Influence of N:P Ratio of Water on Ecological Stoichiometry of Vallisneria natans and Hydrilla verticillata
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Laboratory Analysis
2.3. Data Analysis
3. Results
3.1. Nutrient Concentrations in Mesocosm System and Stoichiometric Traits of Submerged Plants
3.2. Factors Determining Stoichiometric Characteristics of H. verticillata
3.3. Factors Determining Stoichiometric Characteristics of V. natans
4. Discussion
4.1. The Influence of Water Nutrients on the Stoichiometric Characteristics of Submerged Plants
4.2. The Relationship between Growth Rate and Stoichiometric Characteristics of Submerged Plants
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Su, H.J.; Wu, Y.; Xia, W.L.; Xie, P.; Cao, T. Community level stoichiometric characteristics of submerged plants and their influencing factors in the mid-lower Yangtze lakes. J. Lake Sci. 2017, 29, 430–438. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.C.; Qin, H.M.; Jin, B.S.; Chen, J.K.; Wu, J.D.; Liu, G.H. Distribution in winter buds of submerged plant and their contribution for herbivorous waterfowl in a shallow dish lake of Poyang Lake. Acta Ecol. Sin. 2014, 34, 6589–6596. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Yuan, H.; Wang, S.; Zheng, L.; Liao, M. Spatiotemporal Dynamics of Water Body Changes and Their Influencing Factors in the Seasonal Lakes of the Poyang Lake Region. Water 2021, 13, 1539. [Google Scholar] [CrossRef]
- Thiemer, K.; Schneider, S.C.; Demars, B.O. Mechanical removal of macrophytes in freshwater ecosystems: Implications for ecosystem structure and function. Sci. Total Environ. 2021, 782, 146671. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Xu, Q.; Huang, C. Current status and future tendency of lake eutrophication in China. Sci. China Ser. C Life Sci. 2005, 48, 948–954. [Google Scholar] [CrossRef]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of Lake Waters in China: Cost, Causes, and Control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jeppesen, E.; Liu, X.; Qin, B.; Shi, K.; Zhou, Y.; Thomaz, S.M.; Deng, J. Global loss of aquatic vegetation in lakes. Earth-Sci. Rev. 2017, 173, 259–265. [Google Scholar] [CrossRef]
- Lu, J.; Wang, H.; Pan, M.; Xia, J.; Xing, W.; Liu, G. Using sediment seed banks and historical vegetation change data to develop restoration criteria for a eutrophic lake in China. Ecol. Eng. 2011, 39, 95–103. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Ma, S.; Cai, Q.; Xiong, X.; Tian, D.; Zhao, X.; Fang, L.; Zhang, H.; Zhu, J.; et al. Changes in China’s lakes: Climate and human impacts. Natl. Sci. Rev. 2020, 7, 132–140. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Yuan, G.; Cao, T.; Ni, L.; Zhang, M.; Wang, S. An alternative mechanism for shade adaptation: Implication of allometric responses of three submersed macrophytes to water depth. Ecol. Res. 2012, 27, 1087–1094. [Google Scholar] [CrossRef]
- Xing, W.; Wu, H.-P.; Hao, B.-B.; Liu, G.-H. Stoichiometric characteristics and responses of submerged macrophytes to eutrophication in lakes along the middle and lower reaches of the Yangtze River. Ecol. Eng. 2013, 54, 16–21. [Google Scholar] [CrossRef]
- Izmailova, A.V.; Rumyantsev, V.A. Trophic status of the largest freshwater lakes in the world. Lakes Reserv. Sci. Policy Manag. Sustain. Use 2016, 21, 20–30. [Google Scholar] [CrossRef]
- Tang, X.; Li, R.; Han, D.; Scholz, M. Response of Eutrophication Development to Variations in Nutrients and Hydrological Regime: A Case Study in the Changjiang River (Yangtze) Basin. Water 2020, 12, 1634. [Google Scholar] [CrossRef]
- Qin, B.; Zhang, Y.; Zhu, G.; Gong, Z.; Deng, J.; Hamilton, D.P.; Gao, G.; Shi, K.; Zhou, J.; Shao, K.; et al. Are nitrogen-to-phosphorus ratios of Chinese lakes actually increasing? Proc. Natl. Acad. Sci. USA 2020, 117, 21000–21002. [Google Scholar] [CrossRef] [PubMed]
- Conley, D.J.; Paerl, H.W.; Howarth, R.W.; Boesch, D.F.; Seitzinger, S.P.; Havens, K.E.; Lancelot, C.; Likens, G.E. Controlling Eutrophication: Nitrogen and Phosphorus. Science 2009, 323, 1014–1015. [Google Scholar] [CrossRef]
- Pilotti, M.; Barone, L.; Balistrocchi, M.; Valerio, G.; Milanesi, L.; Nizzoli, D. Nutrient delivery efficiency of a combined sewer along a lake challenged by incipient eutrophication. Water Res. 2021, 190, 116727. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, H.; Li, B.; Yang, G.; Wan, R. Aquatic Ecosystem Health Assessment of Poyang Lake through Extension Evaluation Method. Water 2021, 13, 211. [Google Scholar] [CrossRef]
- Güsewell, S.; Koerselman, W.; Verhoeven, J.T.A. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands. Ecol. Appl. 2003, 13, 372–384. [Google Scholar] [CrossRef]
- Hall, S.R.; Smith, V.H.; Lytle, D.A.; Leibold, M.A. Constraints on primary producer N:P stoichiometry along N:P supply ratio gradients. Ecol. 2005, 86, 1894–1904. [Google Scholar] [CrossRef] [Green Version]
