Vulnerability of a Tunisian Coastal Aquifer to Seawater Intrusion: Insights from the GALDIT Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Korba Study Site
2.2. Workflow
2.2.1. GALDIT GW vulnerability Assessment
Preparation of Input Database
The Korba GALDIT Index Parameters
- (G)—GW occurrence/aquifer type
- (A)—Aquifer hydraulic conductivity
- (L)—Depth of the GW
- (D)—Distance from shore
- (I)— Impact of existing status of SWI (Cl−/HCO3)
- (T)—Aquifer thickness
Mapping of the GALDIT Index Vulnerability
Sensitivity Analysis of the GALDIT Vulnerability Index
Model Validation
2.2.2. Delineation of Favorable Artificial Recharge Zones
Preparation of Input Database
Index Parameters
- Parameter (GE)—Geology
- Parameter (GM)—Geomorphology
- Parameter (HS)—Hydrological soil
- Parameter (RN)—Runoff
- Parameter (S)—Surface slope
- Parameter (LU)—Land use
2.2.3. Simulation of the Impact of Artificial GW Recharge on SWI
3. Results and Discussion
3.1. GALDIT GW Vulnerability Assessment
3.1.1. GALDIT Parameter Ratings
3.1.2. GALDIT GW vulnerability Map
3.1.3. GALDIT GW Sensitivity Analysis
3.1.4. GALDIT GW Model
3.2. Mapping of Artificial Recharge Zones
3.2.1. Index Parameters for Delineating Favorable Artificial Recharge Zones
- Parameter (GE)—Geology
- Parameter (GM)—Geomorphology
- Parameter (HS)—Hydrologic soil group
- Parameter (RN)—Runoff
- Parameter (S)—Surface slope
- Parameter (LU)—Land use
3.2.2. GW Artificial Recharge Map
3.3. Simulation of Artificial Recharge Impact on SWI
4. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Zeynolabedin, A.; Ghiassi, R. The SIVI index: A comprehensive approach for investigating seawater intrusion vulnerability for island and coastal aquifers. Environ. Earth Sci. 2019, 78, 666. [Google Scholar] [CrossRef]
- Wei, A.; Li, D.; Dai, F.; Lang, X.; Ma, B.; Wang, Y. An optimization method coupled the index-overlay method with entropy weighting model to assess seawater intrusion vulnerability. Environ. Sci. Pollut. Res. 2021, 28, 36142–36156. [Google Scholar] [CrossRef] [PubMed]
- Sujitha, V.; Purandara, B.K.; Shivapur, A.V.; Davithuraj, J. Assessment of Aquifer Vulnerability Using GALDIT Model—A Case Study. J. Geol. Soc. India 2020, 95, 507–512. [Google Scholar] [CrossRef]
- Seenipandi, K.; Nainarpandian, C.; Kandathil, R.K.; Sellamuthu, S. Seawater intrusion vulnerability in the coastal aquifers of southern India—An appraisal of the GALDIT model, parameters’ sensitivity, and hydrochemical indicators. Environ. Sci. Pollut. Res. 2019, 26, 9755–9784. [Google Scholar] [CrossRef] [PubMed]
- Yeh, H.-F.; Cheng, Y.-S.; Lin, H.-I.; Lee, C.-H. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain. Environ. Res. 2016, 26, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Valverde, J.P.B.; Blank, C.; Roidt, M.; Schneider, L.; Stefan, C. Application of a GIS Multi-Criteria Decision Analysis for the Identification of Intrinsic Suitable Sites in Costa Rica for the Application of Managed Aquifer Recharge (MAR) through Spreading Methods. Water 2016, 8, 391. [Google Scholar] [CrossRef]
- Senanayake, I.P.; Dissanayake, D.; Mayadunna, B.; Weerasekera, W. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci. Front. 2016, 7, 115–124. [Google Scholar] [CrossRef] [Green Version]
- Tasnim, Z.; Tahsin, S. Application of the method of GALDIT for groundwater vulnerability assessment: A case of South Florida. Asian J. Appl. Sci. Eng. 2016, 5, 27–40. [Google Scholar]
