A GIS-Based Method for Identification of Blindness in Former Site Selection of Sewage Treatment Plants and Exploration of Optimal Siting Areas: A Case Study in Liao River Basin
Abstract
:1. Introduction
2. Methodology
2.1. Geospatial Database
2.1.1. A Set of Criteria and Indicators
2.1.2. Data Preprocessing
2.2. Indicator Quantification
2.3. AHP Method
2.4. Spatial Overlay Analysis
3. Case Study
3.1. Data Sources
3.2. Specific Indicator Quantification
3.3. Indicator Weights
3.4. Siting Suitability Analysis
4. Results and Discussion
4.1. Existing Sewage Treatment Plants
4.2. Proposed Sewage Treatment Plants
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jara-Samaniego, J.; Perez-Murcia, M.D.; Bustamante, M.A.; Perez-Espinosa, A.; Paredes, C.; Lopez, M.; Moral, R. Composting as sustainable strategy for municipal solid waste management in the Chimborazo Region, Ecuador: Suit- ability of the obtained composts for seedling production. J. Clean. Prod. 2017, 141, 1349–1358. [Google Scholar] [CrossRef]
- Nigusse, A.G.; Adhaneom, U.G.; Kahsay, G.H.; Abrha, A.M.; Gebre, D.N.; Weldearegay, A.G. GIS application for urban domestic wastewater treatment site selection in the Northern Ethiopia, Tigray Regional State: A case study in Mekelle City. Arab. J. Geosci. 2020, 13, 1538. [Google Scholar] [CrossRef]
- Arroyo, P.; Molinos-Senante, M. Selecting appropriate wastewater treatment technologies using a choosing-by-advantages approach. Sci. Total Environ. 2018, 625, 819–827. [Google Scholar] [CrossRef] [PubMed]
- Rahimi, S.; Hafezalkotob, A.; Monavari, S.M.; Hafezalkotob, A.; Rahimi, R. Sustainable landfill site selection for municipal solid waste based on a hybrid decision-making approach: Fuzzy group BWM-MULTIMOORA-GIS. J. Clean. Prod. 2020, 248, 119186. [Google Scholar] [CrossRef]
- Shao, M.; Han, Z.X.; Sun, J.W.; Xiao, C.S.; Zhang, S.L.; Zhao, Y.X. A review of multi-criteria decision making applications for renewable energy site selection. Renew. Energy 2020, 157, 377–403. [Google Scholar] [CrossRef]
- Hao, X.D.; Li, J.; Loosdrecht, M.C.; Jiang, H.; Liu, R.B. Energy recovery from wastewater: Heat over organics. Water Res. 2019, 161, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.; Liu, S.M.; Hu, H.Y.; Dong, X.; Wen, X.H. Water and energy recovery: The future of wastewater in China. Sci. Total Environ. 2018, 637, 1466–1470. [Google Scholar] [CrossRef] [PubMed]
- Donevska, K.; Jovanovski, J.; Gligorova, L. Comprehensive Review of the Landfill Site Selection Methodologies and Criteria. J. Indian Inst. Sci. 2021, 101, 509–521. [Google Scholar] [CrossRef]
- Hannan, M.A.; Lipu, M.S.H.; Akhtar, M.; Begum, R.A.; Al Mamun, M.A.; Hussain, A.; Mia, M.S.; Basri, H. Solid waste collection optimization objectives, constraints, modeling approaches, and their challenges toward achieving sustainable development goals. J. Clean. Prod. 2020, 277, 123557. [Google Scholar] [CrossRef]
- Xiao, N.; Murray, A.T. Spatial optimization for land acquisition problems: A review of models, solution methods, and GIS support. Trans. GIS 2019, 23, 645–671. [Google Scholar] [CrossRef]
