Research Development, Current Hotspots, and Future Directions of Blue Carbon: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Data Processing and Analysis
3. Results and Discussion
3.1. The Development Path of Blue Carbon Research
3.1.1. Literature Output Trends
3.1.2. Main Research Force
3.2. Topic Identification and Evolution in Blue Carbon Research
3.3. Hotspot Analysis of Blue Carbon Research
3.4. Prospects for Future Research
4. Conclusions and Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Frame, D.J.; Stone, D.A. Assessment of the first consensus prediction on climate change. Nat. Clim. Chang. 2013, 3, 357–359. [Google Scholar] [CrossRef]
- Stocker, T.F.; Qin, D.; Plattner, G.K.; Tignor, M.; Allen, S.K.; Boschung, J.; Nauels, A.; Xia, Y.; Bex, V.; Midgley, P.M. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1535. [Google Scholar]
- Nellemann, C.; Corcoran, E.; Duarte, C.M.; Valdrés, L.; Young, C.D.; Fonseca, L.; Grimsditch, G. Blue Carbon: The Role of Healthy Oceans in Binding Carbon; United Nations Environment Programme, GRID-Arendal: Arendal, Norway, 2009. [Google Scholar]
- Hamme, R.C.; Nicholson, D.P.; Jenkins, W.J.; Emerson, S.R. Using Noble Gases to Assess the Ocean’s Carbon Pumps. Annu. Rev. Mar. Sci. 2019, 11, 75–103. [Google Scholar] [CrossRef] [PubMed]
- Pautova, L.A.; Silkin, V.A.; Kravchishina, M.D.; Chultsova, A.L.; Lisitzin, A.P. The biological calcium carbonate pump in the Norwegian and Barents Seas; regulation mechanisms. Dokl. Earth Sci. 2020, 490, 46–50. [Google Scholar] [CrossRef]
- Chisholm, S.W. Stirring times in the Southern Ocean. Nature 2000, 407, 685–686. [Google Scholar] [CrossRef]
- Barange, M.; Butenschon, M.; Yool, A.; Beaumont, N.; Fernandes, J.A.; Martin, A.P.; Allen, J.I. The Cost of Reducing the North Atlantic Ocean Biological Carbon Pump. Front. Mar. Sci. 2017, 3, 290. [Google Scholar] [CrossRef] [Green Version]
- Jiao, N.; Herndl, G.J.; Hansell, D.A.; Benner, R.; Kattner, G.; Wilhelm, S.W.; Kirchman, D.L.; Weinbauer, M.G.; Luo, T.; Chen, F.; et al. Microbial production of recalcitrant dissolved organic matter: Long-term carbon storage in the global ocean. Nat. Rev. Microbiol. 2010, 8, 593–599. [Google Scholar] [CrossRef] [Green Version]
- Sifleet, S.; Pendleton, L.; Murray, B.C. State of the Science on Coastal Blue Carbon. A Summary for Policy Makers; Nicholas Institute for Environmental Policy Solutions: Durham, NC, USA, 2011. [Google Scholar]
- Pendleton, L.; Donato, D.C.; Murray, B.C.; Crooks, S.; Jenkins, W.A.; Sifleet, S.; Craft, C.; Fourqurean, J.W.; Kauffman, J.B.; Marba, N.; et al. Estimating Global “Blue Carbon” Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE 2012, 7, e43542. [Google Scholar] [CrossRef] [Green Version]
- Kelleway, J.J.; Saintilan, N.; Macreadie, P.I.; Ralph, P.J. Sedimentary Factors are Key Predictors of Carbon Storage in SE Australian Saltmarshes. Ecosystems 2016, 19, 865–880. [Google Scholar] [CrossRef]
- Serrano, O.; Lovelock, C.E.; Atwood, T.B.; Macreadie, P.I.; Canto, R.; Phinn, S.; Arias-Ortiz, A.; Bai, L.; Baldock, J.; Bedulli, C.; et al. Australian vegetated coastal ecosystems as global hotspots for climate change mitigation. Nat. Commun. 2019, 10, 4313. [Google Scholar] [CrossRef]
