Groundwater Quality and Associated Human Health Risk in a Typical Basin of the Eastern Chinese Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Water Quality Index
2.4. Human Health Risk Assessment
3. Results and Discussion
3.1. Hydrochemical characteristics of Groundwater
3.2. Groundwater Quality Assessment
3.3. Human Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Li, P. Appraisal of shallow groundwater quality with human health risk assessment in different seasons in rural areas of the Guanzhong Plain (China). Environ. Res. 2022, 207, 112210. [Google Scholar] [CrossRef]
- Wegahita, N.K.; Ma, L.; Liu, J.; Huang, T.; Luo, Q.; Qian, J. Spatial Assessment of Groundwater Quality and Health Risk of Nitrogen Pollution for Shallow Groundwater Aquifer around Fuyang City, China. Water 2020, 12, 3341. [Google Scholar] [CrossRef]
- Karunanidhi, D.; Aravinthasamy, P.; Deepali, M.; Subramani, T.; Bellows, B.C.; Li, P. Groundwater quality evolution based on geochemical modeling and aptness testing for ingestion using entropy water quality and total hazard indexes in an urban-industrial area (Tiruppur) of Southern India. Environ. Sci. Pollut. Res. 2021, 28, 18523–18538. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Chen, W.; Shen, Y. The seasonal and spatial distribution of hydrochemical characteristics of groundwater and its controlling factors in the eastern Loess Plateau. Earth Sci. Inform. 2021, 14, 2293–2308. [Google Scholar] [CrossRef]
- Xing, L.; Guo, H.; Zhan, Y. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J. Asian Earth Sci. 2013, 70–71, 250–264. [Google Scholar] [CrossRef]
- Varol, S.; Davraz, A. Evaluation of the groundwater quality with WQI (Water Quality Index) and multivariate analysis: A case study of the Tefenni plain (Burdur/Turkey). Environ. Earth Sci. 2015, 73, 1725–1744. [Google Scholar] [CrossRef]
- Qiao, J.; Zhu, Y.; Jia, X.; Shao, M.; Niu, X.; Liu, J. Distributions of arsenic and other heavy metals, and health risk assessments for groundwater in the Guanzhong Plain region of China. Environ. Res. 2020, 181, 108957. [Google Scholar] [CrossRef] [PubMed]
- Nsabimana, A.; Li, P.; He, S.; He, X.; Alam, S.M.K.; Fida, M. Health Risk of the Shallow Groundwater and Its Suitability for Drinking Purpose in Tongchuan, China. Water 2021, 13, 3256. [Google Scholar] [CrossRef]
- Shukla, S.; Saxena, A. Appraisal of Groundwater Quality with Human Health Risk Assessment in Parts of Indo-Gangetic Alluvial Plain, North India. Arch. Environ. Contam. Toxicol. 2021, 80, 55–73. [Google Scholar] [CrossRef]
- Su, F.; Wu, J.; He, S. Set pair analysis-Markov chain model for groundwater quality assessment and prediction: A case study of Xi’an city, China. Hum. Ecol. Risk Assess. 2019, 25, 158–175. [Google Scholar] [CrossRef]
- Knobeloch, L.; Salna, B.; Hogan, A.; Postle, J.; Anderson, H. Blue babies and nitrate-contaminated well water. Environ. Health Perspect. 2000, 108, 675–678. [Google Scholar] [CrossRef]
- Kaur, L.; Rishi, M.S.; Siddiqui, A.U. Deterministic and probabilistic health risk assessment techniques to evaluate non-carcinogenic human health risk (NHHR) due to fluoride and nitrate in groundwater of Panipat, Haryana, India. Environ. Pollut. 2020, 259, 113711. [Google Scholar] [CrossRef] [PubMed]