- Agoubi, B.; Dabbaghi, R.; Kharroubi, A.A. Mamdani adaptive neural fuzzy inference system for improvement of groundwater vulnerability. Ground Water 2018, 56, 978–985. [Google Scholar] [CrossRef]
- Walther, M.; Delfs, J.O.; Grundmann, J.; Kolditz, O.; Liedl, R. Saltwater intrusion modeling: Verification and application to an agricultural coastal arid region in Oman. J. Comput. Appl. Math. 2012, 18, 4798–4809. [Google Scholar] [CrossRef] [Green Version]
- Parizi, E.; Hosseini, S.M.; Ataie-Ashtiani, B.; Simmons, C.T. Vulnerability mapping of coastal aquifers to seawater intrusion: Review, development and application. J. Hydrol. 2019, 570, 555–573. [Google Scholar] [CrossRef]
- Barzegar, R.; Asghari Moghaddam, A.; Adamowski, J.; Nazemi, A.H. Delimitation of groundwater zones under contamination risk using a bagged ensemble of optimized DRASTIC frameworks. Environ. Sci. Pollut. Res. Int. 2019, 1968, 8325–8339. [Google Scholar] [CrossRef]
- Mfumu Kihumba, A.; Vanclooster, M.; Ndembo Longo, J. Assessing groundwater vulnerability in the Kinshasa region, DR Congo, using a calibrated DRASTIC model. J. Afr. Earth Sci. 2017, 126, 13–22. [Google Scholar] [CrossRef]
- Margat, J. Vulnerability of Groundwater to Pollution: Database Mapping; 68-SGL 198; BRGM Publication: Orleans, France, 1968. [Google Scholar]
- Huan, H.; Wang, J.; Teng, Y. Assessment and validation of groundwater vulnerability to nitrate based on a modified DRASTIC model: A case study in Jilin City of northeast China. Sci. Total Environ. 2012, 440, 14–23. [Google Scholar] [CrossRef] [PubMed]
- Lobo-Ferreira, J.P.; Cabral, M. Proposal for an Operational Definition of Vulnerability for the European Community’s Atlas of Groundwater Resources. In Proceedings of the Meeting of the European Institute for Water; Groundwater Work Group Brussels: Brussels, Belgium, 1991. [Google Scholar]
- Harter, T.; Walker, L.G. Assessing Vulnerability of Groundwater; Report 1–11; California Department of Health Services: Sacramento, CA, USA, 2001.
- Gogu, R.C.; Dassargues, A. Current trends and future challenges in groundwater vulnerability assessment using overlay and index methods. Environ. Geol. 2000, 39, 549–558. [Google Scholar] [CrossRef]
- Kholghi, M. Multi-criterion decision making tools for wastewater planning management. J. Agric. Sci. Technol. 2001, 3, 281–286. [Google Scholar]
- Aller, L.; Bennet, T.; Leher, J.H.; Petty, R.J.; Hackett, G. DRASTIC. A Standardized System for Evaluating Groundwater Pollution Potential Using Hydro-Geological Settings; EPA 600/2-87-035; USEPA: Washington, DC, USA, 1987; 622p.
- Saidi, S.; Bouri, S.; Dhia, H.B. Sensitivity analysis in groundwater vulnerability assessment based on GIS in the Mahdia-KsourEssaf aquifer, Tunisia: A validation study. Hydrol. Sci. J. 2011, 56, 288–304. [Google Scholar] [CrossRef]
- Anane, M.; Abidi, B.; Lachaal, F.; Limam, A.; Jellali, S. GIS-based DRASTIC, Pesticide DRASTIC and the Susceptibility Index (SI): Comparative study for evaluation of pollution potential in the Nabeul-Hammamet shallow aquifer, Tunisia. Hydrogeol. J. 2013, 21, 715–731. [Google Scholar] [CrossRef]