- Geoghegan, E.K.; Caplan, J.S.; Leech, F.N.; Weber, P.E.; Bauer, C.E.; Mozdzer, T.J. Nitrogen enrichment alters carbon fluxes in a New England salt marsh. Ecosyst. Health Sustain. 2018, 4, 277–287. [Google Scholar] [CrossRef] [Green Version]
- Barry, A.; Ooi, S.K.; Helton, A.M.; Steven, B.; Elphick, C.S.; Lawrence, B.A. Vegetation Zonation Predicts Soil Carbon Mineralization and Microbial Communities in Southern New England Salt Marshes. Estuaries Coasts 2022, 45, 168–180. [Google Scholar] [CrossRef]
- Lee, J.; Kim, B.; Noh, J.; Lee, C.; Kwon, I.; Kwon, B.; Ryu, J.; Park, J.; Hong, S.; Lee, S.; et al. The first national scale evaluation of organic carbon stocks and sequestration rates of coastal sediments along the West Sea, South Sea, and East Sea of South Korea. Sci. Total Environ. 2021, 793, 148568. [Google Scholar] [CrossRef]
- Park, S.; Hwang, Y.; Um, J. Estimating blue carbon accumulated in a halophyte community using UAV imagery: A case study of the southern coastal wetlands in South Korea. J. Coast. Conserv. 2021, 25, 38. [Google Scholar] [CrossRef]
- Rogers, K.; Boon, P.I.; Branigan, S.; Duke, N.C.; Field, C.D.; Fitzsimons, J.A.; Kirkman, H.; Mackenzie, J.R.; Saintilan, N. The state of legislation and policy protecting Australia’s mangrove and salt marsh and their ecosystem services. Mar. Policy 2016, 72, 139–155. [Google Scholar] [CrossRef]
- Friess, D.A.; Thompson, B.S.; Brown, B.; Amir, A.A.; Cameron, C.; Koldewey, H.J.; Sasmito, S.D.; Sidik, F. Policy challenges and approaches for the conservation of mangrove forests in Southeast Asia. Conserv. Biol. 2016, 30, 933–949. [Google Scholar] [CrossRef]
- Ruiz-Frau, A.; Gelcich, S.; Hendriks, I.E.; Duarte, C.M.; Marba, N. Current state of seagrass ecosystem services: Research and policy integration. Ocean Coast. Manag. 2017, 149, 107–115. [Google Scholar] [CrossRef]
- Needelman, B.A.; Emmer, I.M.; Emmett-Mattox, S.; Crooks, S.; Megonigal, J.P.; Myers, D.; Oreska, M.P.J.; McGlathery, K. The Science and Policy of the Verified Carbon Standard Methodology for Tidal Wetland and Seagrass Restoration. Estuaries Coasts 2018, 41, 2159–2171. [Google Scholar] [CrossRef]
- Villa, J.A.; Bernal, B. Carbon sequestration in wetlands, from science to practice: An overview of the biogeochemical process, measurement methods, and policy framework. Ecol. Eng. 2018, 114, 115–128. [Google Scholar] [CrossRef]
- Dale, P.; Sporne, I.; Knight, J.; Sheaves, M.; Eslami-Andergoli, L.; Dwyer, P. A conceptual model to improve links between science, policy and practice in coastal management. Mar. Policy 2019, 103, 42–49. [Google Scholar] [CrossRef]
- Kelleway, J.J.; Serrano, O.; Baldock, J.A.; Burgess, R.; Cannard, T.; Lavery, P.S.; Lovelock, C.E.; Macreadie, P.I.; Masque, P.; Newnham, M.; et al. A national approach to greenhouse gas abatement through blue carbon management. Glob. Environ. Chang. 2020, 63, 102083. [Google Scholar] [CrossRef]
- Wedding, L.M.; Moritsch, M.; Verutes, G.; Arkema, K.; Hartge, E.; Reiblich, J.; Douglass, J.; Taylor, S.; Strong, A.L. Incorporating blue carbon sequestration benefits into sub-national climate policies. Glob. Environ. Chang. 2021, 69, 102206. [Google Scholar] [CrossRef]
- Mcleod, E.; Chmura, G.L.; Bouillon, S.; Salm, R.; Björk, M.; Duarte, C.M.; Lovelock, C.E.; Schlesinger, W.H.; Silliman, B.R. A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front. Ecol. Environ. 2011, 9, 552–560. [Google Scholar] [CrossRef] [Green Version]
