Large-Scale Surface Water Mapping Based on Landsat and Sentinel-1 Images
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
3. Methodology
3.1. Sample Collection
3.2. Multi-Source Features Selection
3.3. Constructing a Regional Adaptive Random Forest Classification Model
3.4. Accuracy Evaluation
4. Results and Discussion
4.1. Visual Comparison of Water Extraction Results
4.2. Comparison with JRC GSW
4.3. Comparison with the Different Size of Sample Lakes
4.4. Comparison of Surface Water Products
4.5. Difference between TOA Image and SR Image in Surface Water Extraction
4.6. Advantages and Potential Applications of Our Proposed Method
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, C.; Chen, Y.; Zhang, S.; Wu, J. Detecting, Extracting, and Monitoring Surface Water from Space Using Optical Sensors: A Review. Rev. Geophys. 2018, 56, 333–360. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; McIntyre, P.B.; Gessner, M.O.; Dudgeon, D.; Prusevich, A.; Green, P.; Glidden, S.; Bunn, S.E.; Sullivan, C.A.; Liermann, C.R. Global threats to human water security and river biodiversity. Nature 2010, 467, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef] [PubMed]
- Voigt, S.; Kemper, T.; Riedlinger, T.; Kiefl, R.; Scholte, K.; Mehl, H. Satellite image analysis for disaster and crisis-management support. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1520–1528. [Google Scholar] [CrossRef]
- Brisco, B. Mapping and monitoring surface water and wetlands with synthetic aperture radar. Remote Sens. Wetl. Appl. Adv. 2015, 119–136. [Google Scholar] [CrossRef]
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Marcus, W.A.; Fonstad, M.A. Optical remote mapping of rivers at sub-meter resolutions and watershed extents. Earth Surf. Process. Landf. Group 2008, 33, 4–24. [Google Scholar] [CrossRef]
- Klein, I.; Dietz, A.J.; Gessner, U.; Galayeva, A.; Myrzakhmetov, A.; Kuenzer, C. Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 335–349. [Google Scholar] [CrossRef]
- Lu, S.; Ma, J.; Ma, X.; Tang, H.; Zhao, H.; Hasan Ali Baig, M. Time series of the Inland Surface Water Dataset in China (ISWDC) for 2000–2016 derived from MODIS archives. Earth Syst. Sci. Data 2019, 11, 1099–1108. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Dong, J.; Xiao, X.; Xiao, T.; Yang, Z.; Zhao, G.; Zou, Z.; Qin, Y. Open surface water mapping algorithms: A comparison of water-related spectral indices and sensors. Water 2017, 9, 256. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Qin, Q.; Yésou, H.; Ledauphin, T.; Koehl, M.; Grussenmeyer, P.; Zhu, Z. Monthly estimation of the surface water extent in France at a 10-m resolution using Sentinel-2 data. Remote Sens. Environ. 2020, 244, 111803. [Google Scholar] [CrossRef]
- Shanlong, L.; Gaohuai, X.; Li, J.; Wei, Z.; Haijing, L. Extraction of the spatial-temporal lake water surface dataset in the Tibetan Plateau over the past 10 years. Remote Sens. Land Resour. 2016, 28, 181–187. [Google Scholar]
- Du, J.-K.; Huang, Y.-S.; Feng, X.-Z.; Wang, Z.-l. Study on water bodies extraction and classification from SPOT image. J. Remote Sens. 2001, 5, 219–225. [Google Scholar]