- Chenini, I.; Zghibi, A.; Kouzana, L. Hydrogeological investigations and groundwater vulnerability assessment and mapping for groundwater resource protection and management: State of the art and a case study. J. Afr. Earth Sci. 2015, 109, 11–26. [Google Scholar] [CrossRef]
- Zghibi, A.; Merzougui, A.; Chenini, I.; Ergaieg, K.; Zouhri, L.; Tarhouni, J. Groundwater vulnerability analysis of Tunisian coastal aquifer: An application of DRASTIC index method in GIS environment. Groundw. Sustain. Dev. 2016, 2, 169–181. [Google Scholar] [CrossRef]
- Foster, S.D. Fundamental concepts in aquifer vulnerability, pollution risk and protection strategy. In Vulnerability of Soil and Groundwater to Pollution; Waegeningh, H.G., van Waegeningh, V., Eds.; Committee on Hydrological Research: Hague, The Netherlands, 1987; Volume 38, pp. 69–86. [Google Scholar]
- Doerfliger, N.; Jeannin, P.Y.; Zwahlen, F. Water vulnerability assessment in karst environments: A new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ. Geol. 1999, 39, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Vias, J.M.; Andreo, B.; Perles, M.J.; Carrasco, F.; Vadillo, I.; Jimenez, P. Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: The COP method. Hydrogeol. J. 2006, 14, 912–925. [Google Scholar] [CrossRef]
- Civita, M.; de Maio, M. SINTACS Un sistema parametrico per la valutazione e la cartografia della vulnerabilità degli acquiferi all’inquinamento. In Quaderni di Tecniche di Protezione Ambientale; Pitagora: Bologna, Italy, 1997; Volume 60. (In Italian) [Google Scholar]
- Instituto Tecnologico y Geominero de Espana. Evaluación de la Vulnerabilidad de los Acuíferos a la Contaminación Porplaguicidas. Ejemplo Aplicación en Provincia de Castellón. Guía Metodológica para la Elaboración de Perímetros de Protección de Captaciones de Agua Subterráneas; Instituto Tecnológico y Geominero de España: Madrid, Spain, 1991; p. 290. ISBN 84-7840-091-5. [Google Scholar]
- Lobo-Ferreira, J.P.; Chachadi, A.G.; Catarina, D.; Diamantino, C.; Henriques, M.J. Assessing aquifer vulnerability to seawater intrusion using GALDIT method: Part 1. Assessing aquifer vulnerability to seawater intrusion using GALDIT method: Part 1—Application to the Portuguese Aquifer of Monte Gordo. In Proceedings of the Fourth Inter-Celtic Colloquium on Hydrology and Management of Water Resources, Gimaràes, Portugal, 11–14 July 2005. [Google Scholar]
- Recinos, N.; Kallioras, A.; Pliakas, F.; Schuth, C. Application of GALDIT index to assess the intrinsic vulnerability to seawater intrusion of coastal granular aquifers. Environ. Earth Sci. 2015, 73, 1017–1032. [Google Scholar] [CrossRef]
- Chachadi, A.G.; Lobo-Ferreira, J.P. Sea water intrusion vulnerability mapping of aquifers isung GALDIT method. In Proceedings of the Workshop on Modeling in Hydrogeology; COASTIN A Coastal Policy Research Newsletter; Number 4; TERI: New Delhi, India, 2001; pp. 7–9. Available online: https://www.teriin.org/teri-wr/coastin/newslett/coastin4.pdf (accessed on 24 March 2018).
- Ayed, B.; Jmal, I.; Sahal, S.; Bouri, S. The seawater intrusion assessment in coastal aquifers using GALDIT method and groundwater quality index: The Djeffara of Medenine coastal aquifer (Southeastern Tunisia). Arabian J. Geosci. 2018, 11, 609. [Google Scholar] [CrossRef]
- Gontara, M.; Allouche, N.; Jmal, I.; Bouri, S. Sensitivity analysis for the GALDIT method based on the assessment of vulnerability to pollution in the northern Sfax coastal aquifer, Tunisia. Arab. J. Geosci. 2016, 9, 416. [Google Scholar] [CrossRef]