- Gulis, G.; Czompolyova, M.; Cerhan, J.R. An ecologic study of nitrate in municipal drinking water and cancer incidence in Trnava District, Slovakia. Environ. Res. 2002, 88, 182–187. [Google Scholar] [CrossRef]
- Gao, S.; Li, C.; Jia, C.; Zhang, H.; Guan, Q.; Wu, X.; Wang, J.; Lv, M. Health risk assessment of groundwater nitrate contamination: A case study of a typical karst hydrogeological unit in East China. Environ. Sci. Pollut. Res. 2020, 27, 9274–9287. [Google Scholar] [CrossRef] [PubMed]
- Skold, A.; Cosco, D.L.; Klein, R. Methemoglobinemia: Pathogenesis, diagnosis, and management. South. Med. J. 2011, 104, 757–761. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Jin, Z.; Zhang, F. Geochemical controls on fluoride concentrations in natural waters from the middle Loess Plateau, China. J. Geochem. Explor. 2015, 159, 252–261. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, L.; Zeng, Q.; Fu, G.; Feng, B.; Lin, X.; Liu, Z.; Wang, Y.; Hou, C. Spatial distribution of fluoride in drinking water and health risk assessment of children in typical fluorosis areas in north China. Chemosphere 2020, 239, 124811. [Google Scholar] [CrossRef]
- Qasemi, M.; Shams, M.; Sajjadi, S.A.; Farhang, M.; Erfanpoor, S.; Yousefi, M.; Zarei, A.; Afsharnia, M. Cadmium in Groundwater Consumed in the Rural Areas of Gonabad and Bajestan, Iran: Occurrence and Health Risk Assessment. Biol. Trace Elem. Res. 2019, 192, 106–115. [Google Scholar] [CrossRef]
- Li, R.; Kuo, Y.M.; Liu, W.W.; Jang, C.S.; Zhao, E.; Yao, L. Potential health risk assessment through ingestion and dermal contact arsenic-contaminated groundwater in Jianghan Plain, China. Environ. Geochem. Health 2018, 40, 1585–1599. [Google Scholar] [CrossRef]
- Pourret, O.; Hursthouse, A. It’s time to replace the term “heavy metals” with “potentially toxic elements” when reporting environmental research. Int. J. Environ. Res. Public Health 2019, 16, 4446. [Google Scholar] [CrossRef] [Green Version]
- Papazotos, P. Potentially toxic elements in groundwater: A hotspot research topic in environmental science and pollution research. Environ. Sci. Pollut. Res. 2021, 28, 47825–47837. [Google Scholar] [CrossRef] [PubMed]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2004; pp. 1–540. [Google Scholar]
- Langmuir, D. Aqueous Environmental Geochemistry; Prentice Hall: Upper Saddle River, NJ, USA, 1997; pp. 50–429. [Google Scholar]
- Apollaro, C.; Marini, L.; De Rosa, R. Use of reaction path modeling to predict the chemistry of stream water and groundwater: A case study from the Fiume Grande valley (Calabria, Italy). Environ. Geol. 2007, 51, 1133–1145. [Google Scholar] [CrossRef]
- Fuoco, I.; De Rosa, R.; Barca, D.; Figoli, A.; Gabriele, B.; Apollaro, C. Arsenic polluted waters: Application of geochemical modelling as a tool to understand the release and fate of the pollutant in crystalline aquifers. J. Environ. Manag. 2022, 301, 113796. [Google Scholar] [CrossRef] [PubMed]