- Feng, W.; Huiran, J. Mapping Surface Water Extent in Mainland Alaska Using VIIRS Surface Reflectance. 2021 IEEE Int. Geosci. Remote Sens. Symp. Igarss 2021, 6120–6123. [Google Scholar] [CrossRef]
- Li, K.W.; Xu, E.Q. High-accuracy continuous mapping of surface water dynamics using automatic update of training samples and temporal consistency modification based on Google Earth Engine: A case study from Huizhou, China. Isprs J. Photogramm. Remote Sens. 2021, 179, 66–80. [Google Scholar] [CrossRef]
- Duan, Y.M.; Zhang, W.Y.; Huang, P.; He, G.J.; Guo, H.X. A New Lightweight Convolutional Neural Network for Multi-Scale Land Surface Water Extraction from GaoFen-1D Satellite Images. Remote Sens. 2021, 13, 4576. [Google Scholar] [CrossRef]
- Shao, Z.; Fu, H.; Fu, P.; Yin, L. Mapping urban impervious surface by fusing optical and SAR data at the decision level. Remote Sens. 2016, 8, 945. [Google Scholar] [CrossRef] [Green Version]
- Shao, Z.; Wu, W.; Guo, S. IHS-GTF: A fusion method for optical and synthetic aperture radar data. Remote Sens. 2020, 12, 2796. [Google Scholar] [CrossRef]
- Li, Y.; Niu, Z.; Xu, Z.; Yan, X. Construction of high spatial-temporal water body dataset in China based on Sentinel-1 archives and GEE. Remote Sens. 2020, 12, 2413. [Google Scholar] [CrossRef]
- Wang, R.; Xia, H.; Qin, Y.; Niu, W.; Pan, L.; Li, R.; Zhao, X.; Bian, X.; Fu, P. Dynamic monitoring of surface water area during 1989–2019 in the hetao plain using landsat data in Google Earth Engine. Water 2020, 12, 3010. [Google Scholar] [CrossRef]
- Han, Q.; Niu, Z. Construction of the long-term global surface water extent dataset based on water-NDVI spatio-temporal parameter set. Remote Sens. 2020, 12, 2675. [Google Scholar] [CrossRef]
- Parente, L.; Taquary, E.; Silva, A.P.; Souza, C.; Ferreira, L. Next generation mapping: Combining deep learning, cloud computing, and big remote sensing data. Remote Sens. 2019, 11, 2881. [Google Scholar] [CrossRef] [Green Version]
- Thanh Noi, P.; Kappas, M. Comparison of random forest, k-nearest neighbor, and support vector machine classifiers for land cover classification using Sentinel-2 imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Liu, L.; Wu, C.; Chen, X.; Gao, Y.; Xie, S.; Zhang, B. Development of a global 30 m impervious surface map using multisource and multitemporal remote sensing datasets with the Google Earth Engine platform. Earth Syst. Sci. Data 2020, 12, 1625–1648. [Google Scholar] [CrossRef]
- Zhu, Z.; Gallant, A.L.; Woodcock, C.E.; Pengra, B.; Olofsson, P.; Loveland, T.R.; Jin, S.; Dahal, D.; Yang, L.; Auch, R.F. Optimizing selection of training and auxiliary data for operational land cover classification for the LCMAP initiative. ISPRS J. Photogramm. Remote Sens. 2016, 122, 206–221. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, J.; Wang, L.; Hu, L.; Gong, P. Comparison of classification algorithms and training sample sizes in urban land classification with Landsat thematic mapper imagery. Remote Sens. 2014, 6, 964–983. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, H.; Lin, H. Improving the impervious surface estimation with combined use of optical and SAR remote sensing images. Remote Sens. Environ. 2014, 141, 155–167. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Xie, S.; Gao, Y. Fine land-cover mapping in China using Landsat datacube and an operational SPECLib-based approach. Remote Sens. 2019, 11, 1056. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PAW | 0.877 | 0.982 | 0.949 | 0.902 | 0.840 | 0.891 | 0.996 | 0.927 | 0.873 | 0.912 | 0.905 | 0.932 | |