- Locatelli, T.; Binet, T.; Kairo, J.G.; King, L.; Madden, S.; Patenaude, G.; Upton, C.; Huxham, M. Turning the Tide: How Blue Carbon and Payments for Ecosystem Services (PES) Might Help Save Mangrove Forests. Ambio 2014, 43, 981–995. [Google Scholar] [CrossRef] [Green Version]
- Macreadie, P.I.; Anton, A.; Raven, J.A.; Beaumont, N.; Connolly, R.M.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Kuwae, T.; Lavery, P.S.; et al. The future of Blue Carbon science. Nat. Commun. 2019, 10, 3998. [Google Scholar] [CrossRef] [Green Version]
- Macreadie, P.I.; Costa, M.D.P.; Atwood, T.B.; Friess, D.A.; Kelleway, J.J.; Kennedy, H.; Lovelock, C.E.; Serrano, O.; Duarte, C.M. Blue carbon as a natural climate solution. Nat. Rev. Earth Environ. 2021, 2, 826–839. [Google Scholar] [CrossRef]
- Moral-Muñoz, J.A.; Herrera-Viedma, E.; Santisteban-Espejo, A.; Cobo, M.J. Software tools for conducting bibliometric analysis in science: An up-to-date review. El Prof. De La Inf. 2020, 29. [Google Scholar] [CrossRef] [Green Version]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ma, E.; Qu, H. Knowledge mapping of hospitality research—A visual analysis using CiteSpace. Int. J. Hosp. Manag. 2017, 60, 77–93. [Google Scholar] [CrossRef]
- Fang, Y.; Yin, J.; Wu, B. Climate change and tourism: A scientometric analysis using CiteSpace. J. Sustain. Tour. 2018, 26, 108–126. [Google Scholar] [CrossRef]
- Song, J.; Zhang, H.; Dong, W. A review of emerging trends in global PPP research: Analysis and visualization. Scientometrics 2016, 107, 1111–1147. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, Y.; Liu, W.; Dunford, M. Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis. Scientometrics 2015, 103, 135–158. [Google Scholar] [CrossRef]
- Jiang, Y.; Ritchie, B.W.; Benckendorff, P. Bibliometric visualisation: An application in tourism crisis and disaster management research. Curr. Issues Tour. 2019, 22, 1925–1957. [Google Scholar] [CrossRef]
- Liao, H.; Tang, M.; Luo, L.; Li, C.; Chiclana, F.; Zeng, X. A Bibliometric Analysis and Visualization of Medical Big Data Research. Sustainability 2018, 10, 166. [Google Scholar] [CrossRef] [Green Version]
- Koondhar, M.A.; Shahbaz, M.; Memon, K.A.; Ozturk, I.; Kong, R. A visualization review analysis of the last two decades for environmental Kuznets curve “EKC” based on co-citation analysis theory and pathfinder network scaling algorithms. Environ. Sci. Pollut. Res. 2021, 28, 16690–16706. [Google Scholar] [CrossRef]
- Matsui, N.; Morimune, K.; Meepol, W.; Chukwamdee, J. Ten Year Evaluation of Carbon Stock in Mangrove Plantation Reforested from an Abandoned Shrimp Pond. Forests 2012, 3, 431–444. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.K.; Beardall, J.; Mehta, S.; Sahoo, D.; Stojkovic, S. Using marine macroalgae for carbon sequestration: A critical appraisal. J. Appl. Phycol. 2011, 23, 877–886. [Google Scholar] [CrossRef]
- Fourqurean, J.W.; Duarte, C.M.; Kennedy, H.; Marba, N.; Holmer, M.; Mateo, M.A.; Apostolaki, E.T.; Kendrick, G.A.; Krause-Jensen, D.; McGlathery, K.J.; et al. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 2012, 5, 505–509. [Google Scholar] [CrossRef]