- Kazakis, N.; Spiliotis, M.; Voudouris, K.; Pliakas, F.K.; Papadopoulos, B. A fuzzy multicriteria categorization of the GALDIT method to assess seawater intrusion vulnerability of coastal aquifers. Sci. Total Environ. 2018, 621, 524–534. [Google Scholar] [CrossRef] [PubMed]
- Kouz, T.; Cherkaoui Dekkaki, H.; Mansour, S.; Hassani Zerrouk, M.; Mourabit, T. Application of GALDIT Index to Assess the Intrinsic Vulnerability of Coastal Aquifer to Seawater Intrusion Case of the Ghiss-Nekor Aquifer (North East of Morocco). In Groundwater and Global Change in the Western Mediterranean Area; Calvache., M.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Carrera, J.; Hidalgo, J.J.; Slooten, L.J.; Vázquez-Suñé, E. Computational and conceptual issues in the calibration of seawater intrusion models. Hydrogeol. J. 2010, 18, 131–145. [Google Scholar] [CrossRef]
- Werner, A.D.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, C.T.; Barry, D.A. Seawater intrusion processes, investigation and management: Recent advances and future challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Walther, M.; Graf, T.; Kolditz, O.; Liedl, R.; Post, V. How significant is the slope of the sea-side boundary for modelling seawater intrusion in coastal aquifers? J. Hydrol. 2017, 551, 648–659. [Google Scholar] [CrossRef]
- Barzegar, R.; Moghaddam, A.A.; Deo, R.; Fijani, E.; Tziritis, E. Mapping groundwater contamination risk of multiple aquifers using multi-model ensemble of machine learning algorithms. Sci. Total Environ. 2018, 621, 697–712. [Google Scholar] [CrossRef]
- Jafari, S.M.; Nikoo, M.R. Groundwater risk assessment based on optimization framework using DRASTIC method. Arabian J. Geosci. 2016, 9, 742. [Google Scholar] [CrossRef]
- Asadi, P.; Hosseini, S.M.; Ataie-Ashtiani, B.; Simmons, C.T. Fuzzy vulnerability mapping of urban groundwater systems to nitrate contamination. Environ. Modell. Software. 2017, 96, 146–157. [Google Scholar] [CrossRef]
- Nasri, G.; Hajji, S.; Aydi, W.; Boughariou, E.; Allouche, N.; Bouri, S. Water vulnerability of coastal aquifers using AHP and parametric models: Methodological overview and a case study assessment. Arabian J. Geosci. 2021, 14, 59. [Google Scholar] [CrossRef]
- Oikonomidis, D.; Dimogianni, S.; Kazakis, N.; Voudouris, K. A GIS/Remote Sensing-based methodology for groundwater potentiality assessment in Tirnavos area, Greece. J. Hydrol. 2015, 525, 197–208. [Google Scholar] [CrossRef]
- Agoubi, B. A review: Saltwater intrusion in North Africa’s coastal areas—Current state and future challenges. Environ. Sci. Pollut. Res. 2021, 28, 17029–17043. [Google Scholar] [CrossRef] [PubMed]
- Abijith, D.; Saravanan, S.; Singh, L.; Jennifer, J.J.; Saranya, T.; Parthasarathy, K. GIS-based multi-criteria analysis for identification of potential groundwater recharge zones—A case study from Ponnaniyaru watershed, Tamil Nadu, India. Hydro. Res. 2020, 3, 1–14. [Google Scholar] [CrossRef]
- Sophiya, M.S.; Syed, T.H. Assessment of vulnerability to seawater intrusion and potential remediation measures for coastal aquifers: A case study from eastern India. Environ. Earth Sci. 2013, 70, 1197–1209. [Google Scholar] [CrossRef]