UAW | 0.999 | 0.997 | 0.999 | 0.999 | 0.998 | 0.999 | 0.999 | 0.997 | 0.998 | 0.997 | 0.998 | 0.993 | |
NE | PANW | 0.999 | 0.997 | 0.999 | 0.999 | 0.998 | 0.999 | 0.999 | 0.997 | 0.998 | 0.997 | 0.998 | 0.993 |
UANW | 0.890 | 0.982 | 0.951 | 0.911 | 0.862 | 0.902 | 0.996 | 0.932 | 0.887 | 0.919 | 0.913 | 0.936 | |
OA | 0.938 | 0.990 | 0.974 | 0.951 | 0.919 | 0.945 | 0.998 | 0.962 | 0.936 | 0.955 | 0.952 | 0.963 | |
Kappa | 0.876 | 0.979 | 0.948 | 0.901 | 0.838 | 0.890 | 0.995 | 0.924 | 0.871 | 0.909 | 0.903 | 0.925 | |
PAW | 0.882 | 0.932 | 0.882 | 0.937 | 0.956 | 0.956 | 0.962 | 0.969 | 0.953 | 0.968 | 0.982 | 0.922 | |
UAW | 0.999 | 0.999 | 0.998 | 1.000 | 0.999 | 0.998 | 0.999 | 0.998 | 0.999 | 0.998 | 1.000 | 0.999 | |
NC | PANW | 0.999 | 0.999 | 0.998 | 1.000 | 0.999 | 0.998 | 0.999 | 0.998 | 0.999 | 0.998 | 1.000 | 0.999 |
UANW | 0.894 | 0.936 | 0.894 | 0.941 | 0.958 | 0.958 | 0.963 | 0.970 | 0.955 | 0.969 | 0.982 | 0.928 | |
OA | 0.941 | 0.966 | 0.940 | 0.969 | 0.978 | 0.977 | 0.980 | 0.984 | 0.976 | 0.983 | 0.991 | 0.961 | |
Kappa | 0.881 | 0.931 | 0.880 | 0.937 | 0.955 | 0.954 | 0.961 | 0.967 | 0.952 | 0.966 | 0.982 | 0.921 | |
PAW | 0.894 | 0.927 | 0.938 | 0.977 | 0.982 | 0.983 | 0.989 | 0.983 | 0.983 | 0.979 | 0.986 | 0.909 | |
UAW | 1.000 | 1.000 | 0.999 | 0.998 | 0.997 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 0.997 | 0.999 | |
WC | PANW | 1.000 | 1.000 | 0.999 | 0.998 | 0.997 | 1.000 | 1.000 | 1.000 | 0.999 | 1.000 | 0.997 | 0.999 |
UANW | 0.904 | 0.932 | 0.942 | 0.977 | 0.982 | 0.983 | 0.989 | 0.983 | 0.983 | 0.979 | 0.986 | 0.917 | |
OA | 0.947 | 0.964 | 0.969 | 0.988 | 0.990 | 0.992 | 0.995 | 0.992 | 0.991 | 0.990 | 0.992 | 0.954 | |
Kappa | 0.894 | 0.927 | 0.937 | 0.975 | 0.979 | 0.983 | 0.989 | 0.983 | 0.982 | 0.979 | 0.983 | 0.908 | |
PAW | 0.959 | 0.965 | 0.816 | 0.905 | 0.886 | 0.933 | 0.958 | 0.954 | 0.890 | 0.915 | 0.983 | 0.943 | |
UAW | 0.999 | 1.000 | 0.996 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.999 | 0.998 | 0.998 | 0.998 | |
NW | PANW | 0.999 | 1.000 | 0.997 | 0.999 | 0.999 | 0.999 | 0.998 | 0.998 | 0.999 | 0.998 | 0.998 | 0.998 |
UANW | 0.961 | 0.966 | 0.844 | 0.913 | 0.898 | 0.937 | 0.960 | 0.956 | 0.901 | 0.922 | 0.983 | 0.946 | |
OA | 0.979 | 0.983 | 0.907 | 0.952 | 0.943 | 0.966 | 0.978 | 0.976 | 0.945 | 0.957 | 0.991 | 0.971 | |
Kappa | 0.958 | 0.965 | 0.813 | 0.904 | 0.885 | 0.932 | 0.956 | 0.952 | 0.889 | 0.913 | 0.981 | 0.941 | |
PAW | 0.972 | 0.984 | 0.957 | 0.987 | 0.994 | 0.986 | 0.987 | 0.978 | 0.947 | 0.993 | 0.976 | 0.987 | |
UAW | 0.998 | 0.999 | 0.997 | 0.999 | 0.997 | 0.999 | 0.996 | 0.999 | 0.997 | 0.998 | 0.997 | 0.997 | |
EC | PANW | 0.998 | 0.999 | 0.997 | 0.999 | 0.997 | 0.999 | 0.996 | 0.999 | 0.997 | 0.998 | 0.997 | 0.997 |