- Phang, V.X.H.; Chou, L.M.; Friess, D.A. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf. Proc. Land 2015, 40, 1387–1400. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Hughes, A.R.; Kimbro, D.L. Loss of ‘Blue Carbon’ from Coastal Salt Marshes Following Habitat Disturbance. PLoS ONE 2013, 8, e69244. [Google Scholar] [CrossRef]
- Schile, L.M.; Kauffman, J.B.; Crooks, S.; Fourqurean, J.W.; Glavan, J.; Megonigal, J.P. Limits on carbon sequestration in arid blue carbon ecosystems. Ecol. Appl. 2017, 27, 859–874. [Google Scholar] [CrossRef]
- Barnes, D.K.A. Polar zoobenthos blue carbon storage increases with sea ice losses, because across-shelf growth gains from longer algal blooms outweigh ice scour mortality in the shallows. Glob. Chang. Biol. 2017, 23, 5083–5091. [Google Scholar] [CrossRef]
- Thorhaug, A.; Poulos, H.M.; Lopez-Portillo, J.; Ku, T.C.W.; Berlyn, G.P. Seagrass blue carbon dynamics in the Gulf of Mexico: Stocks, losses from anthropogenic disturbance, and gains through seagrass restoration. Sci. Total Environ. 2017, 605, 626–636. [Google Scholar] [CrossRef]
- Githaiga, M.N.; Gilpin, L.; Kairo, J.G.; Huxham, M. Biomass and productivity of seagrasses in Africa. Bot. Mar. 2016, 59, 173–186. [Google Scholar] [CrossRef] [Green Version]
- Fodrie, F.J.; Rodriguez, A.B.; Gittman, R.K.; Grabowski, J.H.; Lindquist, N.L.; Peterson, C.H.; Piehler, M.F.; Ridge, J.T. Oyster reefs as carbon sources and sinks. Proc. R. Soc. B Biol. Sci. 2017, 284, 20170891. [Google Scholar] [CrossRef]
- Reef, R.; Atwood, T.B.; Samper-Villarreal, J.; Adame, M.F.; Sampayo, E.M.; Lovelock, C.E. Using eDNA to determine the source of organic carbon in seagrass meadows. Limnol. Oceanogr. 2017, 62, 1254–1265. [Google Scholar] [CrossRef]
- Shahzad, N.; Ahmad, S.R.; Ashraf, S. An assessment of pan-sharpening algorithms for mapping mangrove ecosystems: A hybrid approach. Int. J. Remote Sens. 2017, 38, 1579–1599. [Google Scholar] [CrossRef]
- Chung, I.K.; Sondak, C.F.A.; Beardall, J. The future of seaweed aquaculture in a rapidly changing world. Eur. J. Phycol. 2017, 52, 495–505. [Google Scholar] [CrossRef]
- Mueller, P.; Granse, D.; Nolte, S.; Hai, T.D.; Weingartner, M.; Hoth, S.; Jensen, K. Top-down control of carbon sequestration: Grazing affects microbial structure and function in salt marsh soils. Ecol. Appl. 2017, 27, 1435–1450. [Google Scholar] [CrossRef]
- Liu, S.; Jiang, Z.; Wu, Y.; Zhang, J.; Arbi, I.; Ye, F.; Huang, X.; Macreadie, P.I. Effects of nutrient load on microbial activities within a seagrass-dominated ecosystem: Implications of changes in seagrass blue carbon. Mar. Pollut. Bull. 2017, 117, 214–221. [Google Scholar] [CrossRef]
- Dahl, M.; Deyanova, D.; Lyimo, L.D.; Naslund, J.; Samuelsson, G.S.; Mtolera, M.S.P.; Bjork, M.; Gullstrom, M. Effects of shading and simulated grazing on carbon sequestration in a tropical seagrass meadow. J. Ecol. 2016, 104, 654–664. [Google Scholar] [CrossRef]
- Rozaimi, M.; Fairoz, M.; Hakimi, T.M.; Hamdan, N.H.; Omar, R.; Ali, M.M.; Tahirin, S.A. Carbon stores from a tropical seagrass meadow in the midst of anthropogenic disturbance. Mar. Pollut. Bull. 2017, 119, 253–260. [Google Scholar] [CrossRef]
