificial intelligence approach to estimate discharge of drip tape irrigation based on temperature and pressure. Agric. Water Manag. 2020, 228, 105905. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Domun, Y.; Norton, T. Dynamic neural network modelling of soil moisture content for predictive irrigation scheduling. Sensors 2018, 18, 3408. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, F.; Mehdizadeh, S.; Mohammadi, B.; Pham, Q.B.; Doan, T.N.C.; Vo, N.D. Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation. Agric. Water Manag. 2021, 244, 106622. [Google Scholar] [CrossRef]
Code | Levels | ||||
---|---|---|---|---|---|
N (mm) | D (mm) | α (°) | H (mm) | W (mm) | |
Low (−1) | 12 | 0.8 | 30 | 0.8 | 0.6 |
Central (0) | 16 | 1.0 | 45 | 1.0 | 0.8 |
High (1) | 20 | 1.2 | 60 | 1.2 | 1.0 |
Run | Structural Factors | Discharge Exponent | ||||
---|---|---|---|---|---|---|
N (mm) | D (mm) | α (°) | H (mm) | W (mm) | ||
1 | 16 | 1 | 60 | 1 | 0.6 | 0.4497 |
2 | 16 | 0.8 | 45 | 1 | 0.6 | 0.4443 |
3 (C) | 16 | 1 | 45 | 1 | 0.8 | 0.4523 |
4 | 20 | 1 | 60 | 1 | 0.8 | 0.4460 |
5 | 16 | 1.2 | 45 | 0.8 | 0.8 | 0.5070 |
6 | 12 | 1 | 45 | 1.2 | 0.8 | 0.4780 |
7 | 16 | 0.8 | 45 | 0.8 | 0.8 | 0.5160 |
8 | 16 | 1.2 | 45 | 1 | 0.6 | 0.4512 |
9 | 16 | 1 | 45 | 0.8 | 1 | 0.5126 |
10 | 16 | 1.2 | 60 | 1 | 0.8 | 0.4503 |
11 | 16 | 1 | 60 | 0.8 | 0.8 | 0.5077 |
12 | 12 | 1.2 | 45 | 1 | 0.8 | 0.4587 |
13 | 12 | 1 | 45 | 1 | 1 | 0.4695 |
14 (C) | 16 | 1 | 45 | 1 | 0.8 | 0.4556 |
15 | 16 | 0.8 | 45 | 1 | 1 | 0.4621 |
16 | 16 | 1 | 60 | 1 | 1 | 0.4599 |
17 | 12 | 0.8 | 45 | 1 | 0.8 | 0.4482 |
18 | 16 | 1 | 30 | 1 | 1 | 0.4760 |
19 | 16 | 1 | 60 | 1.2 | 0.8 | 0.4737 |
20 | 20 | 1 | 30 | 1 | 0.8 | 0.4591 |
21 | 20 | 1 | 45 | 1 | 1 | 0.4660 |
22 | 20 | 0.8 | 45 | 1 | 0.8 | 0.4441 |
23 (C) | 16 | 1 | 45 | 1 | 0.8 | 0.4537 |
24 | 20 | 1 | 45 | 0.8 | 0.8 | 0.5245 |
25 | 20 | 1 | 45 | 1.2 | 0.8 | 0.4743 |
26 | 16 | 1 | 45 | 1.2 | 1 | 0.4915 |
27 | 16 | 1.2 | 30 | 1 | 0.8 | 0.4648 |
28 | 16 | 1.2 | 45 | 1.2 | 0.8 | 0.4770 |
29 | 20 | 1.2 | 45 | 1 | 0.8 | 0.4537 |
30 | 16 | 0.8 | 30 | 1 | 0.8 | 0.4532 |
31 (C) | 16 | 1 | 45 | 1 | 0.8 | 0.4500 |
32 | 16 | 1 | 30 | 0.8 | 0.8 | 0.5150 |
33 | 12 | 1 | 60 | 1 | 0.8 | 0.4496 |
34 | 12 | 1 | 45 | 1 | 0.6 | 0.4507 |
35 | 16 | 0.8 | 60 | 1 | 0.8 | 0.4431 |