- Kura, N.U.; Ramli, M.F.; Ibrahim, S.; Sulaiman, W.N.A.; Aris, A.Z.; Tanko, A.I.; Zaudi, M.A. Assessment of groundwater vulnerability to anthropogenic pollution and seawater intrusion in a small tropical island using index-based methods. Environ. Sci. Pollut. Res. 2015, 22, 1512–1533. [Google Scholar] [CrossRef]
- Chekirbane, A.; Tsujimura, M.; Lachaal, F.; Khadhar, S.; Mlayah, A.; Kawachi, A.; Isoda, H.; Tarhouni, J.; Benalaya, A. Quantification of Groundwater—Saline Surface Water Interaction in a Small Coastal Plain in North-East Tunisia using Multivariate Statistical Analysis and Geophysical Method. Water Environ. Res. 2016, 88, 2292–2308. [Google Scholar] [CrossRef]
- Kouzana, L.; Mammou, A.B.; Felfoul, M.S. Seawater intrusion and associated processes: Case of the Korba aquifer (Cap-Bon, Tunisia). C. R. Geosci. 2009, 341, 21–35. [Google Scholar] [CrossRef]
- Sendrós, A.; Urruela, A.; Himi, M.; Alonso, C.; Lovera, R.; Tapias, J.C.; Rivero, L.; Garcia-Artigas, R.; Casas, A. Characterization of a shallow coastal aquifer in the framework of a subsurface storage and soil aquifer treatment project using electrical resistivity tomography (Port de la Selva, Spain). Appl. Sci. 2021, 11, 2448. [Google Scholar] [CrossRef]
- Trabelsi, N.; Triki, I.; Hentati, I.; Zairi, M. Aquifer vulnerability and seawater intrusion risk using GALDIT, GQISWI and GIS: Case of a coastal aquifer in Tunisia. Environ. Earth Sci. 2016, 75, 669. [Google Scholar] [CrossRef]
- Kouzana, L.; Benassi, R. Geophysical and geochemical study of the seawater intrusion in Mediterranean semi-arid zones. Case of the Korba coastal aquifer (Cap-Bon, Tunisia). J. Afr. Earth Sci. 2010, 58, 242–254. [Google Scholar]
- Paniconi, C.; Khlaifi, I.; Lecca, G.; Giacomelli, A.; Tarhouni, J. A modeling study of seawater intrusion in the Korba coastal plain, Tunisia. Phys. Chem. Earth 2001, 26, 345–351. [Google Scholar] [CrossRef]
- Zghibi, A.; Mirchi, A.; Zouhri, L.; Taupin, J.-D.; Chekirbane, A.; Tarhouni, J. Implications of groundwater development and seawater intrusion for sustainability of a Mediterranean coastal aquifer in Tunisia. Environ. Monit. Assess. 2019, 191, 696. [Google Scholar] [CrossRef]
- Horriche, F.J.; Benabdallah, S. Assessing Aquifer Water Level and Salinity for a Managed Artificial Recharge Site Using Reclaimed Water. Water 2020, 12, 341. [Google Scholar] [CrossRef] [Green Version]
- Zghibi, A.; Mirchi, A.; Msaddek, M.H.; Merzougui, A.; Zouhri, L.; Taupin, J.D.; Chekirbane, A.; Chenini, I.; Tarhouni, J. Using Analytical Hierarchy Process and Multi-Influencing Factors to Map Groundwater Recharge Zones in a Semi-Arid Mediterranean Coastal Aquifer. Water 2020, 12, 2525. [Google Scholar] [CrossRef]
- Ennabli, M. Etude Hydrogélogique des Aquifères du Nord-Est de la Tunisie Pour Une Gestion Intégrée des Ressources en Eau. Ph.D. Thesis, Nice University, Nice, France, 1980. [Google Scholar]
- Oueslati, A. Les Côtes de la Tunisie. Recherche sur Leur Evolution au Quaternaire; Imprimerie Officielle de la République Tunisienne: Tunis, Tunisia, 1994. [Google Scholar]
- Kerrou, J.; Renard, P.; Tarhouni, J. Status of the Korba groundwater resources (Tunisia): Observations and three-dimensional modelling of seawater intrusion. Hydrogeol. J. 2010, 18, 1173–1190. [Google Scholar] [CrossRef]
- CCI Cap-Bon. Chambre de Commerce et d’Industrie Cap-Bon. Tunisia. Available online: http://www.ccicapbon.org.tn (accessed on 24 March 2018).