- Schade, J.D.; Espeleta, J.F.; Klausmeier, C.A.; McGroddy, M.E.; Thomas, S.A.; Zhang, L. A conceptual framework for ecosystem stoichiometry: Balancing resource supply and demand. Oikos 2005, 109, 40–51. [Google Scholar] [CrossRef]
- Harpole, W.S.; Ngai, J.T.; Cleland, E.E.; Seabloom, E.W.; Borer, E.T.; Bracken, M.E.; Elser, J.J.; Gruner, D.S.; Hillebrand, H.; Shurin, J.B.; et al. Nutrient co-limitation of primary producer communities. Ecol. Lett. 2011, 14, 852–862. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, T.; Yoshihara, Y.; Jamsran, U.; Ohkuro, T. Ecological stoichiometry explains larger-scale facilitation processes by shrubs on species coexistence among understory plants. Ecol. Eng. 2010, 36, 1070–1075. [Google Scholar] [CrossRef]
- Sardans, J.; Rivas-Ubach, A.; Peñuelas, J. The C:N:P stoichiometry of organisms and ecosystems in a changing world: A review and perspectives. Perspect. Plant Ecol. Evol. Syst. 2012, 14, 33–47. [Google Scholar] [CrossRef]
- Dickman, E.M.; Vanni, M.J.; Horgan, M.J. Interactive effects of light and nutrients on phytoplankton stoichiometry. Oecologia 2006, 149, 676–689. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Wu, Y.; Xie, P.; Chen, J.; Cao, T.; Xia, W. Effects of taxonomy, sediment, and water column on C:N:P stoichiometry of submerged macrophytes in Yangtze floodplain shallow lakes, China. Environ. Sci. Pollut. Res. 2016, 23, 22577–22585. [Google Scholar] [CrossRef]
- Sterner, R.W.; Elser, J.J.; Vitousrk, P. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere; Princeton University Press: Princeton, NJ, USA, 2017. [Google Scholar]
- Elser, J.J.; Fagan, W.F.; Kerkhoff, A.J.; Swenson, N.G.; Enquist, B. Biological stoichiometry of plant production: Metabolism, scaling and ecological response to global change. New Phytol. 2010, 186, 593–608. [Google Scholar] [CrossRef] [Green Version]
- Elser, J.; Sterner, R.; Gorokhova, E.; Fagan, W.; Markow, T.; Cotner, J.; Harrison, J.; Hobbie, S.; Odell, G.; Weider, L. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 2008, 3, 540–550. [Google Scholar] [CrossRef]
- DeMott, W.R. Implications of element deficits for zooplankton growth. Hydrobiology 2003, 491, 177–184. [Google Scholar] [CrossRef]
- Hessen, D.O.; Jensen, T.C.; Kyle, M.; Elser, J.J. RNA responses to N- and P-limitation; reciprocal regulation of stoichiometry and growth rate in Brachionus. Funct. Ecol. 2007, 21, 956–962. [Google Scholar] [CrossRef]
- Pilati, A.; Vanni, M.J. Ontogeny, diet shifts, and nutrient stoichiometry in fish. Oikos 2007, 116, 1663–1674. [Google Scholar] [CrossRef]
- Peng, Y.; Niklas, K.J.; Sun, S. The relationship between relative growth rate and whole-plant C:N:P stoichiometry in plant seedlings grown under nutrient-enriched conditions. J. Plant Ecol. 2010, 4, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Schulhof, M.A.; Shurin, J.B.; Declerck, S.A.J.; Van de Waal, D.B. Phytoplankton growth and stoichiometric responses to warming, nutrient addition and grazing depend on lake productivity and cell size. Glob. Chang. Biol. 2019, 25, 2751–2762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acharya, K.; Kyle, M.; Elser, J.J. Biological stoichiometry of Daphnia growth: An ecophysiological test of the growth rate hypothesis. Limnol. Oceanogr. 2004, 49, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Sardans, J.; Rivas-Ubach, A.; Peñuelas, J. The elemental stoichiometry of aquatic and terrestrial ecosystems and its rela-tionships with organismic lifestyle and ecosystem structure and function: A review and perspectives. Biogeochemistry 2012, 111, 1–39. [Google Scholar] [CrossRef]
- Nie, Z.Y.; Liang, X.Q.; Xing, B.; Ye, Y.; Qian, Y.; Yu, Y.; Bian, J.; Gu, J.; Liu, J.; Chen, Y. The current water trophic status in Tiaoxi River of Taihu Lake watershed and corresponding coping strategy based on N/P ratio analysis. Acta Ecol. Sinica 2012, 32, 48–55. [Google Scholar] [CrossRef]
- Ma, Y.Q.; Cao, W.; Zhao, Y.M.; Shi, Y.; Qin, Y.W.; Liu, Z.C.; Yang, C.C. Eutrophication characteristics, cause analysis and control strategies in a typical plain river network region. Acta Sci. Circumstantiae 2022, 42, 174–183. [Google Scholar] [CrossRef]
- Ji, P.F.; Xu, H.; Zhan, X.; Zhu, G.W.; Zou, W.; Zhu, M.Y.; Kang, L.J. Spatial-temporal Variations and Driving of Nitrogen and Phosphorus Ratios in Lakes in the middle and Lower Reaches of Yangtze River. Environ. Sci. 2020, 41, 4030–4041. [Google Scholar] [CrossRef]
- Olsen, S.; Chan, F.; Li, W.; Zhao, S.; Søndergaard, M.; Jeppesen, E. Strong impact of nitrogen loading on submerged macrophytes and algae: A long-term mesocosm experiment in a shallow Chinese lake. Freshw. Biol. 2015, 60, 1525–1536. [Google Scholar] [CrossRef]
- Cao, T.; Ni, L.; Xie, P.; Xu, J.; Zhang, M. Effects of moderate ammonium enrichment on three submersed macrophytes under contrasting light availability. Freshw. Biol. 2011, 56, 1620–1629. [Google Scholar] [CrossRef]
- Mei, X.Y.; Zhang, X.F. Effects of N and P additions to water column on growth of Vallisneria natans. J. Aquat. Plant Manag. 2015, 53, 36–43. [Google Scholar]