UANW | 0.973 | 0.984 | 0.959 | 0.987 | 0.994 | 0.986 | 0.987 | 0.978 | 0.950 | 0.993 | 0.976 | 0.987 | |
OA | 0.985 | 0.992 | 0.977 | 0.993 | 0.996 | 0.993 | 0.992 | 0.989 | 0.972 | 0.996 | 0.987 | 0.992 | |
Kappa | 0.970 | 0.983 | 0.954 | 0.986 | 0.991 | 0.985 | 0.983 | 0.977 | 0.944 | 0.991 | 0.973 | 0.984 | |
PAW | 0.981 | 0.936 | 0.984 | 0.985 | 0.995 | 0.996 | 0.991 | 0.987 | 0.980 | 0.994 | 0.988 | 0.905 | |
UAW | 0.998 | 0.997 | 0.998 | 1.000 | 0.999 | 0.997 | 0.998 | 0.996 | 0.998 | 0.999 | 0.999 | 0.999 | |
SC | PANW | 0.998 | 0.997 | 0.998 | 1.000 | 0.999 | 0.997 | 0.998 | 0.996 | 0.998 | 0.999 | 0.999 | 0.999 |
UANW | 0.981 | 0.940 | 0.984 | 0.985 | 0.995 | 0.996 | 0.991 | 0.987 | 0.980 | 0.994 | 0.988 | 0.913 | |
OA | 0.990 | 0.967 | 0.991 | 0.993 | 0.997 | 0.997 | 0.995 | 0.992 | 0.989 | 0.997 | 0.994 | 0.952 | |
Kappa | 0.979 | 0.993 | 0.982 | 0.985 | 0.994 | 0.993 | 0.989 | 0.983 | 0.978 | 0.993 | 0.987 | 0.904 | |
PAW | 0.928 | 0.954 | 0.921 | 0.949 | 0.942 | 0.958 | 0.981 | 0.966 | 0.938 | 0.960 | 0.970 | 0.933 | |
UAW | 0.999 | 0.999 | 0.998 | 0.999 | 0.998 | 0.999 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | |
PANW | 0.999 | 0.999 | 0.998 | 0.999 | 0.998 | 0.999 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | 0.998 | |
Mean | UANW | 0.934 | 0.957 | 0.929 | 0.952 | 0.948 | 0.960 | 0.981 | 0.968 | 0.943 | 0.963 | 0.971 | 0.938 |
OA | 0.963 | 0.977 | 0.960 | 0.974 | 0.971 | 0.978 | 0.990 | 0.983 | 0.968 | 0.980 | 0.985 | 0.966 | |
Kappa | 0.926 | 0.963 | 0.919 | 0.948 | 0.940 | 0.956 | 0.979 | 0.964 | 0.936 | 0.959 | 0.968 | 0.931 |
Name | Water Types | Area | Number of Months of Lake Area Acquisition | Maximum Area Difference | Average Error |
---|---|---|---|---|---|
Zhaling Lake | large | more than 500 km2 | 6 | 9.128 km2 | 0.568% |
Hongze Lake | large | more than 500 km2 | 9 | 163.763 km2 | 9.9% |
Zhari Namco Lake | large | more than 500 km2 | 8 | 3.181 km2 | 0.064% |
Changhu Lake | medium | 100–500 km2 | 8 | 5.698 km2 | 2.125% |
Dalinuoer Lake | medium | 100–500 km2 | 7 | 1.659 km2 | 0.589% |
Fuxian Lake | medium | 10–500 km2 | 10 | 0.994 km2 | 0.298% |
Daxi Reservoir | small | less than 100 km2 | 9 | 0.601 km2 | 2.8% |
Nanshui Reservoir | small | less than 100 km2 | 9 | 1.641 km2 | 3.299% |
Fengjiashan Reservoir | small | less than 100 km2 | 12 | 0.425 km2 | 1.589% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, H.; Lu, S.; Ali Baig, M.H.; Li, M.; Fang, C.; Wang, Y. Large-Scale Surface Water Mapping Based on Landsat and Sentinel-1 Images. Water 2022, 14, 1454. https://doi.org/10.3390/w14091454
Tang H, Lu S, Ali Baig MH, Li M, Fang C, Wang Y. Large-Scale Surface Water Mapping Based on Landsat and Sentinel-1 Images. Water. 2022; 14(9):1454. https://doi.org/10.3390/w14091454
Chicago/Turabian StyleTang, Hailong, Shanlong Lu, Muhammad Hasan Ali Baig, Mingyang Li, Chun Fang, and Yong Wang. 2022. "Large-Scale Surface Water Mapping Based on Landsat and Sentinel-1 Images" Water 14, no. 9: 1454. https://doi.org/10.3390/w14091454
APA StyleTang, H., Lu, S., Ali Baig, M. H., Li, M., Fang, C., & Wang, Y. (2022). Large-Scale Surface Water Mapping Based on Landsat and Sentinel-1 Images. Water, 14(9), 1454. https://doi.org/10.3390/w14091454