- Direction Générale des Ressources en Eau (DGRE). Annuaires Pluviométriques (1998–20119); DGRE: Tunis, Tunisia, 2019. [Google Scholar]
- Singh, L.K.; Jha, M.K.; Chowdary, V.M. Multi-criteria analysis and GIS modeling for identifying prospective water harvesting and artificial recharge sites for sustainable water supply. J. Clean. Prod. 2017, 142, 1436–1456. [Google Scholar] [CrossRef]
- Chenini, I.; Msaddek, M.H.; Dlala, M. Hydrogeological characterization and aquifer recharge mapping for groundwater resources management using multicriteria analysis and numerical modeling: A case study from Tunisia. J. Afr. Earth. Sci. 2019, 154, 59–69. [Google Scholar] [CrossRef]
- Satishkumar, V.; Sankaran, S.; Taufiquewarsi; Amarender, B.; Dhakate, R. Mapping of salinity ingress using Galdit model for Sirkali coastal region: A case study. J. Geogr. Inf. Syst. 2016, 8, 526–536. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, P.; Fabbri, A.G. Single-parameter sensitivity analysis for aquifer vulnerability assessment using and SINTACS. In HydroGIS 96: Application of Geographical Information Systems in Hydrology and Water Resources Management, Proceedings of the Vienna Conference, Vienna, Austria, April 1996; I.A.H.S. Publications: Oxford, UK, 1996; Volume 235, pp. 559–566. [Google Scholar]
- Lodwick, W.A.; Monson, W.; Svoboda, L. Attribute error and sensitivity analysis of map operations in geographical information systems: Suitability analysis. Int. J. Geogr. Inf. Syst. 1990, 4, 413–428. [Google Scholar] [CrossRef]
- Huisman, B.; Olsthroon, T.N. Artificial Groundwater Recharge; Pitman Books Ltd.: London, UK, 1983. [Google Scholar]
- Mockus, V. Estimation of direct runoff from storm rainfall. In National Engineering Handbook; N.E.H. Notice: Washington, DC, USA, 1972; Volume 4, p. 102. [Google Scholar]
- Das, S.N.; Narula, K.K.; Laurin, R. Run-off potential indices of watersheds of Tilaiya catchment, Bihar (India) through use of remote sensing and implementation of GIS. J. Indian Soc. Remote Sens. 1992, 20, 207–222. [Google Scholar] [CrossRef]
- Mirza, M.N.; Al-Ghamdi, K.A. GIS-based spatial mapping of flash flood hazard in Makkah City, Saudi Arabia. J. Geogr. Inf. Syst. 2011, 3, 225–231. [Google Scholar] [CrossRef] [Green Version]
- Reshma, T.; Kumar, S.P.; Babu, R.K.; Babu, R.K.M.J.; Kumar, K.S. Simulation of runoff in watersheds using SCS-CN and Muskingum-Cunge methods using remote sensing and Geographical Information Systems. Int. J. Adv. Sci. Technol. 2010, 25, 31–42. [Google Scholar]
- Pradhan, R.; Pradhan, M.P.; Ghose, M.K.; Agarwal, V.S.; Agarwal, S. Estimation of rainfall runoff using remote sensing and GIS in and around Singtam, East Sikkim. Int. J. Geomat. Geosci. 2010, 1, 467–476. [Google Scholar]
- Sundaram, L.K.V.; Dinesh, V.; Ravikumar, G. Vulnerability assessment of seawater intrusion and effect of artificial recharge in Pondicherry coastal region using GIS. Indian J. Sci. Technol. 2008, 1, 1–7. [Google Scholar] [CrossRef]
- Ghyben, W.B. Nota in verband met de voorgenomenputboringnabij Amsterdam. Inst. Ing. Tijdschr. 1888, 21, 8–22. [Google Scholar]
- Herzberg, A. Die WasserversorgungeinigerNordseebader. J. Gasbeleucht. Wasserversorg. 1901, 44, 815–819. [Google Scholar]
- Bear, J. Dynamics of Fluids in Porous Materials; Elsevier: New York, NY, USA, 1972. [Google Scholar]
- Raudkivi, A.J.; Callander, R.A. Analysis of Ground Water Flow; Edward Arnold (Publishers) Ltd.: London, UK, 1976. [Google Scholar]