36 | 16 | 1 | 45 | 1.2 | 0.6 | 0.4698 |
37 | 16 | 1.2 | 45 | 1 | 1 | 0.4702 |
38 | 12 | 1 | 45 | 0.8 | 0.8 | 0.5027 |
39 | 16 | 1 | 45 | 0.8 | 0.6 | 0.5215 |
40 | 16 | 1 | 30 | 1.2 | 0.8 | 0.4802 |
41 (C) | 16 | 1 | 45 | 1 | 0.8 | 0.4489 |
42 | 20 | 1 | 45 | 1 | 0.6 | 0.4464 |
43 | 12 | 1 | 30 | 1 | 0.8 | 0.4637 |
44 | 16 | 1 | 30 | 1 | 0.6 | 0.4526 |
45 | 16 | 0.8 | 45 | 1.2 | 0.8 | 0.4615 |
Source | Sums of Squares | Degrees of Freedom | Mean Squares | F-Value | p-Value | Status | Summary of the Statistics |
---|---|---|---|---|---|---|---|
Model | 0.0244 | 20 | 1.2214 × 10−3 | 79.2747 | <0.0001 | ss | R2—0.9851 Adj-R2—0.9727 Pred-R2—0.9433 C.V. %—0.84 AP—27.807 |
N | 3.0625 × 10−6 | 1 | 3.0625 × 10−6 | 0.1988 | 0.6597 | ns | |
D | 2.2801 × 10−4 | 1 | 2.2801 × 10−4 | 14.7992 | 0.0008 | ss | |
α | 4.4732 × 10−4 | 1 | 4.4732 × 10−4 | 29.0339 | <0.0001 | ss | |
H | 5.6626 × 10−3 | 1 | 5.6626 × 10−3 | 367.5344 | <0.0001 | ss | |
W | 9.2416 × 10−4 | 1 | 9.2416 × 10−4 | 59.9835 | <0.0001 | ss | |
N × D | 2.0250 × 10−7 | 1 | 2.0250 × 10−7 | 0.0131 | 0.9097 | ns | |
N × α | 2.5000 × 10−7 | 1 | 2.5000 × 10−7 | 0.0162 | 0.8997 | ns | |
N × H | 1.6256 × 10−4 | 1 | 1.6256 × 10−4 | 10.5513 | 0.0034 | ss | |
N × W | 1.6000 × 10−7 | 1 | 1.6000 × 10−7 | 0.0104 | 0.9197 | ns | |
D × α | 4.8400 × 10−6 | 1 | 4.8400 × 10−6 | 0.3141 | 0.5803 | ns | |
D × H | 1.5006 × 10−4 | 1 | 1.5006 × 10−4 | 9.7400 | 0.0046 | ss | |
D × W | 3.6000 × 10−7 | 1 | 3.6000 × 10−7 | 0.0234 | 0.8798 | ns | |
α × H | 1.6000 × 10−7 | 1 | 1.6000 × 10−7 | 0.0104 | 0.9197 | ns | |
α × W | 4.3560 × 10−5 | 1 | 4.3560 × 10−5 | 2.8273 | 0.1056 | ns | |
H × W | 2.3409 × 10−4 | 1 | 2.3409 × 10−4 | 15.1938 | 0.0007 | ss | |
N2 | 6.9297 × 10−6 | 1 | 6.9297 × 10−6 | 0.4498 | 0.5088 | ns | |
D2 | 1.9809 × 10−5 | 1 | 1.9809 × 10−5 | 1.2857 | 0.2680 | ns | |
α2 | 2.3685 × 10−5 | 1 | 2.3685 × 10−5 | 1.5373 | 0.2270 | ns | |
H2 | 1.3503 × 10−2 | 1 | 1.3503 × 10−2 | 876.4100 | <0.0001 | ss | |
W2 | 2.7585 × 10−4 | 1 | 2.7585 × 10−4 | 17.9042 | 0.0003 | ss | |
Residual | 3.6977 × 10−4 | 24 | 1.5407 × 10−5 | ||||
Lack of Fit | 3.4027 × 10−4 | 20 | 7.3750 × 10−6 | 2.3069 | 0.2172 | ns | |
Pure Error | 2.9500 × 10−5 | 4 | |||||
Cor Total | 0.0248 | 44 |
Index | 1 | 2 | 3 | 4 | 5 | Average Value |
---|---|---|---|---|---|---|