- Guo, H.T.; Cao, T.; Ni, L.Y. Effects of different nutrient conditions on the growth of a submerged plant, Vallisneria natans, in a mesocosm experiment. J. Lake Sci. 2008, 20, 221–227. [Google Scholar]
- Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Methods of Soil Analysis: Part 3 Chemical Methods. Soil Science Society of America; American Society of Agronomy: Madison, WI, USA, 1996. [Google Scholar]
- Daines, S.J.; Clark, J.R.; Lenton, T.M. Multiple environmental controls on phytoplankton growth strategies determine adaptive responses of the N:P ratio. Ecol. Lett. 2014, 17, 414–425. [Google Scholar] [CrossRef] [PubMed]
- Zimmerman, A.E.; Martiny, A.C.; Lomas, M.W.; Allison, S.D. Phosphate supply explains variation in nucleic acid allocation but not C:P stoichiometry in the western North Atlantic. Biogeosciences 2014, 11, 1599–1611. [Google Scholar] [CrossRef] [Green Version]
- Willby, N.J.; Pulford, I.D.; Flowers, T.H. Tissue nutrient signatures predict Herbaceous-Wetland community responses to nu-trient availability. New Phytol. 2001, 152, 463–481. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Wang, Q.; Li, Y.; Wu, L.; Wang, J.; Xing, B.; Yu, D.; Wang, L.; Liu, C. Combined effects of warming and nutrient enrichment on water properties, growth, reproductive strategies and nutrient stoichiometry of Potamogeton crispus. Environ. Exp. Bot. 2021, 190, 104572. [Google Scholar] [CrossRef]
- Demars, B.O.L.; Edwards, A.C. Tissue nutrient concentrations in freshwater aquatic macrophytes: High inter-taxon differences and low phenotypic response to nutrient supply. Freshw. Biol. 2007, 52, 2073–2086. [Google Scholar] [CrossRef]
- Xia, C.; Yu, D.; Wang, Z.; Xie, D. Stoichiometry patterns of leaf carbon, nitrogen and phosphorous in aquatic macrophytes in eastern China. Ecol. Eng. 2014, 70, 406–413. [Google Scholar] [CrossRef]
- Bi, R.; Arndt, C.; Sommer, U. Linking elements to biochemicals: Effects of nutrient supply ratios and growth rates on fatty acid composition of phytoplankton species. J. Phycol. 2013, 50, 117–130. [Google Scholar] [CrossRef]
- Schelske, C.L.; Lowe, E.F.; Kenney, W.F.; Battoe, L.E.; Brenner, M.; Coveney, M.F. How anthropogenic darkening of Lake Apopka induced periphytic light limitation and forced the shift from plant to phytoplankton dominance. Limnol. Oceanogr. 2010, 55, 1201–1212. [Google Scholar] [CrossRef]
- Chambers, P.A.; Kalff, J. Light and Nutrients in the Control of Aquatic Plant Community Structure. I. In Situ Experiments. J. Ecol. 1987, 75, 611. [Google Scholar] [CrossRef]
- Cronin, G.; Lodge, D.M. Effects of light and nutrient availability on the growth, allocation, carbon/nitrogen balance, phenolic chemistry, and resistance to herbivory of two freshwater macrophytes. Oecologia 2003, 137, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.L.; Zhang, P.Y.; Chen, J.L.; Xu, J. Freshwater snail and shrimp differentially affect water turbidity and benthic primary producers. Water Biol. Secur. 2022, 1, 100004. [Google Scholar] [CrossRef]
- Atkinson, C.J.; Winner, W.E.; Mooney, H.A. A field portable gas-exchange system for measuring carbon dioxide and water vapour exchange rates of leaves during fumigation with SO2. Plant Cell Environ. 1986, 9, 711–719. [Google Scholar] [CrossRef]
- Titus, J.E.; Adams, M.S. Coexistence and the comparative light relations of the submersed macrophytes Myriophyllum spicatum L. and Vallisneria americana Michx. Oecologia 1979, 40, 273–286. [Google Scholar] [CrossRef]
- Su, W.H.; Zhang, G.F.; Zhang, Y.S.; Xiao, H.; Xia, F. The photosynthetic characteristics of five submerged aquatic plants. Acta Hydrobiol. Sin. 2004, 28, 391–395. [Google Scholar]
- Yuan, G.; Fu, H.; Zhong, J.; Lou, Q.; Ni, L.; Cao, T. Growth and C/N metabolism of three submersed macrophytes in response to water depths. Environ. Exp. Bot. 2016, 122, 94–99. [Google Scholar] [CrossRef]
- Ni, L. Growth of Potamogeton maackianusunder Low-Light Stress in Eutrophic Water. J. Freshw. Ecol. 2001, 16, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Bakker, E.S.; Zhang, M.; Xu, J. Effects of warming on Potamogeton crispus growth and tissue stoichiometry in the growing season. Aquat. Bot. 2016, 128, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Gao, B.; Liu, J.; Zhang, C.; Van de Waal, D.B. Biological stoichiometry of oleaginous microalgal lipid synthesis: The role of N:P supply ratios and growth rate on microalgal elemental and biochemical composition. Algal Res. 2018, 32, 353–361. [Google Scholar] [CrossRef]
- Hillebrand, H.; Kahlert, M. Effect of grazing and water column nutrient supply on biomass and nutrient content of sediment microalgae. Aquat. Bot. 2002, 72, 143–159. [Google Scholar] [CrossRef]
- Li, D.; Zhang, S.; Adyel, T.M.; Liu, K.; Gong, L. Negative effects on the leaves of submerged macrophyte and associated biofilms growth at high nitrate induced-stress. Aquat. Toxicol. 2020, 226, 105559. [Google Scholar] [CrossRef] [PubMed]