- Kida, M.; Tomotsune, M.; Iimura, Y.; Kinjo, K.; Ohtsuka, T.; Fujitake, N. High salinity leads to accumulation of soil organic carbon in mangrove soil. Chemosphere 2017, 177, 51–55. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Nielsen, D.A.; Kelleway, J.J.; Atwood, T.B.; Seymour, J.R.; Petrou, K.; Connolly, R.M.; Thomson, A.C.G.; Trevathan-Tackett, S.M.; Ralph, P.J. Can we manage coastal ecosystems to sequester more blue carbon? Front. Ecol. Environ. 2017, 15, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Vierros, M. Communities and blue carbon: The role of traditional management systems in providing benefits for carbon storage, biodiversity conservation and livelihoods. Clim. Chang. 2017, 140, 89–100. [Google Scholar] [CrossRef]
- Tang, J.; Ye, S.; Chen, X.; Yang, H.; Sun, X.; Wang, F.; Wen, Q.; Chen, S. Coastal blue carbon: Concept, study method, and the application to ecological restoration. Sci. China Earth Sci. 2018, 61, 637–646. [Google Scholar] [CrossRef]
- Dang, H. Grand Challenges in Microbe-Driven Marine Carbon Cycling Research. Front. Microbiol. 2020, 11, 1039. [Google Scholar] [CrossRef]
- Einecker, R.; Kirby, A. Climate Change: A Bibliometric Study of Adaptation, Mitigation and Resilience. Sustainability 2020, 12, 6935. [Google Scholar] [CrossRef]
- Chen, C.; Ibekwe-SanJuan, F.; Hou, J. The Structure and Dynamics of Co-Citation Clusters: A Multiple-Perspective Co-Citation Analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef] [Green Version]
- Eto, M. Extended co-citation search: Graph-based document retrieval on a co-citation network containing citation context information. Inform. Process. Manag. 2019, 56, 102046. [Google Scholar] [CrossRef]
- Huang, L.; Chen, K.; Zhou, M. Climate change and carbon sink: A bibliometric analysis. Environ. Sci. Pollut. Res. 2020, 27, 8740–8758. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S. Blue carbon: Knowledge gaps, critical issues, and novel approaches. Ecol. Econ. 2014, 107, 22–38. [Google Scholar] [CrossRef]
- Serrano, O.; Lavery, P.S.; Lopez-Merino, L.; Ballesteros, E.; Mateo, M.A. Location and Associated Carbon Storage of Erosional Escarpments of Seagrass Posidonia Mats. Front. Mar. Sci. 2016, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Lovelock, C.E.; Fourqurean, J.W.; Morris, J.T. Modeled CO2 Emissions from Coastal Wetland Transitions to Other Land Uses: Tidal Marshes, Mangrove Forests, and Seagrass Beds. Front. Mar. Sci. 2017, 4, 143. [Google Scholar] [CrossRef]
- Oreska, M.P.J.; McGlathery, K.J.; Porter, J.H. Seagrass blue carbon spatial patterns at the meadow-scale. PLoS ONE 2017, 12, e0176630. [Google Scholar] [CrossRef]
- Santos, I.R.; Burdige, D.J.; Jennerjahn, T.C.; Bouillon, S.; Cabral, A.; Serrano, O.; Wernberg, T.; Filbee-Dexter, K.; Guimond, J.A.; Tamborski, J.J. The renaissance of Odum’s outwelling hypothesis in ‘Blue Carbon’ science. Estuar. Coast. Shelf Sci. 2021, 255, 107361. [Google Scholar] [CrossRef]
- Smale, D.A.; Burrows, M.T.; Evans, A.J.; King, N.; Sayer, M.D.J.; Yunnie, A.L.E.; Moore, P.J. Linking environmental variables with regional-scale variability in ecological structure and standing stock of carbon within UK kelp forests. Mar. Ecol. Prog. Ser. 2016, 542, 79–95. [Google Scholar] [CrossRef]
- Raven, J.A. The possible roles of algae in restricting the increase in atmospheric CO2 and global temperature. Eur. J. Phycol. 2017, 52, 506–522. [Google Scholar] [CrossRef]