R2 | 0.9632 | 0.9568 | 0.9153 | 0.9288 | 0.9839 | 0.9496 |
RMSE | 0.0046 | 0.0044 | 0.0065 | 0.0046 | 0.0037 | 0.0048 |
MAE | 0.0033 | 0.0035 | 0.0045 | 0.0042 | 0.0027 | 0.0036 |
Index | 1 | 2 | 3 | 4 | 5 | Average Value |
---|---|---|---|---|---|---|
R2 | 0.9863 | 0.9552 | 0.9575 | 0.9650 | 0.9842 | 0.9696 |
RMSE | 0.0028 | 0.0045 | 0.0046 | 0.0032 | 0.0036 | 0.0037 |
MAE | 0.0026 | 0.0038 | 0.0035 | 0.0027 | 0.0030 | 0.0031 |
Index | 1 | 2 | 3 | 4 | 5 | Average Value |
---|---|---|---|---|---|---|
R2 | 0.9648 | 0.9350 | 0.9178 | 0.8857 | 0.9673 | 0.9341 |
RMSE | 0.0045 | 0.0054 | 0.0064 | 0.0058 | 0.0053 | 0.0055 |
MAE | 0.0040 | 0.0041 | 0.0054 | 0.0049 | 0.0044 | 0.0046 |
Run | Measured Discharge Exponent | Model Predictions | Relative Error (%) | ||||
---|---|---|---|---|---|---|---|
RSM Model | ANN Model | SVR Model | RSM Model | ANN Model | SVR Model | ||
1 | 0.4497 | 0.4500 | 0.4466 | 0.4497 | 0.0667 | 0.6893 | 0 |
2 | 0.4443 | 0.4453 | 0.4438 | 0.4443 | 0.2251 | 0.1125 | 0 |
3 | 0.4523 | 0.4521 | 0.4529 | 0.4523 | 0.0442 | 0.1327 | 0 |
4 | 0.4460 | 0.4492 | 0.4468 | 0.4460 | 0.7175 | 0.1794 | 0 |
5 | 0.5070 | 0.5077 | 0.5062 | 0.5070 | 0.1381 | 0.1578 | 0 |
6 | 0.4780 | 0.4818 | 0.4790 | 0.4780 | 0.7950 | 0.2092 | 0 |
7 | 0.5160 | 0.5124 | 0.5189 | 0.5160 | 0.6977 | 0.5620 | 0 |
8 | 0.4512 | 0.4522 | 0.4512 | 0.4512 | 0.2216 | 0 | 0 |
9 | 0.5126 | 0.5174 | 0.5157 | 0.5126 | 0.9364 | 0.6048 | 0 |
10 | 0.4503 | 0.4496 | 0.4494 | 0.4503 | 0.1555 | 0.1999 | 0 |
11 | 0.5077 | 0.5079 | 0.5081 | 0.5077 | 0.0394 | 0.0788 | 0 |
12 | 0.4587 | 0.4559 | 0.4581 | 0.4587 | 0.6104 | 0.1308 | 0 |
13 | 0.4695 | 0.4667 | 0.4677 | 0.4695 | 0.5964 | 0.3834 | 0 |
14 | 0.4556 | 0.4521 | 0.4529 | 0.4523 | 0.7682 | 0.5926 | 0.7243 |
15 | 0.4621 | 0.4599 | 0.4608 | 0.4614 | 0.4761 | 0.2813 | 0.1515 |
16 | 0.4599 | 0.4586 | 0.4584 | 0.4599 | 0.2827 | 0.3262 | 0 |
17 | 0.4482 | 0.4479 | 0.4494 | 0.4482 | 0.0669 | 0.2677 | 0 |
18 | 0.4760 | 0.4758 | 0.4761 | 0.4760 | 0.0420 | 0.0210 | 0 |
19 | 0.4737 | 0.4706 | 0.4753 | 0.4737 | 0.6544 | 0.3378 | 0 |
20 | 0.4591 | 0.4593 | 0.4580 | 0.4591 | 0.0436 | 0.2396 | 0 |
21 | 0.4660 | 0.4662 | 0.4667 | 0.4660 | 0.0429 | 0.1502 | 0 |
22 | 0.4441 | 0.4475 | 0.4480 | 0.4442 | 0.7656 | 0.8782 | 0.0225 |
23 | 0.4537 | 0.4521 | 0.4529 | 0.4523 | 0.3527 | 0.1763 | 0.3086 |