- He, J.S.; Han, X.G. Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems. Chin. J. Plant Ecol. 2010, 34, 2–6. [Google Scholar] [CrossRef]
- Makino, W.; Cotner, J.B.; Sterner, R.W.; Elser, J.J. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C:N:P stoichiometry. Funct. Ecol. 2003, 17, 121–130. [Google Scholar] [CrossRef] [Green Version]
- Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 2004, 164, 243–266. [Google Scholar] [CrossRef]
- Matzek, V.; Vitousek, P.M. N:P stoichiometry and protein: RNA ratios in vascular plants: An evaluation of the growth-rate hypothesis. Ecol. Lett. 2009, 12, 765–771. [Google Scholar] [CrossRef]
- Yu, Q.; Wu, H.; He, N.; Lu, X.; Wang, Z.; Elser, J.J.; Wu, J.; Han, X. Testing the Growth Rate Hypothesis in Vascular Plants with Above- and Below-Ground Biomass. PLoS ONE 2012, 7, e32162. [Google Scholar] [CrossRef] [Green Version]
- Huang, D.Z.; Li, F.F.; Ouyang, M.F.; Zhang, Y.; Gong, Z.; Fu, Z. Temporal and spatial distributions of different forms of nitrogen and phosphorus as well as Chl-a concentration in Dongting Lake. Ecol. Environ. Sciences 2019, 28, 1674–1682. [Google Scholar]
- Wang, C.D.; Wang, J.C.; Yang, Y.; Qian, B.; Yang, C.Y.; Yan, M. Occurrence characteristics of various form Phosphorus in Dongting Lake during normal-flow period. J. China Hydrol. 2019, 39, 74–79. [Google Scholar]
- Wu, K.F.; Ou, F.P.; Wang, C.M. Nitrogen and phosphorus nutrient structure characteristic and risk analysis of cyanobacterial bloom in East Dongting lake in autumn. Yangtze River 2018, 49, 21–26. [Google Scholar]
- Lin, R.P.; Ni, Z.K.; Guo, S.K.; Gong, J.J.; Wang, S.D. The trend and downside risk of water quality evolution in Dongting Lake in recent 25 years. China Environ. Sci. 2018, 38, 4636–4643. [Google Scholar]
- Tian, Q.; Li, L.Q.; Ou, F.P.; Lu, S.Y.; Wang, C.M.; Zhang, Y. Temporal-spatial distribution and speciation of Nitrogen and Phosphorus in Dongting Lake. J. Hydroecology 2016, 37, 19–25. [Google Scholar]
- Zhang, G.G.; Lu, S.Y.; Tian, Q. Analysis of spatial-temporal variations of total nitrogen and total phosphorus concentrations and their influencing factors in Dongting Lake in the past two decades. Environ. Chem. 2016, 35, 2377–2385. [Google Scholar]
- Cao, C.S. Dynamics of Water Quality of East Dongting Lake and Cause Analysis. Master’s Thesis, Hunan Agricultural University, Hunan, China, 2012. [Google Scholar]
- Wang, Y.; Jiang, X.; Li, Y.F.; Wang, S.H.; Wang, W.W.; Cheng, G.L. Spatial and temporal distribution of nitrogen and phosphorus and nutritional characteristics of water in Dongting Lake. Res. Environ. Sci. 2014, 27, 484–491. [Google Scholar]
- Pan, C.; Chen, J.X.; Huang, C.H.; Tang, C.; Qian, B. Discussion on sound velocity correction for underwater topographic survey in inland waters. Yangtze River 2018, 49, 20–24. [Google Scholar]
- Qin, D.L.; Luo, Y.P.; Huang, Z.; Hu, J.; Fan, J.; Liao, Y.H. Pollution status and source analysis of water environment in Dongting Lake. Environ. Sci. Technol. 2012, 35, 193–198. [Google Scholar]
- Zhang, G.G. Spatial-Temporal Distribution of Chlorophyll-a and Its Correlation with Environment Factors in Dongting Lake. Environ. Monit. China 2016, 32, 84–90. [Google Scholar]
- Jiang, Y. Study on Eutrophication Mechanisms of Dongting Lake and the Mutlianalysis between Chlorophyll a and Other Impact Factors of Water. Master’s Thesis, Jilin Jianzhu University, Jilin, China, 2014. [Google Scholar]
- Xiong, J.; Yu, F.Q.; Tian, Q.; Huang, D.Z.; Li, L.Q. The evolution of water quality and nutrient condition in Lake Dongting in recent 30 years. J. Lake Sci. 2016, 28, 1217–1225. [Google Scholar]
- Zhu, G.W.; Xu, H.; Zhu, M.Y.; Zou, W.; Guo, C.X.; Ji, P.F.; Da, W.; Zhou, Y.; Zhang, Y.; Qin, B. Changing characteristics and driving factors of trophic state of lakes in the middle and lower reaches of Yangtze River in the past 30 years. J. Lake Sci. 2019, 31, 1510–1524. [Google Scholar]
- Mao, L.; Luo, C.Q.; Shi, P.L.; Yang, P.H.; Liu, F.; Wang, W.B. Spatial analysis and coupling characteristics of nitrogen and phosphorus in water and sediment—A case study in Datong lake. Oceanol. Limnol. Sin. 2017, 48, 952–959. [Google Scholar]
- Wei, G.X.; Wu, D.B.; Zhu, Q.Y. Monitoring and Evaluation of the Water Environmental Quality of Liuye Lake in Changde. Hunan Agric. Sci. 2010, 15, 71–73. [Google Scholar]
- Li, K.; Wang, L.; Li, Z.H.; Wang, X.R.; Chen, H.B.; Wu, Z.; Zhu, P. Spatial Variability Characteristics of Water Quality and Its Driving Forces in Honghu Lake During High Water-level Period. Environ. Sci. 2015, 36, 1285–1292. [Google Scholar]
- Wu, W.J.; Wang, L.L.; Zhang, B. Investigation on Biodiversity of Aquatic Organisms and Water Quality in Honghu Lake. Environ. Sci. Manag. 2015, 10, 184–187. [Google Scholar]
- Dong, W.L.; Min, S.F.; Tang, L.J.; Zeng, Q.C.; Yang, J.F.; Yao, M.M. Research of Eutrophication of Honghu Lake and Liangzi Lake. Environ. Prot. Sci. 2016, 42, 66–70. [Google Scholar]
- Chen, L. Temporal variation and spatial pattern of water quality in Honghu. Master’s Thesis, Hubei University, Wuhan, China, 2016. [Google Scholar]