- Fuoco, I.; Figoli, A.; Criscuoli, A.; Brozzo, G.; De Rosa, R.; Gabriele, B.; Apollaro, C. Geochemical modeling of chromium release in natural waters and treatment by RO/NF membrane processes. Chemosphere 2020, 254, 126696. [Google Scholar] [CrossRef] [PubMed]
- Tian, R.; Wu, J. Groundwater quality appraisal by improved set pair analysis with game theory weightage and health risk estimation of contaminants for Xuecha drinking water source in a loess area in Northwest China. Hum. Ecol. Risk Assess. 2019, 25, 132–157. [Google Scholar] [CrossRef]
- Egbueri, J.C. Groundwater quality assessment using pollution index of groundwater (PIG), ecological risk index (ERI) and hierarchical cluster analysis (HCA): A case study. Groundw. Sustain. Dev. 2020, 10, 100292. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, P.; Chen, M.; Dong, Z.; Lu, C. Groundwater quality for potable and irrigation uses and associated health risk in southern part of Gu’an County, North China Plain. Environ. Geochem. Health 2021, 43, 813–835. [Google Scholar] [CrossRef]
- Horton, R.K. An index number system for rating water quality. J. Water Pollut. Control. Fed. 1965, 37, 300–306. [Google Scholar]
- Bordalo, A.A.; Teixeira, R.; Wiebe, W.J. A Water Quality Index applied to an international shared river basin: The case of the Douro River. Environ. Manag. 2006, 38, 910–920. [Google Scholar] [CrossRef]
- Sánchez, E.; Colmenarejo, M.F.; Vicente, J.; Rubio, A.; García, M.G.; Travieso, L.; Borja, R. Use of the water quality index and dissolved oxygen deficit as simple indicators of watersheds pollution. Ecol. Indic. 2007, 7, 315–328. [Google Scholar] [CrossRef]
- Li, P.; Hui, Q.; Wu, J. Groundwater quality assessment based on improved water quality index in Pengyang County, Ningxia, Northwest China. J. Chem. 2010, 7, S209–S216. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Zhou, H. Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos basin of northwest China. Geochemistry 2020, 80, 125607. [Google Scholar] [CrossRef]
- Asadi, E.; Isazadeh, M.; Samadianfard, S.; Ramli, M.F.; Mosavi, A.; Nabipour, N.; Shamshirband, S.; Hajnal, E.; Chau, K.W. Groundwater Quality Assessment for Sustainable Drinking and Irrigation. Sustainability 2019, 12, 177. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Xu, P.; Qian, H. Groundwater Quality Assessment Using Improved Water Quality Index (WQI) and Human Health Risk (HHR) Evaluation in a Semi-arid Region of Northwest China. Expo. Health 2020, 12, 487–500. [Google Scholar] [CrossRef]
- Sener, S.; Sener, E.; Davraz, A. Evaluation of water quality using water quality index (WQI) method and GIS in Aksu River (SW-Turkey). Sci. Total Environ. 2017, 584–585, 131–144. [Google Scholar] [CrossRef]
- Kawo, N.S.; Karuppannan, S. Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. J. Afr. Earth Sci. 2018, 147, 300–311. [Google Scholar] [CrossRef]
- Ram, A.; Tiwari, S.K.; Pandey, H.K.; Chaurasia, A.K.; Singh, S.; Singh, Y.V. Groundwater quality assessment using water quality index (WQI) under GIS framework. Appl. Water Sci. 2021, 11, 46. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef]