- Bear, J. Hydraulics of Groundwater; McGraw-Hill Inc.: London, UK, 1979. [Google Scholar]
- Pal, S.; Kundu, S.; Mahato, S. Groundwater potential zones for sustainable management plans in a river basin of India and Bangladesh. J. Clean. Prod. 2020, 257, 120311. [Google Scholar] [CrossRef]
- Najib, S.; Grozavu, A.; Mehdi, K.; Breaban, I.G.; Guessir, H.; Boutayab, K. Application of the method GALDIT for the cartography of groundwaters vulnerability: Aquifer of Chaouia coast (Morocco). In Scientific Annals of “Alexandru Ioan Cuza” University of Iaşi; “Alexandru Ioan Cuza” University of Iasi: Iasi, Romania, 2012; pp. 2284–6379. [Google Scholar]
- Salem, E.Z.; Hasan, S.S. Use of GALDIT model and HFE-Diagram to assess seawater intrusion vulnerability in West Nile Delta, Egypt. Arabian J. Geosci. 2021, 14, 1318. [Google Scholar] [CrossRef]
- Chang, S.C.; Chung, I.-M.; Kim, M.-G.; Tolera, M.; Koh, G.-W. Application of GALDIT in Assessing the Seawater Intrusion Vulnerability of Jeju Island, South Korea. Water 2019, 11, 1824. [Google Scholar] [CrossRef] [Green Version]
GALDIT Parameters | Raw Data Sources | Format Type | |
---|---|---|---|
DEM | SRTM data with 30 m of resolution | Digital | |
GW occurrence/aquifer type | Carte Agricole of Nabeul governorate and well logs | Digital | G |
Aquifer hydraulic conductivity (m/day) | Pumping tests reports | Table | A |
Depth of the GW (m.a.s.l.) | Monitoring well and piezometers | Table | L |
Distance from shore (m) | Sentinel-2A image from USGS Earth Explorer | Raster | D |
Impact of existing status of SWI (Cl−/HCO3) (mg/L) | GW sample results of HCO3 and Cl were collected from the identified 56 GW wells using the GSP technique | Table | I |
Aquifer thickness (m) | Well logs and hydrogeological sections | Digital | T |
Factor | Weighting (w) | GW Variables | Rating (r) | Weighting of Feature Pixel (i = w × r) | |
---|---|---|---|---|---|
Class | Range | ||||
G | 1 | Confined | 10 | 10 | |
Unconfined | 8 | 8 | |||
Leaky confined | 6 | 6 | |||
Bounded Aquifer | 2 | 2 | |||
A | 3 | High | >40 | 10 | 30 |
Medium | 10–40 | 8 | 24 | ||
Low | 5–10 | 6 | 18 | ||
Very low | <5 | 4 | 12 | ||
L | 4 | High | <1.0 | 10 | 40 |
Medium | 1.0–1.5 | 8 | 32 | ||
Low | 1.5–2.0 | 6 | 24 | ||
Very low | >2.0 | 4 | 16 | ||
D | 5 | Very small | <500 | 10 | 50 |
Small | 500–1000 | 8 | 40 | ||
Medium | 1000–1500 | 6 | 30 | ||
Far | 1500–2000 | 4 | 20 | ||
Very Far | >2000 | 2 | 10 | ||
I | 3 | Very high | >9 | 10 | 30 |
High | 6–9 | 8 | 24 | ||
Moderate | 3–6 | 6 | 18 | ||
Low | 1–3 | 4 | 12 | ||
Very low/no impact zone | <1.0 | 2 | 6 | ||
T | 2 | Very larger thickness | >90 | 10 | 20 |
Larger thickness | 30–50 | 8 | 16 | ||
Moderate thikness | 50–70 | 6 | 12 | ||
Small thichness | 30–50 | 4 | 8 | ||
Very small thickness | <30 | 2 | 4 | ||
Total | 18 |
Data Type | Data Source | Scale/Spatial Resolutions | Format |
---|---|---|---|
GE | Carte Agricole of Nabeul governorate and well logs | 1/500,000 scale | Digital |
GM | Carte Agricole of Nabeul governorate and well logs | 1/500,000 scale | Digital |
HS | Derived from the CN table | Table | |
RN | Annual climatic data (1980–2017) from National Meteorological Institute of Tunisia | Station data Monthly and daily resolution | Table |
S | Extracted from SRTM data with 30 m of resolution | 30 × 30 m | Digital |
LU | Prepared from Landsat 8 using NIR Band with 30 m of resolution | 30 × 30 m | Digital |
Theme | Rank | 1 | 2 | 3 | 4 | Weight Age (wi) |