- Wang, S.M. Analysis on Temporal-Spatial Variations in Water Quality and Pollution Sources of Honghu Lake. Master’s Thesis, Hubei University, Wuhan, China, 2018. [Google Scholar]
- Wu, W.J.; Wang, L.L.; Zhang, B.; Yan, C.M. Investigation on biodiversity of aquatic organisms and water quality in Liangzi Lake. Environ. Sci. Technol. 2014, 37, 199–204. [Google Scholar]
- Wang, H.; Yao, J.L.; Kung, H.; Li, Z.H.; Li, Y.Q.; Mei, X. A study of spatial and temporal water quality variation in Liangzi Lake. J. Environ. Eng. Technol. 2017, 7, 161–167. [Google Scholar]
- Gu, Z.Q.; Gao, F.; Wang, Z.Y. Water Environmental Function Zoning and Water Quality Status Analysis in Liangzi Lake Basin. Chin. J. Environ. Manag. 2014, 6, 32–36. [Google Scholar]
- Zhao, L.S.; Li, H.G. Comparison of Application Effect of GIS Spatial Interpolation Method in Lake Water Quality Evaluation. Mod. Agric. Sci. Technol. 2014, 5, 245–246. [Google Scholar]
- Liu, J.F.; Zhang, X.; Xie, P.; Zhu, Z.L. Variation of water quality and present water environment assesasment of Changhu Lake. Water Resour. Prot. 2014, 30, 18–22. [Google Scholar]
- Ban, X.; Du, Y.; Wu, Q.Z.; Yu, C.; Feng, Q.; Wu, S.J. Spatial distribution of water quality and pollutant source analysis in sihu basin. Resour. Environ. Yangtze Basin 2011, 20, 112–116. [Google Scholar]
- He, Y.F.; Li, H.C.; Zhu, Y.J.; Yang, D.G. Status and spatial-temporal variations of eutrophication in Lake Changhu, Hubei Province (2012–2013). J. Lake Sci. 2015, 27, 853–864. [Google Scholar]
- Yin, F.N.; Xiang, Y.Y. Fuzzy Comprehensive Evaluation of Water Quality in Daye Lake. Wetl. Sci. 2016, 14, 428–432. [Google Scholar]
- Cao, M.Z.; Liu, Y.F.; Ding, J.Y. Evaluation of Annual Water Quality in Daye Lake Based on Variable Fuzzy Set Model. J. Hubei Polytech. Univ. 2015, 31, 17–21. [Google Scholar]
- Zhao, Z.J. Application of Artificial Neural Network in Lake Water Quality Evaluation in Daye City. North Environ. 2011, 23, 92–94. [Google Scholar]
- Yang, L.; Wan, X.A.; Wei, X.X. Health Assessment of Lu Lake Ecosystem Based on Entropy Weight Comprehensive Health Index Method. Guangzhou Chem. Ind. 2016, 44, 146–150. [Google Scholar]
- Yang, S.X.; Wang, Y.Z.; Pan, Z.T.; Cao, J.W.; Deng, L.J.; Jin, W.H. Comparison of the water quality eutrophication status of Tangxun Lake before and after the bridge. J. Green Sci. Technol. 2011, 163–168. [Google Scholar]
- Xu, S.; He, D.B.; Han, M. Investigation and Monitoring of the Water Quality Status of Tangxun Lake and New Thoughts on Improvement Schemes. Basic Sci. 2012, 4, 103–105. [Google Scholar]
- Liu, H.Y.; Xiong, F.; Song, L.X.; Yang, Y. Distribution of submerged macrophytes and eutrophication status of five lakes in Hanyang region of Wuhan, China. Freshw. Fish. 2017, 47, 107–112. [Google Scholar]
- Zhou, Y.H.; Hu, B.Y.; Liu, Q.W.; Yang, D.Y.; Liu, J.X.; Liu, Q.Y. Pollution status of Houguan Lake and Sanjiao Lake in Wuhan City and analysis of water environmental risks after the two lakes are connected. J. Green Sci. Technol. 2015, 233–237. [Google Scholar]
- Song, J.; Cao, M.L.; Yan, W.W. Fuzzy Comprehensive Evaluation of Water Quality in Cihu Lakeside. J. HeiBei Univ. Environ. Engine 2019, 29, 85–89. [Google Scholar]
- Ke, Z.D.; Zhang, G.; Wu, F.L. Spatial and temporal water quality analysis and eutrophication evaluation of Cihu Lake. Environ. Dev. 2019, 31, 172–175. [Google Scholar]
- Yan, Z.; Liu, T.; Fu, T.; Jian, C.Y.; Xiao, W.S. Correlation of Temporal and Spatial Distribution of Chl.a with Environmental Factors in Cihu Lake. Environ. Sci. Technol. 2015, 38, 123–126. [Google Scholar]
- Fu, T.; Liu, T.; Jian, C.Y.; Li, K.; Liu, K.; Yan, Z. Evaluation of Eutrophication and Spatial Distribution of Chlorophyll-a, Nitrogen and Phosphorus in Cihu Lake. J. Hubei Polytech. Univ. 2014, 5, 24–27. [Google Scholar]
- Li, C.; Wang, T.; Zhang, M.; Xu, J. Maternal Environment Effect of Warming and Eutrophication on the Emergence of Curled Pondweed, Potamogeton Cris. L. Water 2018, 9, 1285. [Google Scholar] [CrossRef] [Green Version]
- Peng, N.Y.; Dai, G.F.; Zhang, W.; Ge, G.; Yang, P.; Guo, C.J.; Fang, Y. Differences in nutrition condition and algae population in different areas of Poyang Lake. J. Lake Sci. 2018, 30, 1295–1308. [Google Scholar]
- Huang, X.H.; Chen, C.H.; Yuan, Y.J.; Yu, Z.J.; Jin, W.G. Analysis on Seasonal Water Quality Characteristics of Poyang Lake. J. East China Univ. Technol. 2018, 41, 175–180. [Google Scholar]
- Zhang, G.S.; Yu, X.B.; Liu, Y.; Zhang, H.; Zhang, Q.J.; Li, Y.; Duan, H. Accumulation effect of litter decomposition and water level on carbon and nitrogen in shal- low lake water of Lake Poyang. J. Lake Sci. 2018, 30, 668–679. [Google Scholar]
- Chen, X.L.; Zhang, Y.; Zhang, L.; Chen, L.Q.; Lu, J.Z. Distribution characteristic of nitrogen and phosphorus in Lake Poyang during high water period. J. Lake Sci. 2013, 25, 643–648. [Google Scholar]
