Ranking Three Water Sensitive Urban Design (WSUD) Practices Based on Hydraulic and Water Quality Treatment Performance: Implications for Effective Stormwater Treatment Design
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Data Collection
2.2.1. Monitoring Program
2.2.2. Parameter Selection and Laboratory Testing
2.2.3. An Assumption Made When Using Outflow Water Quality
2.3. Data Analyses
3. Results and Discussions
3.1. Analysis of Hydraulic and Water Quality Treatment Performance
3.1.1. Hydraulic Performance
3.1.2. Water Quality Performance
3.2. Ranking of WSUD Systems
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Franczyk, J.; Chang, H. The effects of climate change and urbanisation on the runoff of the Rock Creek basin in the Portland metropolitan, Oregon, USA. Hydrol. Process. 2009, 23, 805–815. [Google Scholar] [CrossRef]
- Barron, O.V.; Pollock, D.; Dawes, W. Evaluation of catchment contributing areas and storm runoff in flat terrain subject to urbanisation. Hydrol. Earth Syst. Sci. 2011, 15, 547–559. [Google Scholar] [CrossRef] [Green Version]
- Perera, T.; McGree, J.; Egodawatta, P.; Jinadasa, K.B.S.N.; Goonetilleke, A. A Bayesian approach to model the trends and variability in urban stormwater quality associated with catchment and hydrologic parameters. Water Res. 2021, 197, 117076. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Egodawatta, P.; Guan, Y.T.; Goonetilleke, A. Influence of rainfall and catchment characteristics on urban stormwater quality. Sci. Total Environ. 2013, 444, 255–262. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Chen, L.; Liu, G.W.C.; Yu, Y.; Ma, Y.K.; Shen, Z.Y. Unexpected river water quality deterioration due to stormwater management in an urbanizing watershed. Water Resour. Res. 2021, 57, e2021WR030181. [Google Scholar] [CrossRef]
- Liu, A.; Li, D.Z.; Liu, L.; Guan, Y.T. Understanding the role of urban road surface characteristics in influencing stormwater quality. Water Resour. Manag. 2014, 28, 5217–5229. [Google Scholar] [CrossRef]
- Pappas, E.A.; Smith, D.R.; Huang, C.; Shuster, W.D.; Bonta, J.V. Impervious surface impacts to runoff and sediment discharge under laboratory rainfall simulation. Catena 2008, 72, 146–152. [Google Scholar] [CrossRef]
- Brabec, E.A. Imperviousness and land use policy: Toward an effective approach to watershed planning. J. Hydrol. Eng. 2009, 14, 425–433. [Google Scholar] [CrossRef]
- Jacobson, C.R. Identification and quantification of the hydrological impacts of imperviousness in urban catchments: A review. J. Environ. Manag. 2011, 92, 1438–1448. [Google Scholar] [CrossRef]
- Miller, J.D.; Kim, H.; Kjeldsen, T.R.; Packman, J.; Grebby, S.; Dearden, R. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover. J. Hydrol. 2014, 515, 59–70. [Google Scholar] [CrossRef] [Green Version]
- Walaszek, M.; Bois, P.; Laurent, J.; Lenormand, E.; Wanko, A. Micropollutants removal and storage efficiencies in urban stormwater constructed wetland. Sci. Total Environ. 2018, 645, 854–864. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Chui, T.F.M. Optimizing surface and contributing areas of bioretention cells for stormwater runoff quality and quantity management. J. Environ. Manag. 2018, 206, 1090–1103. [Google Scholar] [CrossRef] [PubMed]
- Yuan, D.H.; An, Y.C.; Wang, J.Z.; Chu, S.X.; Lim, B.S.; Chen, B.; Xiong, Y.; Kou, Y.Y.; Li, J.Q. Dissolved organic matter characteristics of urban stormwater runoff from different functional regions during grassy swale treatment. Ecol. Indic. 2019, 107, 105667. [Google Scholar] [CrossRef]