- Yang, X.; Duan, J.; Wang, L.; Li, W.; Guan, J.; Beecham, S.; Mulcahy, D. Heavy metal pollution and health risk assessment in the Wei River in China. Environ. Monit. Assess. 2015, 187, 111. [Google Scholar] [CrossRef]
- Li, P.; Feng, W.; Xue, C.; Tian, R.; Wang, S. Spatiotemporal Variability of Contaminants in Lake Water and Their Risks to Human Health: A Case Study of the Shahu Lake Tourist Area, Northwest China. Expo. Health 2017, 9, 213–225. [Google Scholar] [CrossRef]
- Qin, L.T.; Pang, X.R.; Zeng, H.H.; Liang, Y.P.; Mo, L.Y.; Wang, D.Q.; Dai, J.F. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China. Sci. Total Environ. 2020, 708, 134552. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, P.; He, X.; Wang, L. Groundwater Quality in and Around a Landfill in Northwest China: Characteristic Pollutant Identification, Health Risk Assessment, and Controlling Factor Analysis. Expo. Health 2022. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, J.; Wang, Y.; Elumalai, V.; Subramani, T. Seasonal Variation of Drinking Water Quality and Human Health Risk Assessment in Hancheng City of Guanzhong Plain, China. Expo. Health 2020, 12, 469–485. [Google Scholar] [CrossRef]
- Papazotos, P.; Vasileiou, E.; Perraki, M. The synergistic role of agricultural activities in groundwater quality in ultramafic environments: The case of the Psachna basin, central Euboea, Greece. Environ. Monit. Assess. 2019, 191, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Papazotos, P.; Vasileiou, E.; Perraki, M. Elevated groundwater concentrations of arsenic and chromium in ultramafic environments controlled by seawater intrusion, the nitrogen cycle, and anthropogenic activities: The case of the Gerania Mountains, NE Peloponnese, Greece. Appl. Geochem. 2020, 121, 104697. [Google Scholar] [CrossRef]
- Kubier, A.; Hamer, K.; Pichler, T. Cadmium background levels in groundwater in an area dominated by agriculture. Integr. Environ. Assess. Manag. 2020, 16, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, J.; Xu, B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ. Earth Sci. 2018, 77, 273. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, B.; Guo, Z.; Han, J.; Li, H.; Jin, L.; Chen, F.; Xiong, Y. Human health risk assessment of groundwater arsenic contamination in Jinghui irrigation district, China. J. Environ. Manag. 2019, 237, 163–169. [Google Scholar] [CrossRef]
- Tian, Q.; Yin, J.; Hao, X. MIS3 climate change assessed according to loess deposition in the Linfen Basin, China. Arid. Zone Res. 2022, 39, 10–20. (In Chinese) [Google Scholar]
- Lin, R.; Sun, C.; Chen, W.; Qiao, P.; Wang, Y. Groundwater quality characteristics in downstream valley of Fenhe river. J. Arid. Land Resour. Environ. 2021, 35, 135–142. (In Chinese) [Google Scholar]
- Zhang, J.J. Structural characteristics of Linfen Basin. Huabei Land Resour. 2017, 3, 27–31. (In Chinese) [Google Scholar]
- Bai, L.P.; Wang, Y.Y.; Wang, J.S. The numerical model-based groundwater level early-warning system: A case study of Linfen basin. Geol. China 2009, 36, 246–253. (In Chinese) [Google Scholar]
- Wang, Y.; Bai, L.; Wang, J. Influences of climatic anomaly on the groundwater system in Linfen Basin. Resour. Sci. 2009, 31, 1168–1174. (In Chinese) [Google Scholar]