- Wu, J.L.; Zeng, H.A.; Yu, H.; Ma, L.; Xu, L.S.; Qin, B.Q. Water and Sediment Quality in Lakes along the Middle and Lower Reaches of the Yangtze River, China. Water Resour. Manag. 2012, 12, 3601–3618. [Google Scholar] [CrossRef]
- Li, W.; Li, Y.; Zhong, J.; Fu, H.; Tu, J.; Fan, H. Submerged macrophytes exhibit different phosphorus stoichiometric homeostasis. Front. Plant Sci. 2018, 9, 1207. [Google Scholar] [CrossRef]
- Li, W.; Fu, H.; Li, Y.; Nie, W.; Yuan, G.; Gao, G.; Zhong, J. Effects of nutrient enrichment and Bellamya aeruginosa (Reeve) presence on three submerged macrophytes. Hydrobiologia 2019, 833, 95–105. [Google Scholar] [CrossRef]
- Li, Y.H.; Ge, G.; Hu, X.H.; Liu, X.Y.; Zhou, X.L. Spatio temporal variation and pollution sources analysis of Poyang Lake basin by cluster and factor analysis. J. Nanchang Univ. (Nat. Sci.) 2016, 40, 360–365. [Google Scholar]
- Peng, X.L.; Yin, Q.; Zhang, M.; He, Z.J.; Lu, J.J.; Liu, Z.G. Release flux and process of Pb and nutrients in the sediment of shallow lakes along the gradient of eutrophication. J. Nanchang Univ. (Eng. Technol.) 2018, 40, 117–124. [Google Scholar]
- Kuang, W.M. Annual Dynamics of Nutrients in Water Column and Assessment of Water Environmental Carrying Capacity in Three Typical shallow Lakes Adjacent to Poyang Lake. Master’s Thesis, Nanchang University, Nanchang, China, 2016. [Google Scholar]
- Yang, P. Studies on Phytoplankton and Eutrophication Status of Large and Medium-Sized Shallow Lakes in Jiangxi Province, China. Master’s Thesis, Jiangxi Normal University, Nanchang, China, 2015. [Google Scholar]
- Zhang, H.X.; Fu, H.Y.; Zhang, Y.P.; Yu, Z.J.; Huang, J.F.; Zhang, A.F.; Chen, W.J.; Li, Z.H.; Zhu, G.G. The community structure of benthic animals and water quality assessment in Taibo Lake. J. Shanghai Ocean. Univ. 2016, 25, 431–437. [Google Scholar]
- Wu, Q. Temporal and Spatial Variation Characteristics of Nitrogen and Phosphorus Nutrition and Dissolved Oxygen in Chaohu Lake. Chem. Enterp. Manag. 2018, 70–71. [Google Scholar]
- Xi, S.S.; Zhou, C.C.; Liu, G.J.; Wu, L.; Wang, P.H. Spatial and Temporal Distributions of Nitrogen and Phosphate in the Chaohu Lake. Environ. Sci. 2016, 37, 542–547. [Google Scholar]
- Ren, Y.Q.; Chen, K.N. Status of submerged macrophytes and its relationship with environmental factors in Lake Chao. J. Lake Sci. 2011, 23, 409–416. [Google Scholar]
- Liu, Q.X.; Huo, S.L.; Zan, F.Y.; Xi, B.D. Investigation and Evaluation on the Eutrophication of Lakes in Anhui Province. J. Anhui Agric. Sci. 2011, 39, 4626–4629. [Google Scholar]
- Zeng, K.; Wang, J.S.; Zhang, Y.C.; Zhang, L.; Yang, Q.H. Analysis of the Influence of Water Level Change of Huayang River and Lake Group on Water Quality. J. Yangtze River Sci. Res. Inst. 2020, 37, 49–53. [Google Scholar]
- Li, K.; Wang, J.Q.; Li, K.; Hu, S.h.; Huang, Y.M. Research and evaluation of water pollution in Lake Wabu Basin, Huaihe Catchment. J. Lake Sci. 2017, 29, 143–150. [Google Scholar]
- Wei, Z.; Huang, X.H.; Li, J.F.; Lu, W.X.; Zhang, J. The physical and chemical water quality status and protection countermeasures of Donghu Lake in Huoqiu City. J. Anhui Agric. Sci. 2015, 43, 240–242. [Google Scholar]
- Dai, R. Comparative Research on Different Methods in Eutrophication Evaluation of Gaotang Lake. China Rural. Water Hydropower 2019, 8, 168–173. [Google Scholar]
- Xing, X.; Liu, J. Water Environment Quality Evaluation of Reserve Water Source of Tianjing Lake. Mod. Bus. Trade Ind. 2013, 25, 187–188. [Google Scholar]
- Qian, L.; Chen, F.; Gao, Y. Change of different nitrogen forms in the first decade of 21st century in Taihu Lake. Shanghai Water 2014, 30, 5–8. [Google Scholar]
- Wang, H.; Chen, H.X.; Xu, Z.A.; Lu, B.Y. Variation trend of total phosphorus and its controlling factors in Lake Taihu, 2010–2017. J. Lake Sci. 2019, 31, 919–929. [Google Scholar]
- Zhao, H.Q.; Wei, X.H.; Yao, W.Z.; Zhang, M.; Wang, J. Relationships between Chlorophyll-a Content and TN, TP Concentrations in Coastal Waters of South Taihu Lake. J. Hydroecology 2011, 32, 59–63. [Google Scholar]
- Mao, Y.H.; Liu, S.Y.; Ji, L.; Zhao, Y.W.; Wen, T.Y.; Xu, W.B. Interaction Analysis on Blue Algae Growth with Water Quality and Meteorological Factors in Taihu Lake. Jilin Water Resour. 2019, 11, 1–6. [Google Scholar]
- Wu, B.; Kuang, S.C.; Han, J.H.; Long, X.Q.; Li, X.W. Changes in Lake Taihu, 2007–2017. Environ. Dev. 2018, 30, 196–197. [Google Scholar]
- Xu, K.W.; Tang, S.L.; Lu, H.L.; Pan, Y.B. Treatment of Jiaxing South Lake and Analysis of Water Quality Changes. First Sci. Lake Forum. Southeast Univ. 2011, 226–232. [Google Scholar]
- Ji, H.K.; Fan, F.; Wang, B.Y.; Chen, H.; Ke, F.; Qian, Y. Analysis and countermeasures of water pollution characteristics in South Lake water system of Jiaxing. Environ. Pollut. Control. 2018, 40, 581–587. [Google Scholar]
- Da, W.Y. Study on Spatio-Temporal Dynamics and Influencing Factors of Aquatic Environment in Lake Qiandao. Master’s Thesis, China West Normal University, Lanzhou, China, 2019. [Google Scholar]