- Baek, S.S.; Choi, D.H.; Jung, J.W.; Lee, H.J.; Lee, H.; Yooh, K.S.; Cho, K.H. Optimizing low impact development (LID) for stormwater runoff treatment in urban area, Korea: Experimental and modeling approach. Water Res. 2015, 86, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.S.; Tsang, D.C.W.; He, M.J.; Sun, Y.Q.; Lau, L.S.Y.; Leung, R.W.M.; Lau, E.S.C.; Hou, D.Y.; Liu, A.; Mohanty, S. Designing sustainable drainage systems in subtropical cities: Challenges and opportunities. J. Clean. Prod. 2021, 280, 124418. [Google Scholar] [CrossRef]
- Piacentini, S.M.; Rossetto, R. Attitude and actual behaviour towards water-related green infrastructures and sustainable drainage systems in four North-Western Mediterranean regions of Italy and France. Water 2020, 12, 1474. [Google Scholar] [CrossRef]
- Bledsoe, R.B.; Bean, E.Z.; Austin, S.S.; Peralta, A.L. A microbial perspective on balancing trade-offs in ecosystem functions in a constructed stormwater wetland. Ecol. Eng. 2020, 158, 106000. [Google Scholar] [CrossRef]
- Hong, N.; Cheng, Q.; Wijesiri, B.; Bandala, E.R.; Goonetilleke, A.; Liu, A. Integrating Tank Model and adsorption/desorption characteristics of filter media to simulate outflow water quantity and quality of a bioretention basin: A case study of biochar-based bioretention basin. J. Environ. Manag. 2022, 304, 114282. [Google Scholar] [CrossRef]
- Neo, T.H.; Xu, D.; Fowdar, H.; McCarthy, D.; Chen, E.Y.; Lee, T.M.; Ong, G.S.; Lim, F.Y.; Ong, S.L.; Hu, J.Y. Evaluation of active, beautiful, clean waters design features in tropical urban cities: A case study in Singapore. Water 2022, 14, 468. [Google Scholar] [CrossRef]
- Meng, X.L.; Li, X.; Nghiem, L.D.; Ruiz, E.; Johir, M.A.; Gao, L.; Wang, Q.L. Improved stormwater management through the combination of the conventional water sensitive urban design and stormwater pipeline network. Process Saf. Environ. Prot. 2022, 159, 1164–1173. [Google Scholar] [CrossRef]
- de Macedo, M.B.; do Lago, C.A.F.; Mendiondo, E.M. Stormwater volume reduction and water quality improvement by bioretention: Potentials and challenges for water security in a subtropical catchment. Sci. Total Environ. 2019, 647, 923–931. [Google Scholar] [CrossRef] [PubMed]
- Sacco, A.; Cirelli, G.L.; Ventura, D.; Barbagallo, S.; Licciardello, F. Hydraulic performance of horizontal constructed wetlands for stormwater treatment: A pilot-scale study in the Mediterranean. Ecol. Eng. 2021, 169, 106290. [Google Scholar] [CrossRef]
- Ventura, D.; Ferrante, M.; Copat, C.; Grasso, A.; Milani, M.; Sacco, A.; Licciardello, F.; Girelli, G.L. Metal removal processes in a pilot hybrid constructed wetland for the treatment of semi-synthetic stormwater. Sci. Total Environ. 2021, 754, 142221. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Serrana, M.; Gulliver, J.S.; Nieber, J.L. Non-uniform overland flow-infiltration model for roadside swales. J. Hydrol. 2017, 552, 586–599. [Google Scholar] [CrossRef]
- Gavric, S.; Leonhardt, G.; Marsalek, J.; Viklander, M. Processes improving urban stormwater quality in grass swales and filter strips: A review of research findings. Sci. Total Environ. 2019, 669, 431–447. [Google Scholar] [CrossRef]
- Mangangka, I.R.; Liu, A.; Egodawatta, P.; Goonetilleke, A. Performance characterisation of a stormwater treatment bioretention basin. J. Environ. Manag. 2015, 150, 173–178. [Google Scholar] [CrossRef] [Green Version]
- Mangangka, I.R.; Liu, A.; Egodawatta, P.; Goonetilleke, A. Sectional analysis of stormwater treatment performance of a constructed wetland. Ecol. Eng. 2015, 77, 172–179. [Google Scholar] [CrossRef] [Green Version]
- Drapper, D.; Hornbuckle, A. Field evaluation of a stormwater treatment train with pit baskets and filter media cartridges in Southeast Queensland. Water 2015, 7, 4496–4510. [Google Scholar] [CrossRef] [Green Version]
- Ekka, S.A.; Rujner, H.; Leonhardt, G.; Blecken, G.T.; Viklander, M.; Hunt, W.F. Next generation swale design for stormwater runoff treatment: A comprehensive approach. J. Environ. Manag. 2021, 279, 111756. [Google Scholar] [CrossRef]