- Ministry of Ecology and Environment of the People’s Republic of China. Technical Specifications for Environmental Monitoring of Groundwater (HJ/T 164-2004); China Environmental Science Press: Beijing, China, 2004; pp. 1–40. (In Chinese) [Google Scholar]
- Sahu, P.; Sikdar, P.K. Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal, India. Environ. Geol. 2008, 55, 823–835. [Google Scholar] [CrossRef]
- Yidana, S.M.; Yidana, A. Assessing water quality using water quality index and multivariate analysis. Environ. Earth. Sci. 2010, 59, 1461–1473. [Google Scholar] [CrossRef]
- Ministry of Health of the P.R. China; Standardization Administration of the P.R. China. Standards for Groundwater Guality (GB14848–2017); China Standard Press: Beijing, China, 2017; pp. 1–14. (In Chinese) [Google Scholar]
- Li, P.; Li, X.; Meng, X.; Li, M.; Zhang, Y. Appraising Groundwater Quality and Health Risks from Contamination in a Semiarid Region of Northwest China. Expo. Health 2016, 8, 361–379. [Google Scholar] [CrossRef]
- Chen, J.; Wu, H.; Qian, H.; Gao, Y. Assessing Nitrate and Fluoride Contaminants in Drinking Water and Their Health Risk of Rural Residents Living in a Semiarid Region of Northwest China. Expo. Health 2017, 9, 183–195. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, M.; Chen, X.; Liu, J. Health Risk Assessment and Risk Control: Drinking Groundwater in Yinchuan Plain, China. Expo. Health 2019, 11, 59–72. [Google Scholar] [CrossRef]
- Wu, J.; Sun, Z. Evaluation of Shallow Groundwater Contamination and Associated Human Health Risk in an Alluvial Plain Impacted by Agricultural and Industrial Activities, Mid-west China. Expo. Health 2016, 8, 311–329. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the P.R. China. Technical Guidelines for Risk Assessment of Soil Contamination of Land for Construction (HJ 25.3-2019); China Environmental Science Press: Beijing, China, 2019; pp. 1–48. (In Chinese) [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part A); EPA/540/1-89/002; USEPA: Washington, DC, USA, 1989. [Google Scholar]
- National Health Commission of the People’s Republic of China. Report on Nutrition and Chronic Disease Status of Chinese Residents; The State Council Information Office of the People’s Republic of China: Beijing, China, 2020. (In Chinese) [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final; EPA/540/R-99/005; USEPA: Washington, DC, USA, 2004. [Google Scholar]
- Mohamed, A.K.; Dan, L.; Kai, S.; Mohamed, M.A.A.; Aldaw, E.; Elubid, B.A. Hydrochemical Analysis and Fuzzy Logic Method for Evaluation of Groundwater Quality in the North Chengdu Plain, China. Int. J. Environ. Res. Public Health 2019, 16, 302. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.L.; Luo, K.L.; Lin, X.X.; Gao, X.; Ni, R.X.; Wang, S.B.; Tian, X.L. Regional distribution of longevity population and chemical characteristics of natural water in Xinjiang, China. Sci. Total Environ. 2014, 473–474, 54–62. [Google Scholar] [CrossRef]
- Karakuş, C.B. Evaluation of groundwater quality in Sivas province (Turkey) using water quality index and GIS-based analytic hierarchy process. Int. J. Environ. Health Res. 2019, 29, 500–519. [Google Scholar] [CrossRef] [PubMed]