- Kao, J.J.; Lin, H.Y. Multifactor Spatial Analysis for Landfill Siting. J. Environ. Eng. 1996, 122, 902–908. [Google Scholar] [CrossRef] [Green Version]
- Mallick, J. Municipal Solid Waste Landfill Site Selection Based on Fuzzy-AHP and Geoinformation Techniques in Asir Region Saudi Arabia. Sustainability 2021, 13, 1538. [Google Scholar] [CrossRef]
- Mortazavi Chamchali, M.; Mohebbi Tafreshi, A.; Mohebbi Tafreshi, G. Utilizing GIS linked to AHP for landfill site selection in Rudbar County of Iran. Geojournal 2021, 86, 163–183. [Google Scholar] [CrossRef]
- Sadhasivam, N.; Sheik Mohideen, A.R.; Alankar, B. Optimisation of landfill sites for solid waste disposal in Thiruverumbur taluk of Tiruchirappalli district, India. Environ. Earth Sci. 2020, 79, 522. [Google Scholar] [CrossRef]
- Tulun, S.; Gurbuz, E.; Arsu, T. Developing a GIS-based landfill site suitability map for the Aksaray province, Turkey. Environ. Earth Sci. 2021, 80, 310. [Google Scholar] [CrossRef]
- Arca, D.; Keskin Citiroglu, H. Geographical information systems-based analysis of site selection for wind power plants in Kozlu District (Zonguldak-NW Turkey) by multi-criteria decision analysis method. Energy Sources Part A Recovery Util. Environ. Eff. 2020, 1–13. [Google Scholar] [CrossRef]
- Ibrahim, G.R.F.; Hamid, A.A.; Darwesh, U.M.; Rasul, A. A GIS-based Boolean logic-analytical hierarchy process for solar power plant (case study: Erbil Governorate-Iraq). Environ. Dev. Sustain. 2021, 23, 6066–6083. [Google Scholar] [CrossRef]
- Yousefi, H.; Hafeznia, H.; Yousefi-Sahzabi, A. Spatial Site Selection for Solar Power Plants Using a GIS-Based Boolean-Fuzzy Logic Model: A Case Study of Markazi Province, Iran. Energies 2018, 11, 1648. [Google Scholar] [CrossRef] [Green Version]
- Zambrano-Asanza, S.; Quiros-Tortos, J.; Franco, J.F. Optimal site selection for photovoltaic power plants using a GIS-based multi-criteria decision making and spatial overlay with electric load. Renew. Sustain. Energy Rev. 2021, 143, 110853. [Google Scholar] [CrossRef]
- Dell’Ovo, M.; Capolongo, S.; Oppio, A. Combining spatial analysis with MCDA for the siting of healthcare facilities. Land Use Policy 2018, 76, 634–644. [Google Scholar] [CrossRef]
- Halder, B.; Bandyopadhyay, J.; Banik, P. Assessment of hospital sites’ suitability by spatial information technologies using AHP and GIS-based multi-criteria approach of Rajpur-Sonarpur Municipality. Modeling Earth Syst. Environ. 2020, 6, 2581–2596. [Google Scholar] [CrossRef]
- Nsaif, Q.A.; Khaleel, S.M.; Khateeb, A.H. Integration of gis and remote sensing technique for hospital site selection in baquba district. J. Eng. Sci. Technol. 2020, 15, 1492–1505. [Google Scholar]
- Parvin, F.; Ali, S.A.; Hashmi, S.N.I.; Khatoon, A. Accessibility and site suitability for healthcare services using GIS-based hybrid decision-making approach: A study in Murshidabad, India. Spat. Inf. Res. 2021, 29, 1–18. [Google Scholar] [CrossRef]