- Glaister, B.J.; Fletcher, T.D.; Cook, P.L.M.; Hatt, B.E. Interactions between design, plant growth and the treatment performance of stormwater biofilters. Ecol. Eng. 2017, 105, 21–31. [Google Scholar] [CrossRef]
- Liu, A.; Goonetilleke, A.; Egodawatta, P. Taxonomy for rainfall events based on pollutant wash-off potential in urban areas. Ecol. Eng. 2012, 47, 110–114. [Google Scholar] [CrossRef] [Green Version]
- Jenkins, G.A.; Greenway, M.; Polson, C. The impact of water reuse on the hydrology and ecology of a constructed stormwater wetland and its catchment. Ecol. Eng. 2012, 47, 308–315. [Google Scholar] [CrossRef]
- APHA. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 2017. [Google Scholar]
- Liu, A.; Egodawatta, P.; Goonetilleke, A. Role of Rainfall and Catchment Characteristics on Urban Stormwater Quality; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Boujelben, M.A. A unicriterion analysis based on the PROMETHEE principles for multicriteria ordered clustering. Omega 2017, 69, 126–140. [Google Scholar] [CrossRef]
- Keller, H.R.; Massart, D.L.; Brans, J.P. Multicriteria decision making: A case study. Chemom. Intell. Labortory Syst. 1991, 11, 175–189. [Google Scholar] [CrossRef]
- Khalil, W.A.; Goonetilleke, A.; Kokot, S.; Carroll, J. Use of chemometrics methods and multicriteria decision-making for site selection for sustainable on-site sewage effluent disposal. Anal. Chim. Acta 2004, 506, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Hong, N.; Guan, Y.J.; Yang, B.; Zhong, J.; Zhu, P.F.; Ok, Y.S.; Hou, D.Y.; Tsang, D.C.W.; Guan, Y.T.; Liu, A. Quantitative source tracking of heavy metals contained in urban road deposited sediments. J. Hazard. Mater. 2020, 393, 122362. [Google Scholar] [CrossRef]
- Zhan, Y.T.; Hong, N.; Yang, B.; Du, Y.; Wu, Q.Y.; Liu, A. Toxicity variability of urban road stormwater during storage processes in Shenzhen, China: Identification of primary toxicity contributors and implications for reuse safety. Sci. Total Environ. 2020, 745, 140964. [Google Scholar] [CrossRef]
- Mangangka, I.R. Role of Hydraulic Factors in Constrcuted Wetland and Bioretention Basin Treatment Performance. Ph.D. Thesis, Queensland University of Technology, Brisbane, Australia, 2013. [Google Scholar]
- Parker, N. Assessing the Effectiveness of Water Sensitive Urban Desgin in Southeast Queensland. Master’s Thesis, Queensland University of Technology, Brisbane, Australia, 2009. [Google Scholar]
Treatment Performance | WSUD System | Φ Value | Ranking |
---|---|---|---|
Hydraulic performance | B | 0.2500 | 1 |
W | 0.1250 | 2 | |
S | −0.3750 | 3 | |
Outflow pollutant EMCs | W | 0.1667 | 1 |
S | −0.0833 | 2 | |
B | −0.0834 | 3 | |
Outflow pollutant loads | W | 0.4167 | 1 |
B | 0.0833 | 2 | |
S | −0.5000 | 3 | |
Hydraulics and water quality combined | W | 0.2188 | 1 |
B | 0.0938 | 2 | |
S | −0.3125 | 3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, A.; Egodawatta, P.; Goonetilleke, A. Ranking Three Water Sensitive Urban Design (WSUD) Practices Based on Hydraulic and Water Quality Treatment Performance: Implications for Effective Stormwater Treatment Design. Water 2022, 14, 1296. https://doi.org/10.3390/w14081296
Liu A, Egodawatta P, Goonetilleke A. Ranking Three Water Sensitive Urban Design (WSUD) Practices Based on Hydraulic and Water Quality Treatment Performance: Implications for Effective Stormwater Treatment Design. Water. 2022; 14(8):1296. https://doi.org/10.3390/w14081296
Chicago/Turabian StyleLiu, An, Prasanna Egodawatta, and Ashantha Goonetilleke. 2022. "Ranking Three Water Sensitive Urban Design (WSUD) Practices Based on Hydraulic and Water Quality Treatment Performance: Implications for Effective Stormwater Treatment Design" Water 14, no. 8: 1296. https://doi.org/10.3390/w14081296