- Ramakrishnaiah, C.R.; Sadashivaiah, C.; Ranganna, G. Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka State, India. J. Chem. 2009, 6, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Xie, H.; Liang, Y.; Li, J.; Zou, S.; Shen, H.; Zhao, C.; Wang, Z. Distribution Characteristics and Health Risk Assessment of Metal Elements in Groundwater of Longzici Spring Area. Environ. Sci. 2021, 42, 4257–4266. (In Chinese) [Google Scholar]
- Korner, P.; Georgis, L.; Wiedemeier, D.B.; Attin, T.; Wegehaupt, F.J. Potential of different fluoride gels to prevent erosive tooth wear caused by gastroesophageal reflux. BMC Oral Health 2021, 21, 183. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Kang, W.; Xu, Y.; Wang, J. Assessing Groundwater Quality and Health Risks of Nitrogen Pollution in the Shenfu Mining Area of Shaanxi Province, Northwest China. Expo. Health 2018, 10, 77–97. [Google Scholar] [CrossRef]
- Hou, C.; Chu, M.L.; Botero-Acosta, A.; Guzman, J.A. Modeling field scale nitrogen non-point source pollution (NPS) fate and transport: Influences from land management practices and climate. Sci. Total Environ. 2021, 759, 143502. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, H.; Qian, H. Groundwater Nitrate Contamination and Associated Health Risk for the Rural Communities in an Agricultural Area of Ningxia, Northwest China. Expo. Health 2016, 8, 349–359. [Google Scholar] [CrossRef]
- Zhang, Z.; Xiao, C.; Adeyeye, O.; Yang, W.; Liang, X. Source and Mobilization Mechanism of Iron, Manganese and Arsenic in Groundwater of Shuangliao City, Northeast China. Water 2020, 12, 534. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Ma, T.; Wang, Y.; Shan, H.; Deng, Y. Hydrogeochemistry of high fluoride groundwater in shallow aquifers, Hangjinhouqi, Hetao Plain. J. Geochem. Explor. 2013, 135, 63–70. [Google Scholar] [CrossRef]
- Shen, L.; Wang, W. Distribution of fluorin ion in Yao du District of Lin fen City and causes of formation. Water Resour. Prot. 2005, 21, 76–78. (In Chinese) [Google Scholar]
- Adimalla, N.; Wu, J. Groundwater quality and associated health risks in a semi-arid region of south India: Implication to sustainable groundwater management. Hum. Ecol. Risk Assess. 2019, 25, 191–216. [Google Scholar] [CrossRef]
Parameters | Units | Values | ||
---|---|---|---|---|
Males | Females | Children | ||
Ingestion rate (IR) | L/day | 1 a | 1 a | 0.7 a |
Exposure frequency (EF) | day/a | 350 a | 350 a | 350 a |
Exposure duration (ED) | a | 24 a | 24 a | 6 a |
Body weight (BW) | kg | 69.6 b | 59 b | 19.2 b |
Average time (AT) | day | 8400 a | 8400 a | 2190 a |
Skin permeability coefficient (K) | cm/h | 0.002 for Cr6+ and 0.001 for other parameters c | ||
Contact duration (t) | h/day | 0.4 d | ||
Conversion factor (CF) | - | 0.001 c | ||
Average height (H) | cm | 169.7 b | 158 b | 113.15 b |
Daily exposure frequency (EV) | - | 1 a |
Parameters | Non-Carcinogenic | Carcinogenic | ABSgi | ||
---|---|---|---|---|---|
RfDoral | RfDdermal | SForal | SFdermal | ||
Cr6+ | 0.003 | 0.000075 | 0.42 | 16.8 | 0.025 |
As | 0.0003 | 0.0003 | 1.5 | 1.5 | 1 |