- Gemitzi, A.; Tsihrintzis, V.A.; Christou, O.; Petalas, C. Use of GIS in siting stabilization pond facilities for domestic wastewater treatment. J. Environ. Manag. 2007, 82, 155–166. [Google Scholar] [CrossRef] [PubMed]
- S’Habou, R.; Zairi, M.; Kallel, A.; Neji, J.; Dhia, H.B. Disposal site choice for olive mill wastewater. Waste Resour. Manag. 2009, 162, 99–108. [Google Scholar] [CrossRef]
- Anagnostopoulos, K.; Vavatsikos, A. Site Suitability Analysis for Natural Systems for Wastewater Treatment with Spatial Fuzzy Analytic Hierarchy Process. J. Water Resour. Plan. Manag. 2012, 138, 125–134. [Google Scholar] [CrossRef]
- Zhou, J.L.; Wu, Y.N.; Wu, C.H.; He, F.Y.; Zhang, B.Y.; Liu, F.T. A geographical information system based multi-criteria decision-making approach for location analysis and evaluation of urban photovoltaic charging station: A case study in Beijing. Energy Convers. Manag. 2020, 205, 112340. [Google Scholar] [CrossRef]
- Aydi, A.; Abichou, T.; Nasr, I.H.; Louati, M.; Zairi, M. Assessment of land suitability for olive mill wastewater disposal site selection by integrating fuzzy logic, AHP, and WLC in a GIS. Environ. Monit. Assess. 2016, 188, 59. [Google Scholar] [CrossRef]
- Ma, J.G.; Scott, N.R.; DeGloria, S.D.; Lembo, A.J. Siting analysis of farm-based centralized anaerobic digester systems for distributed generation using GIS. Biomass Bioenergy 2005, 28, 591–600. [Google Scholar] [CrossRef]
- Tavares, G.; Zsigraiova, Z.; Semiao, V. Multi-criteria GIS-based siting of an incineration plant for municipal solid waste. Waste Manag. 2011, 31, 1960–1972. [Google Scholar] [CrossRef]
- Zhang, G.; Shi, Y.; Maleki, A.; Rosen, M.A. Optimal location and size of a grid-independent solar/hydrogen system for rural areas using an efficient heuristic approach. Renew. Energy 2020, 156, 1203–1214. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Ren, J.; Pu, Y.R.; Wang, P. Solar energy potential assessment: A framework to integrate geographic, technological, and economic indices for a potential analysis. Renew. Energy 2020, 149, 577–586. [Google Scholar] [CrossRef]
- Colak, H.E.; Memisoglu, T.; Gercek, Y. Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey. Renew. Energy 2020, 149, 565–576. [Google Scholar] [CrossRef]
- Saaty, T.L. Scaling Method for Priorities in Hierarchical Structures. J. Math. Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Liu, B.; Tang, J.; Li, Z.Y.; Yan, Y.; Chen, J.S. Optimal Selection of Sewage Treatment Technologies in Town Areas: A Coupled Multi-Criteria Decision-Making Model. Environ. Manag. 2020, 66, 709–721. [Google Scholar] [CrossRef]
Restricted Indicators | Quantification into Boolean Values | Vk(IRi) = 0 | Vk(IRi) = 1 |
---|---|---|---|
Road restriction (IR1) | Distance to road, m | <100 | ≥100 |
River restriction (IR2) | Distance to river, m | <100 | ≥100 |
Water source restriction (IR3) | Distance to water source, m | <1000 | ≥1000 |
Lake restriction (IR4) | Distance to lake, m | <100 | ≥100 |