- You, A.J.; Wu, Z.Y.; Han, Z.C.; Yang, J.; Hua, L. Temporal and spatial changes of nitrogen and phosphorus nutrients in Hangzhou West Lake after comprehensive improvement such as water diversion (1985–2013). J. Lake Sci. 2015, 27, 371–377. [Google Scholar]
- Yu, X.; Gao, H.M.; Wang, X.; Li, G.F.; Yao, X.M. Eutrophication of Lake Water and Microcystins in Common Aquatic Animals in Dianshan Lake, Shanghai. J. Environ. Occup. Med. 2015, 32, 136–139. [Google Scholar]
- Zhang, Y.P.; Zhang, D.; Sun, Z.Z. Water quality and water environmental assessment of Dianshan Lake in Shanghai. J. Water Resour. Water Eng. 2017, 28, 90–96. [Google Scholar]
- Zhang, D.L.; Zhou, Y.F.; Lu, J.L.; Zhang, J.T. Changes in water quality of Dianshan Lake in recent ten years and its relationship with meteorological conditions. In Proceedings of the Annual Academic Conference of the Chinese Society for Environmental Sciences, Xiamen, China, 20–22 October 2017. [Google Scholar]
- Li, T.; Xu, Z.A. Variation Characteristics and Potential Environmental Effects of Nitrogen and Phosphorus Nutrients in Dianshan Lake Area; Hohai University Press: Nanjing, China, 2014; pp. 5–60. [Google Scholar]
- Li, H.X.; Tian, H.; Liang, G.K. Analysis of eutrophication and measures for ecological restoration in Dianshan Lake. Water Resour. Prot. 2012, 28, 83–87. [Google Scholar]
- Wu, P.; Lu, T.T. Investigation and countermeasures on Environmental and ecological situation of Xuanwu Lake. Jiangxi Hydraul. Sci. Technol. 2015, 41, 264–268. [Google Scholar]
- Xue, Z.J.; Zhang, F.J.; Gui, Z.F. Analysis and Evaluation of Nutrients of Xuanwu Lake in Nanjing. J. Agric. Catastrophol. 2019, 9, 22–26. [Google Scholar]
- Wang, S.H.; Wang, W.W.; Jiang, X.; Zhang, B.; Hu, J.C.; Zhao, L. Spatial-temporal dynamic changes of nitrogen and phosphorus and difference analysis in water body of Lihu Lake. China Environ. Sci. 2014, 34, 1268–1276. [Google Scholar]
- Zhuang, Y.; Tang, X.J.; Sheng, Y.; Peng, Y.; Zhang, D.Y.; Zou, H. The Study on Water environmental Improvement of Lihu Lake for 10 Years Comprehensive Treatment Projects. Arid. Environ. Monit. 2014, 28, 49–54. [Google Scholar]
- Shu, X.J.; Hou, P.; Zhu, W.J.; Qin, Y. Analysis on Hydrodynamics and Water Quality Statuses of Dushuhu Lake in Dry Season. J. Guangxi Acad. Sci. 2014, 30, 156–160. [Google Scholar]
- Sun, L. Water quality status and system control measures in Gucheng Lake. Environ. Dev. 2018, 30, 255–256. [Google Scholar]
- Huang, G.Y.; Gu, X. Evaluation of water quality status of Dalong Lake and its protection countermeasures. Water Qual. Surv. Eval. 2013, 88–89. [Google Scholar]
- Yang, R.Y. Vestigation And Evaluation of The Environmental Quality of Baoying Lake and Its Water Quality Pollution Control. Master’s Thesis, Nanjing Agricultural University, Nanjing, China, 2015. [Google Scholar]
- Li, M.; Lu, P. Factor Analysis of Water Quality in Changdang Lake. Environ. Prot. Sci. 2013, 39, 99–102. [Google Scholar]
- Dai, D.; Li, X.B.; Hu, X.Z.; Xu, Q.J.; Xia, X.F.; Yi, H.M. Characteristics and Causes of Water Pollution in the Baima Lake, China. Resour. Environ. Yangtze Basin 2018, 27, 1287–1297. [Google Scholar]
- Gui, Z.F.; Xue, B.; Yao, S.C.; Wei, W.J. Water Quality Status and Influencing Factors of Yangcheng Lake, China. Sci. Geogr. Sin. 2011, 31, 1487–1492. [Google Scholar]
- Zhou, J.; Liu, S.H. Study on the Causes and Countermeasures of Water Quality Change in Yangcheng Lake in 2015~2016. Sichuan Environ. 2017, 36, 130–133. [Google Scholar] [CrossRef]
- Cui, C.X.; Hua, W.H.; Yuan, G.W. Evaluation and trend analysis of water quality in Luoma Lake. Hebei Fish. 2013, 40, 31–34. [Google Scholar]
- Hu, T.T.; Liu, J.S.; Dai, X.L.; Cai, Y.J.; Xu, H.; Gong, Z.J. Spatio-Temporal Variation of Water Quality in Lake Luoma, Jiangsu Province, China. J. Ecol. Rural. Environ. 2016, 32, 794–801. [Google Scholar]
- Lu, Q.W.; Zhang, Y.Y. Water quality analysis and assessment of water pollution in Gaoyou Lake. Jiangsu Water Resour. 2017, 7, 23–27. [Google Scholar]
- Shen, Z.; Zhang, L.; Shen, J.; Hu, Y. Evaluation and analysis of the environmental quality of water in Gaoyouhu Lake. J. Heilongjiang Inst. Technol. 2019, 33, 28–32. [Google Scholar]
- Jiang, L.N.; Wu, J.F.; Ren, X.M. Analysis on Water Quality and Eutrophication in Recent Years of Gaoyou Lake. Pollut. Control. Technol. 2017, 30, 23–25. [Google Scholar]
- Cui, C.X.; Hua, W.H.; Yuan, G.W.; Jiao, X.M.; Lu, Y. Assessment and Trend Analysis on Water Quality in Hongze Lake. China Resour. Compr. Util. 2013, 31, 44–47. [Google Scholar]
- Wang, X.; Shen, H.J.; Liu, L.; Zhang, Y. Analysis and assessment on water quality of Hongze Lake. Environ. Impact Assess. 2019, 31, 11–13. [Google Scholar]
- Wang, Z.Q.; Zhang, N.H.; Zhang, Y.; Liu, Z.K.; Zhou, W.H. Eutrophication Assessment of water quality on the Hongze Lake. Environ. Monit. 2010, 2, 31–35. [Google Scholar]
- Chen, X.J.; Lu, L.L. Relationship between chlorophyll a content and water quality in water in Hongze Lake. J. Agric. Resour. Environ. 2013, 21, 193. [Google Scholar]
H. verticillata | V. natans | |||
---|---|---|---|---|