Cd | 0.001 | 0.00005 | 6.1 | 122 | 0.05 |
F− | 0.04 | 0.04 | 1 | ||
NO3-N | 1.6 | 1.6 | 1 | ||
NO2-N | 0.1 | 0.1 | 1 | ||
NH4-N | 0.97 | 0.97 | 1 | ||
Fe | 0.3 | 0.3 | 1 | ||
Mn | 0.14 | 0.14 | 1 | ||
Hg | 0.0003 | 0.000021 | 0.07 | ||
Pb | 0.0014 | 0.0014 | 1 |
Parameters | Min | Max | Mean | Median | SD | C.V (%) | Chinese Standards | P a (%) |
---|---|---|---|---|---|---|---|---|
pH | 7.27 | 7.85 | 7.59 | 7.63 | 0.175 | 2.306 | 6.5–8.5 | 0 |
TH | 167 | 869 | 426 | 359 | 202.768 | 47.554 | 450 | 30 |
TDS | 280 | 1312 | 689 | 637 | 282.271 | 40.968 | 1000 | 10 |
SO42− | 68 | 536 | 182 | 136 | 135.689 | 74.489 | 250 | 20 |
Cl− | 7.93 | 88.10 | 47.6 | 49.3 | 26.188 | 55.055 | 250 | 0 |
F− | 0.25 | 1.71 | 0.75 | 0.69 | 0.382 | 51.226 | 1 | 20 |
cyanide | 0.0004 | 0.0004 | 0.0004 | 0.0004 | 0.000 | 0 | 0.05 | 0 |
volatile phenols | 0.0003 | 0.002 | 0.00047 | 0.0003 | 0.001 | 108.511 | 0.002 | 0 |
CODMn | 0.1 | 0.9 | 0.3 | 0.2 | 0.229 | 91.652 | 3 | 0 |
NO3-N | 0.002 | 11.300 | 4.760 | 2.255 | 4.264 | 89.567 | 20 | 0 |
NO2-N | 0.004 | 0.070 | 0.015 | 0.004 | 0.023 | 150.277 | 1 | 0 |
NH4-N | 0.025 | 0.160 | 0.065 | 0.034 | 0.048 | 73.457 | 0.5 | 0 |
Fe | 0.03 | 1.41 | 0.18 | 0.03 | 0.411 | 232.533 | 0.3 | 10 |
Mn | 0.010 | 0.139 | 0.023 | 0.010 | 0.039 | 163.918 | 0.1 | 10 |
Hg | 0.00001 | 0.00006 | 0.000017 | 0.00001 | 0.00002 | 91.319 | 0.001 | 0 |
As | 0.0002 | 0.0002 | 0.0002 | 0.0002 | 0.000 | 0.000 | 0.01 | 0 |
Cd | 0.002 | 0.002 | 0.002 | 0.002 | 0.000 | 0.000 | 0.005 | 0 |
Cr6+ | 0.004 | 0.034 | 0.009 | 0.006 | 0.009 | 93.858 | 0.05 | 0 |
Pb | 0.011 | 0.011 | 0.011 | 0.011 | 0.000 | 0.000 | 0.01 | 100 |
Parameters | Chinese Standards | Weight(wi) | Relative Weight (Wi) |
---|---|---|---|
pH | 6.5–8.5 | 4 | 0.0588 |
TDS | 1000 | 5 | 0.0735 |
TH | 450 | 5 | 0.0735 |
SO42− | 250 | 5 | 0.0735 |
Cl− | 250 | 2 | 0.0294 |
F− | 1 | 5 | 0.0735 |
Volatile phenols | 0.002 | 2 | 0.0294 |
NO3-N | 20 | 4 | 0.0588 |
NO2-N | 1 | 4 | 0.0588 |
NH4-N | 0.5 | 4 | 0.0588 |
Fe | 0.3 | 5 | 0.0735 |
Mn | 0.1 | 5 | 0.0735 |
Hg | 0.001 | 3 | 0.0441 |
Cd | 0.005 | 5 | 0.0735 |
Cr6+ | 0.05 | 5 | 0.0735 |
Pb | 0.01 | 5 | 0.0735 |
∑wi = 68 | ∑Wi = 1 |
Sample | WQI | Water Quality | Sample | WQI | Water Quality |
---|---|---|---|---|---|
S1 | 37.91 | Excellent water | S6 | 40.77 | Excellent water |
S2 | 23.63 | Excellent water | S7 | 32.88 | Excellent water |
S3 | 32.20 | Excellent water | S8 | 38.36 | Excellent water |
S4 | 38.83 | Excellent water | S9 | 42.18 | Excellent water |
S5 | 50.17 | Good water | S10 | 105.96 | Poor water |
Sample | The Non-Carcinogenic Risk | ||||||||
HQoral | HQdermal | HItotal | |||||||
Males | Females | Children | Males | Females | Children | Males | Females | Children | |
S1 | 0.393 | 0.463 | 0.956 | 0.018 | 0.019 | 0.027 | 0.411 | 0.482 | 0.983 |
S2 | 0.285 | 0.336 | 0.693 | 0.017 | 0.018 | 0.026 | 0.302 | 0.354 | 0.719 |
S3 | 0.436 | 0.514 | 1.060 | 0.018 | 0.019 | 0.028 | 0.454 | 0.533 | 1.088 |
S4 | 0.529 | 0.625 | 1.288 | 0.019 | 0.020 | 0.029 | 0.548 | 0.644 | 1.317 |
S5 | 0.827 | 0.976 | 2.012 | 0.043 | 0.045 | 0.065 | 0.870 | 1.021 | 2.077 |
S6 | 0.799 | 0.942 | 1.943 | 0.104 | 0.109 | 0.156 | 0.902 | 1.051 | 2.100 |