24 | 0.5245 | 0.5185 | 0.5190 | 0.5198 | 1.1439 | 1.0486 | 0.8961 |
25 | 0.4743 | 0.4681 | 0.4734 | 0.4708 | 1.3072 | 0.1898 | 0.7379 |
26 | 0.4915 | 0.4951 | 0.4870 | 0.4915 | 0.7325 | 0.9156 | 0 |
27 | 0.4648 | 0.4624 | 0.4642 | 0.4648 | 0.5164 | 0.1291 | 0 |
28 | 0.4770 | 0.4824 | 0.4770 | 0.4793 | 1.1321 | 0 | 0.4822 |
29 | 0.4537 | 0.4546 | 0.4552 | 0.4537 | 0.1984 | 0.3306 | 0 |
30 | 0.4532 | 0.4527 | 0.4521 | 0.4532 | 0.1103 | 0.2427 | 0 |
31 | 0.4500 | 0.4521 | 0.4529 | 0.4523 | 0.4667 | 0.6444 | 0.5111 |
32 | 0.5150 | 0.5188 | 0.5183 | 0.5150 | 0.7379 | 0.6408 | 0 |
33 | 0.4496 | 0.4496 | 0.4499 | 0.4496 | 0 | 0.0667 | 0 |
34 | 0.4507 | 0.4519 | 0.4533 | 0.4507 | 0.2663 | 0.5769 | 0 |
35 | 0.4431 | 0.4443 | 0.4448 | 0.4431 | 0.2708 | 0.3837 | 0 |
36 | 0.4698 | 0.4646 | 0.4681 | 0.4679 | 1.1069 | 0.3619 | 0.4044 |
37 | 0.4702 | 0.4680 | 0.4721 | 0.4702 | 0.4679 | 0.4041 | 0 |
38 | 0.5027 | 0.5066 | 0.5053 | 0.5027 | 0.7758 | 0.5172 | 0 |
39 | 0.5215 | 0.5175 | 0.5154 | 0.5203 | 0.7670 | 1.1697 | 0.2301 |
40 | 0.4802 | 0.4808 | 0.4833 | 0.4802 | 0.1249 | 0.6456 | 0 |
41 | 0.4489 | 0.4521 | 0.4529 | 0.4523 | 0.7129 | 0.8911 | 0.7574 |
42 | 0.4464 | 0.4506 | 0.4448 | 0.4464 | 0.9409 | 0.3584 | 0 |
43 | 0.4637 | 0.4607 | 0.4630 | 0.4637 | 0.6470 | 0.1510 | 0 |
44 | 0.4526 | 0.4540 | 0.4497 | 0.4526 | 0.3093 | 0.6407 | 0 |
45 | 0.4615 | 0.4626 | 0.4617 | 0.4615 | 0.2384 | 0.0433 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Wei, Z.; He, K. An Estimation of the Discharge Exponent of a Drip Irrigation Emitter by Response Surface Methodology and Machine Learning. Water 2022, 14, 1034. https://doi.org/10.3390/w14071034
Chen X, Wei Z, He K. An Estimation of the Discharge Exponent of a Drip Irrigation Emitter by Response Surface Methodology and Machine Learning. Water. 2022; 14(7):1034. https://doi.org/10.3390/w14071034
Chicago/Turabian StyleChen, Xueli, Zhengying Wei, and Kun He. 2022. "An Estimation of the Discharge Exponent of a Drip Irrigation Emitter by Response Surface Methodology and Machine Learning" Water 14, no. 7: 1034. https://doi.org/10.3390/w14071034
APA StyleChen, X., Wei, Z., & He, K. (2022). An Estimation of the Discharge Exponent of a Drip Irrigation Emitter by Response Surface Methodology and Machine Learning. Water, 14(7), 1034. https://doi.org/10.3390/w14071034