Terrain slope restriction (IR5) | Slope, degree | >10 | ≤10 |
Soil texture restriction (IR6) | Vk(IS6) referring to Equations (1) and (10) | <0.2 | ≤0.2 |
Residential area restriction (IR7) | Distance to settlement, m | <200 | ≥200 |
Built-up area restriction (IR8) | Distance to building, m | <100 | ≥100 |
Selective Indicators | Quantification into Indicator Values | Vk(ISj)∈(0, 1) | |
Distance from road (IS1) | Normalized score referring to Equation (1), | Equal to normalized score | |
where Fa = 100 m, Fb = 200 m and Fc = 1000 m | |||
Distance from river (IS2) | Normalized score referring to Equation (1), | Equal to normalized score | |
where Fa = 100 m, Fb = 200 m and Fc = 1000 m | |||
Pipe network coverage (IS3) | Based on the prosperity of its urban area | Positive correlation | |
Terrain slope (IS4) | Normalized score referring to Equation (1), | Equal to normalized score | |
where Fa = Fb = 0 degree and Fc = 10 degrees | |||
Land-use type (IS5) | Artificial surfaces, water bodies, wetland, | 0.0, 0.0, 0.1, 0.3, 0.6, 0.9 | |
cultivated land, forest, grassland, bareland | and 1.0, respectively | ||
Soil texture (IS6) | Normalized score referring to Equations (1) and (10), | Equal to normalized score | |
where Fa = min(Fk), Fb = Fc = max(Fk) | |||
Distance from residential area (IS7) | Normalized score referring to Equation (1), | Equal to normalized score | |
where Fa = 200 m, Fb = 300 m and Fc = 1000 m | |||
Dominant wind direction (IS8) | Method referring to Section 3 | From 0 to 1 | |
Urban stream direction (IS9) | Method referring to Section 3 | From 0 to 1 |
Attribute Points | AP1 | AP2 | AP3 | AP4 | AP5 | AP6 | AP7 | AP8 |
---|---|---|---|---|---|---|---|---|
Vk (Dominant wind direction) (IS8) | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
Vk (Urban stream direction) (IS9) | 1.00 | 0.95 | 1.00 | 0.70 | 1.00 | 1.00 | 0.95 | 0.85 |
Attribute Points | AP9 | AP10 | AP11 | AP12 | AP13 | AP14 | AP15 | AP16 |
Vk (Dominant wind direction) (IS8) | 0.95 | 1.00 | 1.00 | 1.00 | 0.95 | 1.00 | 1.00 | 1.00 |
Vk (Urban stream direction) (IS9) | 0.85 | 0.85 | 0.85 | 0.05 | 0.05 | 0.05 | 0.00 | 0.00 |
Attribute Points | AP17 | AP18 | AP19 | AP20 | AP21 | AP22 | AP23 | AP24 |
Vk (Dominant wind direction) (IS8) | 0.80 | 0.60 | 0.00 | 0.00 | 0.20 | 0.35 | 1.00 | 0.95 |
Vk (Urban stream direction) (IS9) | 0.00 | 0.00 | 0.00 | 0.10 | 0.50 | 0.70 | 0.70 | 0.90 |
Goal Criterion | C1 | C2 | C3 | Weights | wj | CR | |
---|---|---|---|---|---|---|---|
Economic cost (C1) | 1 | 1 | 2 | 0.413 | |||
Construction conditions (C2) | 1 | 1 | 1 | 0.328 | |||
Social impact (C3) | 1/2 | 1 | 1 | 0.260 | 0.046 | ||
C1 Selective Indicator | IS1 | IS2 | IS3 | ||||
Distance from road (IS1) | 1 | 1/2 | 1/6 | 0.111 | 0.046 | ||
Distance from river (IS2) | 2 | 1 | 1/3 | 0.222 | 0.092 | ||
Pipe network coverage (IS3) | 6 | 3 | 1 | 0.667 | 0.275 | 0.000 | |
C2 Selective Indicator | IS4 | IS5 | IS6 | ||||
Terrain slope (IS4) | 1 | 1/4 | 1/2 | 0.149 | 0.049 | ||
Land-use type (IS5) | 4 | 1 | 1 | 0.474 | 0.155 | ||