S7 | 0.455 | 0.536 | 1.106 | 0.027 | 0.028 | 0.040 | 0.481 | 0.564 | 1.146 |
S8 | 0.528 | 0.623 | 1.285 | 0.030 | 0.032 | 0.046 | 0.558 | 0.655 | 1.330 |
S9 | 0.401 | 0.473 | 0.975 | 0.043 | 0.045 | 0.065 | 0.443 | 0.518 | 1.040 |
S10 | 0.562 | 0.663 | 1.368 | 0.019 | 0.020 | 0.029 | 0.582 | 0.684 | 1.397 |
Mean | 0.521 | 0.615 | 1.269 | 0.034 | 0.036 | 0.051 | 0.555 | 0.651 | 1.320 |
Sample | The Carcinogenic Risk | ||||||||
CRoral | CRdermal | CRtotal | |||||||
Males | Females | Children | Males | Females | Children | Males | Females | Children | |
S1 | 6.169 × 10−5 | 7.278 × 10−5 | 3.914 × 10−5 | 1.201 × 10−5 | 1.263 × 10−5 | 4.725 × 10−6 | 7.371 × 10−5 | 8.541 × 10−5 | 4.386 × 10−5 |
S2 | 6.169 × 10−5 | 7.278 × 10−5 | 3.914 × 10−5 | 1.201 × 10−5 | 1.263 × 10−5 | 4.725 × 10−6 | 7.371 × 10−5 | 8.541 × 10−5 | 4.386 × 10−5 |
S3 | 6.169 × 10−5 | 7.278 × 10−5 | 3.914 × 10−5 | 1.201 × 10−5 | 1.263 × 10−5 | 4.725 × 10−6 | 7.371 × 10−5 | 8.541 × 10−5 | 4.386 × 10−5 |
S4 | 6.169 × 10−5 | 7.278 × 10−5 | 3.914 × 10−5 | 1.201 × 10−5 | 1.263 × 10−5 | 4.725 × 10−6 | 7.371 × 10−5 | 8.541 × 10−5 | 4.386 × 10−5 |
S5 | 7.631 × 10−5 | 9.000 × 10−5 | 4.841 × 10−5 | 2.054 × 10−5 | 2.160 × 10−5 | 8.079 × 10−6 | 9.686 × 10−5 | 1.116 × 10−4 | 5.648 × 10−5 |
S6 | 1.165 × 10−4 | 1.370 × 10−4 | 7.391 × 10−5 | 4.400 × 10−5 | 4.625 × 10−5 | 1.730 × 10−5 | 1.605 × 10−4 | 1.837 × 10−4 | 9.121 × 10−5 |
S7 | 6.718 × 10−5 | 7.924 × 10−5 | 4.261 × 10−5 | 1.521 × 10−5 | 1.599 × 10−5 | 5.983 × 10−6 | 8.239 × 10−5 | 9.524 × 10−5 | 4.860 × 10−5 |
S8 | 6.900 × 10−5 | 8.140 × 10−5 | 4.377 × 10−5 | 1.628 × 10−5 | 1.711 × 10−5 | 6.402 × 10−6 | 8.528 × 10−5 | 9.851 × 10−5 | 5.018 × 10−5 |
S9 | 7.814 × 10−5 | 9.218 × 10−5 | 4.957 × 10−5 | 2.161 × 10−5 | 2.272 × 10−5 | 8.498 × 10−6 | 9.975 × 10−5 | 1.149 × 10−4 | 5.807 × 10−5 |
S10 | 6.169 × 10−5 | 7.278 × 10−5 | 3.914 × 10−5 | 1.201 × 10−5 | 1.263 × 10−5 | 4.725 × 10−6 | 7.371 × 10−5 | 8.541 × 10−5 | 4.386 × 10−5 |
Mean | 7.156 × 10−5 | 8.442 × 10−5 | 4.540 × 10−5 | 1.777 × 10−5 | 1.868 × 10−5 | 6.989 × 10−6 | 8.933 × 10−5 | 1.031 × 10−4 | 5.239 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Sun, C.; Chen, W.; Zhang, Q.; Zhou, S.; Lin, R.; Wang, Y. Groundwater Quality and Associated Human Health Risk in a Typical Basin of the Eastern Chinese Loess Plateau. Water 2022, 14, 1371. https://doi.org/10.3390/w14091371
Li J, Sun C, Chen W, Zhang Q, Zhou S, Lin R, Wang Y. Groundwater Quality and Associated Human Health Risk in a Typical Basin of the Eastern Chinese Loess Plateau. Water. 2022; 14(9):1371. https://doi.org/10.3390/w14091371
Chicago/Turabian StyleLi, Jiao, Congjian Sun, Wei Chen, Qifei Zhang, Sijie Zhou, Ruojing Lin, and Yihan Wang. 2022. "Groundwater Quality and Associated Human Health Risk in a Typical Basin of the Eastern Chinese Loess Plateau" Water 14, no. 9: 1371. https://doi.org/10.3390/w14091371
APA StyleLi, J., Sun, C., Chen, W., Zhang, Q., Zhou, S., Lin, R., & Wang, Y. (2022). Groundwater Quality and Associated Human Health Risk in a Typical Basin of the Eastern Chinese Loess Plateau. Water, 14(9), 1371. https://doi.org/10.3390/w14091371