- Wylie, L.; Sutton-Grier, A.E.; Moore, A. Keys to successful blue carbon projects: Lessons learned from global case studies. Mar. Policy 2016, 65, 76–84. [Google Scholar] [CrossRef]
- Kusumaningtyas, M.A.; Hutahaean, A.A.; Fischer, H.W.; Perez-Mayo, M.; Ransby, D.; Jennerjahn, T.C. Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuar. Coast. Shelf Sci. 2019, 218, 310–323. [Google Scholar] [CrossRef]
- Matos, C.R.L.; Berredo, J.F.; Machado, W.; Sanders, C.J.; Metzger, E.; Cohen, M.C.L. Carbon and nutrient accumulation in tropical mangrove creeks, Amazon region. Mar. Geol. 2020, 429, 106317. [Google Scholar] [CrossRef]
- Quevedo, J.M.D.; Uchiyama, Y.; Lukman, K.M.; Kohsaka, R. How Blue Carbon Ecosystems Are Perceived by Local Communities in the Coral Triangle: Comparative and Empirical Examinations in the Philippines and Indonesia. Sustainability 2021, 13, 127. [Google Scholar] [CrossRef]
- Quevedo, J.M.D.; Uchiyama, Y.; Kohsaka, R. A blue carbon ecosystems qualitative assessment applying the DPSIR framework: Local perspective of global benefits and contributions. Mar. Policy 2021, 128, 104462. [Google Scholar] [CrossRef]
- Quevedo, J.M.D.; Uchiyama, Y.; Lukman, K.M.; Kohsaka, R. Are Municipalities Ready for Integrating Blue Carbon Concepts?: Content Analysis of Coastal Management Plans in the Philippines. Coast. Manag. 2021, 49, 334–355. [Google Scholar] [CrossRef]
- Lukman, K.M.; Uchiyama, Y.; Kohsaka, R. Sustainable aquaculture to ensure coexistence: Perceptions of aquaculture farmers in East Kalimantan, Indonesia. Ocean. Coast. Manag. 2021, 213, 105839. [Google Scholar] [CrossRef]
- Sapkota, Y.; White, J.R. Long-term fate of rapidly eroding carbon stock soil profiles in coastal wetlands. Sci. Total Environ. 2021, 753, 141913. [Google Scholar] [CrossRef]
- Abbott, K.M.; Elsey-Quirk, T.; DeLaune, R.D. Factors influencing blue carbon accumulation across a 32-year chronosequence of created coastal marshes. Ecosphere 2019, 10, e02828. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Kuwae, T. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system? Glob. Chang. Biol. 2015, 21, 2612–2623. [Google Scholar] [CrossRef]
- Bauer, J.E.; Cai, W.; Raymond, P.A.; Bianchi, T.S.; Hopkinson, C.S.; Regnier, P.A.G. The changing carbon cycle of the coastal ocean. Nature 2013, 504, 61–70. [Google Scholar] [CrossRef]
- Duarte, C.M.; Losada, I.J.; Hendriks, I.E.; Mazarrasa, I.; Marbà, N. The role of coastal plant communities for climate change mitigation and adaptation. Nat. Clim. Chang. 2013, 3, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Friess, D.A.; Richards, D.R.; Phang, V.X.H. Mangrove forests store high densities of carbon across the tropical urban landscape of Singapore. Urban Ecosyst. 2016, 19, 795–810. [Google Scholar] [CrossRef]
- Quevedo, J.M.D.; Uchiyama, Y.; Kohsaka, R. Perceptions of local communities on mangrove forests, their services and management: Implications for Eco-DRR and blue carbon management for Eastern Samar, Philippines. J. For. Res. 2020, 25, 1–11. [Google Scholar] [CrossRef]
- Adame, M.F.; Connolly, R.M.; Turschwell, M.P.; Lovelock, C.E.; Fatoyinbo, T.; Lagomasino, D.; Goldberg, L.A.; Holdorf, J.; Friess, D.A.; Sasmito, S.D.; et al. Future carbon emissions from global mangrove forest loss. Glob. Chang. Biol. 2021, 27, 2856–2866. [Google Scholar] [CrossRef]