Soil texture (IS6) | 2 | 1 | 1 | 0.376 | 0.123 | 0.046 | |
C3 Selective Indicator | IS7 | IS8 | IS9 | ||||
Distance from residential area (IS7) | 1 | 3 | 1 | 0.443 | 0.115 | ||
Dominant wind direction (IS8) | 1/3 | 1 | 1/2 | 0.169 | 0.044 | ||
Urban stream direction (IS9) | 1 | 2 | 1 | 0.387 | 0.101 | 0.016 |
Sewage Treatment Plants | STP1 | STP2 | STP3 | STP4 | STP5 | STP6 | STP7 | STP8 | STP9 | STP10 | VAR |
---|---|---|---|---|---|---|---|---|---|---|---|
V (Distance from road) (IS1) | 0.985 | 0.800 | 0.616 | 0.609 | 0.998 | 0.237 | 0.448 | 0.500 | 0.897 | 0.621 | 0.061 |
V (Distance from river) (IS2) | 0.932 | 0.977 | 0.957 | 0.873 | 0.082 | 0.500 | 0.964 | 0.616 | 0.361 | 0.851 | 0.096 |
V (Pipe network coverage) (IS3) | 0.000 | 0.700 | 0.000 | 0.800 | 0.600 | 0.400 | 1.000 | 0.900 | 0.900 | 0.900 | 0.137 |
V (Terrain slope) (IS4) | 0.784 | 0.831 | 0.743 | 0.865 | 0.803 | 0.761 | 0.818 | 0.925 | 0.818 | 0.728 | 0.003 |
V (Land-use type) (IS5) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
V (Soil texture) (IS6) | 0.456 | 0.339 | 0.456 | 0.681 | 0.399 | 0.681 | 0.681 | 0.456 | 0.456 | 0.456 | 0.016 |
V (Distance from residential area) (IS7) | 0.398 | 0.786 | 0.000 | 0.656 | 0.285 | 0.000 | 0.940 | 0.913 | 0.810 | 0.000 | 0.152 |
V (Dominant wind direction) (IS8) | 1.000 | 0.532 | 1.000 | 0.998 | 0.656 | 0.152 | 0.769 | 0.965 | 0.513 | 0.532 | 0.082 |
V (Urban stream direction) (IS9) | 1.000 | 0.855 | 1.000 | 0.821 | 0.840 | 0.821 | 0.702 | 0.840 | 0.154 | 0.114 | 0.101 |
V (SSME) | 0.416 | 0.602 | 0.354 | 0.657 | 0.453 | 0.390 | 0.721 | 0.661 | 0.540 | 0.000 | 0.044 |
Evaluation | G | VG | M | VG | G | M | VG | VG | VG | R | - |
Grade | Maolin Town | Yang Town | Huaide Town | Qin Town | Shijiapu Town |
---|---|---|---|---|---|
R | 53.66% | 74.18% | 56.33% | 64.67% | 63.01% |
P | 12.34% | 0.29% | 1.56% | 4.38% | 18.46% |
M | 18.60% | 6.35% | 14.87% | 8.86% | 14.65% |
G | 13.04% | 14.51% | 16.58% | 15.33% | 3.75% |
VG | 2.36% | 4.67% | 10.67% | 6.75% | 0.13% |
Max value | 0.633 | 0.603 | 0.608 | 0.580 | 0.540 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Tang, J.; Qu, Y.; Yang, Y.; Lyu, H.; Dai, Y.; Li, Z. A GIS-Based Method for Identification of Blindness in Former Site Selection of Sewage Treatment Plants and Exploration of Optimal Siting Areas: A Case Study in Liao River Basin. Water 2022, 14, 1092. https://doi.org/10.3390/w14071092
Liu B, Tang J, Qu Y, Yang Y, Lyu H, Dai Y, Li Z. A GIS-Based Method for Identification of Blindness in Former Site Selection of Sewage Treatment Plants and Exploration of Optimal Siting Areas: A Case Study in Liao River Basin. Water. 2022; 14(7):1092. https://doi.org/10.3390/w14071092
Chicago/Turabian StyleLiu, Ben, Jie Tang, Yunke Qu, Yao Yang, Hang Lyu, Yindong Dai, and Zhaoyang Li. 2022. "A GIS-Based Method for Identification of Blindness in Former Site Selection of Sewage Treatment Plants and Exploration of Optimal Siting Areas: A Case Study in Liao River Basin" Water 14, no. 7: 1092. https://doi.org/10.3390/w14071092