Mean | Standard Error | Mean | Standard Error | |
Water TN (mg/L) | 1.79 | 0.12 | 1.60 | 0.09 |
Water TP (mg/L) | 0.09 | 0.00 | 0.10 | 0.00 |
Water N:P | 22.29 | 1.26 | 17.85 | 1.02 |
Phytoplankton Chl-a (mg/m3) | 14.41 | 2.67 | 13.08 | 1.13 |
Periphytic algae Chl-a (mg/m2) | 5.2 × 10−3 | 0.01 | 5 × 10−3 | 4.5 × 10−3 |
Plant C (mg/g) | 0.14 | 4 × 10−3 | 0.13 | 2 × 10−3 |
Plant N (mg/g) | 8.98 × 10−3 | 2.9 × 10−4 | 8.75 × 10−3 | 2.1 × 10−2 |
Plant P (mg/g) | 2 × 10−4 | 1 × 10−4 | 9 × 10−4 | 3 × 10−5 |
Plant C:N | 17.6 | 0.6 | 15.5 | 0.3 |
Plant C:P | 856.7 | 65.2 | 153.4 | 3.9 |
Plant N:P | 49.7 | 3.6 | 10.3 | 0.3 |
Predictor | Coefficient | Std. Error | t Value | p |
---|---|---|---|---|
Intercept | 22.573 | 1.281 | 17.623 | <0.001 |
TN (mg/L) | −1.229 | 0.534 | −2.303 | 0.024 |
Water N:P | −0.143 | 0.049 | −2.927 | 0.005 |
Phytoplankton (mg/m3) | 0.129 | 0.130 | 0.991 | 0.325 |
Periphytic algae (mg/m2) | −193.167 | 268.323 | −0.720 | 0.474 |
RGR [mg·(g·d−1)] | −61.470 | 54.298 | −1.132 | 0.262 |
Predictor | Coefficient | Std. Error | t Value | p |
---|---|---|---|---|
Intercept | 6.833 × 10−3 | 7.491 × 10−4 | 9.121 | <0.001 |
TN (mg/L) | 8.527 × 10−4 | 3.122 × 10−4 | 2.732 | 0.008 |
Water N:P | 2.753 × 10−6 | 2.853 × 10−5 | 0.096 | 0.923 |
Phytoplankton (mg/m3) | −5.350 × 10−5 | 7.628 × 10−5 | −0.701 | 0.485 |
Periphytic algae (mg/m2) | 8.544 × 10−2 | 1.569 × 10−1 | 0.544 | 0.588 |
RGR [mg·(g·d−1)] | 2.199 × 10−2 | 3.175 × 10−2 | 0.693 | 0.491 |
Predictor | Coefficient | Std. Error | t Value | p |
---|---|---|---|---|
Intercept | 1.675 × 10−4 | 2.689 × 10−5 | 6.228 | <0.001 |
TN (mg/L) | 2.473 × 10−5 | 1.120 × 10−5 | 2.207 | 0.031 |
Water N:P | −7.076 × 10−7 | 1.024 × 10−6 | −0.691 | 0.492 |
Phytoplankton (mg/m3) | −7.101 × 10−7 | 2.738 × 10−6 | −0.259 | 0.796 |
Periphytic algae (mg/m2) | 4.353 × 10−4 | 5.632 × 10−3 | 0.077 | 0.939 |
RGR [mg·(g·d−1)] | 2.897 × 10−3 | 1.140 × 10−3 | 2.542 | 0.013 |
Predictor | Coefficient | Std. Error | t Value | p |
---|---|---|---|---|
Intercept | 20.100 | 0.664 | 30.259 | <0.001 |
TN (mg/L) | −0.362 | 0.512 | −2.662 | 0.009 |
Water N:P | −0.096 | 0.048 | −2.008 | 0.048 |
Phytoplankton (mg/m3) | −0.115 | 0.116 | −0.992 | 0.324 |
Periphytic algae (mg/m2) | 136.287 | 266.497 | 0.511 | 0.610 |
RGR [mg·(g·d−1)] | −21.892 | 41.237 | −0.531 | 0.597 |
Predictor | Coefficient | Std. Error | t Value | p |
---|---|---|---|---|
Intercept | 6.197 × 10−3 | 4.162 × 10−4 | 14.890 | <0.001 |
TN (mg/L) | 9.825 × 10−4 | 3.206 × 10−4 | 3.065 | 0.003 |
Water N:P | 3.251 × 10−5 | 3.009 × 10−5 | 1.080 | 0.283 |
Phytoplankton (mg/m3) | 8.610 × 10−5 | 7.254 × 10−5 | 1.187 | 0.239 |
Periphytic algae (mg/m2) | −1.235 × 10−1 | 1.670 × 10−1 | −0.740 | 0.462 |
RGR [mg·(g·d−1)] | 2.339 × 10−2 | 2.583 × 10−2 | 0.905 | 0.368 |
Predictor | Coefficient | Std. Error | t Value | p |
---|---|---|---|---|
Intercept | 9.103 × 10−4 | 6.087 × 10−5 | 14.956 | <0.001 |
TN (mg/L) | 2.362 × 10−5 | 4.688 × 10−5 | 0.504 | 0.616 |
Water N:P | −4.172 × 10−6 | 4.401 × 10−6 | −0.948 | 0.346 |
Phytoplankton (mg/m3) | 1.620 × 10−5 | 1.061 × 10−5 | 1.527 | 0.131 |
Periphytic algae (mg/m2) | −3.116 × 10−2 | 2.442 × 10−2 | −1.276 | 0.206 |
RGR [mg·(g·d−1)] | 8.342 × 10−3 | 3.778 × 10−3 | 2.208 | 0.030 |
Predictor | Coefficient | Std. Error | t Value | p |
---|---|---|---|---|
Intercept | 6.909 | 0.694 | 9.951 | <0.001 |
TN (mg/L) | 1.204 | 0.535 | 2.250 | 0.027 |
Water N:P | 0.065 | 0.050 | 1.294 | 0.199 |
Phytoplankton (mg/m3) | −0.057 | 0.121 | −0.468 | 0.641 |
Periphytic algae (mg/m2) | 159.002 | 278.573 | 0.571 | 0.570 |
RGR [mg·(g·d−1)] | −66.161 | 3.105 | −1.535 | 0.129 |
Predictor | Coefficient | Std. Error | t Value | p |
---|---|---|---|---|
Intercept | 1.518 × 102 | 9.384 × 100 | 16.174 | <0.001 |
TN (mg/L) | 2.079 × 100 | 0.229 × 100 | 0.288 | 0.774 |
Water N:P | 8.067 × 10−2 | 6.785 × 10−1 | 0.119 | 0.906 |
Phytoplankton (mg/m3) | −1.262 × 100 | 1.636 × 100 | −0.772 | 0.443 |
Periphytic algae (mg/m2) | 1.935 × 103 | 3.765 × 103 | 0.514 | 0.609 |
RGR [mg·(g·d−1)] | −1.199 × 103 | 5.826 × 102 | −2.058 | 0.043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, M.; Xiao, Y.; Wang, T.; Xu, J.; Wang, Y. Influence of N:P Ratio of Water on Ecological Stoichiometry of Vallisneria natans and Hydrilla verticillata. Water 2022, 14, 1263. https://doi.org/10.3390/w14081263
Dai M, Xiao Y, Wang T, Xu J, Wang Y. Influence of N:P Ratio of Water on Ecological Stoichiometry of Vallisneria natans and Hydrilla verticillata. Water. 2022; 14(8):1263. https://doi.org/10.3390/w14081263
Chicago/Turabian StyleDai, Mingzhe, Yayu Xiao, Tao Wang, Jun Xu, and Yuyu Wang. 2022. "Influence of N:P Ratio of Water on Ecological Stoichiometry of Vallisneria natans and Hydrilla verticillata" Water 14, no. 8: 1263. https://doi.org/10.3390/w14081263
APA StyleDai, M., Xiao, Y., Wang, T., Xu, J., & Wang, Y. (2022). Influence of N:P Ratio of Water on Ecological Stoichiometry of Vallisneria natans and Hydrilla verticillata. Water, 14(8), 1263. https://doi.org/10.3390/w14081263