- Yando, E.S.; Osland, M.J.; Willis, J.M.; Day, R.H.; Krauss, K.W.; Hester, M.W. Salt marsh-mangrove ecotones: Using structural gradients to investigate the effects of woody plant encroachment on plant-soil interactions and ecosystem carbon pools. J. Ecol. 2016, 104, 1020–1031. [Google Scholar] [CrossRef] [Green Version]
- Zu Ermgassen, P.S.E.; Baker, R.; Beck, M.W.; Dodds, K.; Zu Ermgassen, S.O.S.E.; Mallick, D.; Taylor, M.D.; Turner, R.E. Ecosystem Services: Delivering Decision-Making for Salt Marshes. Estuaries Coasts 2021, 44, 1691–1698. [Google Scholar] [CrossRef]
- Taillardat, P.; Thompson, B.S.; Garneau, M.; Trottier, K.; Friess, D.A. Climate change mitigation potential of wetlands and the cost-effectiveness of their restoration. Interface Focus 2020, 10, 20190129. [Google Scholar] [CrossRef]
- Young, M.A.; Serrano, O.; Macreadie, P.I.; Lovelock, C.E.; Carnell, P.; Ierodiaconou, D. National scale predictions of contemporary and future blue carbon storage. Sci. Total Environ. 2021, 800, 149573. [Google Scholar] [CrossRef]
- Macreadie, P.I.; Allen, K.; Kelaher, B.P.; Ralph, P.J.; Skilbeck, C.G. Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Glob. Chang. Biol. 2012, 18, 891–901. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Allison, M.A.; Zhao, J.; Li, X.; Comeaux, R.S.; Feagin, R.A.; Kulawardhana, R.W. Historical reconstruction of mangrove expansion in the Gulf of Mexico: Linking climate change with carbon sequestration in coastal wetlands. Estuar. Coast. Shelf Sci. 2013, 119, 7–16. [Google Scholar] [CrossRef]
- Byrd, K.B.; O’Connell, J.L.; Di Tommaso, S.; Kelly, M. Evaluation of sensor types and environmental controls on mapping biomass of coastal marsh emergent vegetation. Remote Sens. Environ. 2014, 149, 166–180. [Google Scholar] [CrossRef]
- Sharma, S.; Nadaoka, K.; Nakaoka, M.; Uy, W.H.; MacKenzie, R.A.; Friess, D.A.; Fortes, M.D. Growth performance and structure of a mangrove afforestation project on a former seagrass bed, Mindanao Island, Philippines. Hydrobiologia 2017, 803, 359–371. [Google Scholar] [CrossRef]
- Sheehan, L.; Sherwood, E.T.; Moyer, R.P.; Radabaugh, K.R.; Simpson, S. Blue Carbon: An Additional Driver for Restoring and Preserving Ecological Services of Coastal Wetlands in Tampa Bay (Florida, USA). Wetlands 2019, 39, 1317–1328. [Google Scholar] [CrossRef]
- Schuerch, M.; Spencer, T.; Temmerman, S.; Kirwan, M.L.; Wolff, C.; Lincke, D.; McOwen, C.J.; Pickering, M.D.; Reef, R.; Vafeidis, A.T.; et al. Future response of global coastal wetlands to sea-level rise. Nature 2018, 561, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Sanders, C.J.; Santos, I.R.; Tang, J.; Schuerch, M.; Kirwan, M.L.; Kopp, R.E.; Zhu, K.; Li, X.; Yuan, J.; et al. Global blue carbon accumulation in tidal wetlands increases with climate change. Natl. Sci. Rev. 2021, 8, nwaa296. [Google Scholar] [CrossRef] [PubMed]
Cluster ID | Size | Silhouette | Begin Year | End Year | Mean Year | Top Terms (LLR, p-Level) |
---|---|---|---|---|---|---|
0# | 107 | 0.82 | 2011 | 2020 | 2016 | Accumulation rate (367.08, <0.01); |
1# | 97 | 0.78 | 2011 | 2020 | 2015 | Mangrove–salt marsh ecotone (231.40, <0.01) |
2# | 76 | 0.76 | 2009 | 2020 | 2015 | Mangrove forest (518.49, <0.01); |
3# | 42 | 0.96 | 2007 | 2012 | 2010 | European coastal blue carbon storage benefit (82.18, <0.01) |