---|---|---|---|---|---|---|
4 × wi | 3 × wi | 2 × wi | 1 × wi | |||
GE | Alluvium | Shaly sandstone, shell limestone | - | Shale and calcareous Sandstone with clay | 15 | |
GM | Flood plain, Alluvial plain, Coastal plain, Beach sand | Shallow buried pediment, Pediment | Deep buried pediment | Sedimentary High Ground, High Ground | 30 | |
HS group | Class | 20 | ||||
A | B | C | D | |||
RN | Low | Less moderate | Moderate | High | 10 | |
S | Normally | Very slightly | Slightly | Moderately | 10 | |
LU | Sandy, mud flat, Water bodies | Fallow, Land with or without scrub, wet crop, Village settlements | Agricultural plantations, Dry crop | Urban settlements, Gullied ravine, salt affected | 15 |
Factor | Minimum | Maximum | Mean | Standard Deviation (SD) | Coefficient of Variation (CV) (%) |
---|---|---|---|---|---|
G | 2 | 10 | 6.2 | 3.5 | 56.45 |
A | 12 | 30 | 19.5 | 9.28 | 47.58 |
L | 16 | 40 | 24.8 | 12.23 | 49.31 |
D | 10 | 50 | 30.3 | 15.25 | 50.33 |
I | 6 | 30 | 18.6 | 9.43 | 52.1 |
T | 4 | 20 | 13.1 | 6.61 | 50.46 |
Factor | Theoretical Weighting (Wt) | Theoretical Weighting (%) | Effective Weight (%) | Effective Weighting (%) | |||
---|---|---|---|---|---|---|---|
Mean | Minimum | Maximum | Sandard Deviation (SD) | ||||
G | 1 | 5.56 | 2.73 | 1.98 | 0.5 | 3.69 | 1.63 |
A | 3 | 16.66 | 12.31 | 3.60 | 1.05 | 6.01 | 3.33 |
L | 4 | 22.23 | 23.73 | 3.85 | 1.02 | 6.32 | 3.14 |
D | 5 | 27. 78 | 29.96 | 5.98 | 4.25 | 7.21 | 2.12 |
I | 3 | 16.66 | 17.87 | 3.58 | 1.12 | 7.06 | 3.95 |
T | 2 | 11.11 | 13.40 | 2.95 | 0.37 | 6.04 | 3.14 |
Total | 18 | 100 | 100 |
Parameters (Removal of One or More at a Time) | Variation Index (VI) | |||
---|---|---|---|---|
Mean | Minimum | Maximum | SD | |
G | 2.03 | 1.72 | 3.12 | 4.43 |
A | 7.92 | 2.26 | 13.95 | 8.75 |
L | 18.02 | 10.02 | 27.40 | 19.20 |
D | 24.12 | 2.80 | 45.56 | 27.15 |
I | 5.12 | 3.12 | 10.01 | 5.03 |
T | 2.92 | 1.03 | 8.32 | 4.21 |
D and I | 11.12 | 4.81 | 19.75 | 11.72 |
D, I, and T | 8.13 | 2.53 | 12.71 | 6.77 |
L, D, I, and T | 4.92 | 1.29 | 8.85 | 4.58 |
A, L, D, I, and T | 5.86 | 1.91 | 9.84 | 5.82 |
G, A, L, D, I, and T | 4.88 | 1.55 | 6.81 | 4.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zghibi, A.; Merzougui, A.; Mansaray, A.S.; Mirchi, A.; Zouhri, L.; Chekirbane, A.; Msaddek, M.H.; Souissi, D.; Mabrouk-El-Asmi, A.; Boufekane, A. Vulnerability of a Tunisian Coastal Aquifer to Seawater Intrusion: Insights from the GALDIT Model. Water 2022, 14, 1177. https://doi.org/10.3390/w14071177
Zghibi A, Merzougui A, Mansaray AS, Mirchi A, Zouhri L, Chekirbane A, Msaddek MH, Souissi D, Mabrouk-El-Asmi A, Boufekane A. Vulnerability of a Tunisian Coastal Aquifer to Seawater Intrusion: Insights from the GALDIT Model. Water. 2022; 14(7):1177. https://doi.org/10.3390/w14071177
Chicago/Turabian StyleZghibi, Adel, Amira Merzougui, Abubakarr S. Mansaray, Ali Mirchi, Lahcen Zouhri, Anis Chekirbane, Mohamed Haythem Msaddek, Dhekra Souissi, Amina Mabrouk-El-Asmi, and Abdelmadjid Boufekane. 2022. "Vulnerability of a Tunisian Coastal Aquifer to Seawater Intrusion: Insights from the GALDIT Model" Water 14, no. 7: 1177. https://doi.org/10.3390/w14071177
APA StyleZghibi, A., Merzougui, A., Mansaray, A. S., Mirchi, A., Zouhri, L., Chekirbane, A., Msaddek, M. H., Souissi, D., Mabrouk-El-Asmi, A., & Boufekane, A. (2022). Vulnerability of a Tunisian Coastal Aquifer to Seawater Intrusion: Insights from the GALDIT Model. Water, 14(7), 1177. https://doi.org/10.3390/w14071177