4# | 42 | 0.95 | 2012 | 2020 | 2016 | Carbon outwelling (220.54, <0.01) |
5# | 35 | 0.90 | 2008 | 2014 | 2011 | Carbon sequestration capacity (238.20, <0.01) |
6# | 30 | 0.93 | 2009 | 2016 | 2011 | Critical issue (91.21, <0.01); |
7# | 29 | 0.93 | 2013 | 2020 | 2017 | Greenhouse gas abatement (178.52, <0.01) |
8# | 25 | 0.92 | 2011 | 2016 | 2013 | Coastal resilience (102.38, <0.01) |
9# | 24 | 0.93 | 2012 | 2020 | 2015 | Organic matter (220.97, <0.01) |
10# | 20 | 0.96 | 2012 | 2020 | 2016 | Kelp detritus (218.42, <0.01) |
11# | 17 | 0.92 | 2007 | 2014 | 2012 | Seagrass bed (98.44, <0.01) |
12# | 11 | 0.99 | 2016 | 2020 | 2018 | Integrating blue carbon (74.31, <0.01) |
13# | 8 | 0.97 | 2016 | 2020 | 2018 | Nutrient accumulation (88.11, <0.01) |
Serial Number | Frequency | Year 1 | Keywords |
---|---|---|---|
1 | 168 | 2011 | climate change |
2 | 159 | 2012 | forest |
3 | 133 | 2012 | sequestration |
4 | 122 | 2012 | dynamics |
5 | 118 | 2014 | organic carbon |
6 | 112 | 2014 | ecosystem |
7 | 100 | 2014 | sediment |
8 | 90 | 2016 | storage |
9 | 89 | 2014 | organic matter |
10 | 84 | 2013 | ecosystem service |
11 | 82 | 2013 | carbon sequestration |
12 | 80 | 2012 | biome |
13 | 71 | 2016 | salt marsh |
14 | 70 | 2013 | coastal wetland |
15 | 68 | 2014 | accumulation |
16 | 66 | 2015 | sea level rise |
17 | 64 | 2015 | impact |
18 | 56 | 2013 | vegetation |
19 | 56 | 2015 | mangrove forest |
20 | 55 | 2015 | wetland |
21 | 55 | 2014 | nitrogen |
22 | 54 | 2016 | coastal |
23 | 53 | 2014 | emission |
24 | 52 | 2016 | community |
25 | 50 | 2017 | stock |
26 | 50 | 2014 | growth |
27 | 50 | 2012 | conservation |
Keywords | Strength | Begin Year | End Year | Keywords |
---|---|---|---|---|
conservation | 3.77 | 2012 | 2017 | |
carbon sequestration | 6.22 | 2013 | 2016 | |
carbon sink | 2.54 | 2013 | 2015 | |
ecosystem service | 3.05 | 2014 | 2014 | |
seagrass bed | 3.07 | 2016 | 2017 | |
variability | 2.61 | 2017 | 2017 | |
sequestration capacity | 3.46 | 2018 | 2018 | |
tidal wetland | 3.01 | 2018 | 2019 | |
respiration | 3.61 | 2019 | 2021 | |
storage | 2.76 | 2019 | 2019 | |
carbon | 2.70 | 2019 | 2019 | |
litter decomposition | 2.66 | 2019 | 2019 | |
florida | 2.66 | 2019 | 2019 | |
temperature | 3.27 | 2020 | 2021 | |
macroalgae | 2.79 | 2020 | 2021 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Q.; Ma, J.; He, F.; Zhang, A.; Pei, D.; Wei, G.; Zhu, X. Research Development, Current Hotspots, and Future Directions of Blue Carbon: A Bibliometric Analysis. Water 2022, 14, 1193. https://doi.org/10.3390/w14081193
Lai Q, Ma J, He F, Zhang A, Pei D, Wei G, Zhu X. Research Development, Current Hotspots, and Future Directions of Blue Carbon: A Bibliometric Analysis. Water. 2022; 14(8):1193. https://doi.org/10.3390/w14081193
Chicago/Turabian StyleLai, Qiuying, Jie Ma, Fei He, Aiguo Zhang, Dongyan Pei, Geng Wei, and Xiaolin Zhu. 2022. "Research Development, Current Hotspots, and Future Directions of Blue Carbon: A Bibliometric Analysis" Water 14, no. 8: 1193. https://doi.org/10.3390/w14081193
APA StyleLai, Q., Ma, J., He, F., Zhang, A., Pei, D., Wei, G., & Zhu, X. (2022). Research Development, Current Hotspots, and Future Directions of Blue Carbon: A Bibliometric Analysis. Water, 14(8), 1193. https://doi.org/10.3390/w14081193