Hydrochemical Characteristics and Hydrogeochemical Simulation Research of Groundwater in the Guohe River Basin (Henan Section)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional General Situation
2.2. Sample Collection and Research Methods
2.3. Statistical Analysis
3. Results and Discussion
3.1. Analysis of Groundwater Chemical Types
3.1.1. Statistical Characteristics of Main Indicators: Analysis of Hydrochemical Types and Characteristics
3.1.2. Analysis of Hydrochemical Types and Characteristics
3.2. Analysis of Water-Rock Interaction
3.2.1. Ion Proportion Relation and Component Origin Analysis
3.2.2. Gibbs Diagrams and Their Implications
3.3. Reverse Hydrogeochemical Simulation
3.3.1. Mineral Saturation Index
3.3.2. Mineral Saturation Index
3.3.3. Analysis of the Hydrogeochemical Evolution Model
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Domenico, P.A. Concepts and Models in Groundwater Hydrology; McGraw-Hill: New York, NY, USA, 1972; pp. 1–105. [Google Scholar]
- Schuh, W.M.; Klinkebiel, D.L.; Gardner, J.C. Tracer and nitrate movement to groundwater in the northern great plains. J. Environ. Qual. 1997, 26, 1335–1347. [Google Scholar] [CrossRef]
- Freeze, A.R.; Cherry, J.A. Groundwater; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1979; p. 604. [Google Scholar]
- Klovan, J.E. R- and Q-Mode Factor Analysis. In Concepts in Geostatistics; McCammon, R.B., Ed.; Springer: Berlin/Heidelberg, Germany, 1975; pp. 21–69. [Google Scholar]
- Lloyd, J.W.; Heathcote, J.A. Natural Inorganic Hydrochemistry in Relation to Groundwater; Clarendon Press: Oxford, UK, 1985; p. 15. [Google Scholar]
- Zhang, Z. Developing hydrogeology. Hydrogeol. Eng. Geol. 1979, 1, 12–14. [Google Scholar]
- Shen, Z.; Zhu, W.; Zhong, Z. Fundamentals of Hydrogeochemistry; Geological Press: Beijing, China, 1993; pp. 1–25. [Google Scholar]
- Gu, H.; Chi, B.; Wang, H.; Zhang, Y.; Wang, M. Relationship between surface water and groundwater in the Liujiang basin-Hydrochenmical constrains. Adv. Earth Sci. 2017, 32, 789–799. [Google Scholar]
- Fuchu, Z.; Bin, W.; Fan, G.; Mingliang, D.; Liantong, X. Hydrochemical characteristics of groundwater and evaluation of water quality in arid area of Northwest China: A case study in the plain area of Kuitun River Basin. Arab. J. Geosci. 2021, 14, 2099. [Google Scholar] [CrossRef]
- Adams, S.; Titus, R.; Pietersen, K. Hydrochemical characteristics of aquifers near Sutherland in the Western Karoo, South Africa. J. Hydrol. 2001, 241, 91–103. [Google Scholar] [CrossRef] [Green Version]
- Hitchon, B.; Billings, G.k.; Klovan, J.E. Geochemistry and origin of formation waters in the western Canada sedimentary basin—III. Factors controlling chemical composition. Geochim. Cosmochim. Acta 1971, 35, 567–598. [Google Scholar] [CrossRef]
- Gupta, L.P.; Subramanian, V. Geochemical factors controlling the chemical nature of water and sediments in the Gomti River, India. Environ. Geol. 1998, 36, 102–108. [Google Scholar] [CrossRef]
- Kumar, S.; Venkatesh A, S.; Singh, R. Geochemical signatures and isotopic systematics constraining dynamics of fluoride contamination in groundwater across Jamui district, Indo-Gangetic alluvial plains, India. Chemosphere 2018, 205, 493. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh U, K. Hydrogeochemical characterizations and quality evaluation of groundwater in the major river basins of a geologically and anthropogenically driven semi-arid tract of India. Sci. Total Environ. 2022, 805, 150323. [Google Scholar] [CrossRef]
- Kaur, L.; Rishi M, S.; Sharma, S. Hydrogeochemical characterization of groundwater in alluvial plains of River Yamuna in Northern India: An insight of controlling processes. J. King Saud Univ. Sci. 2019, 31, 1245–1253. [Google Scholar] [CrossRef]
- Mudzielwana, R.; Gitari, M.W.; Akinyemi, S.A. Hydrogeochemical characteristics of arsenic rich groundwater in Greater Giyani Municipality, Limpopo Province, South Africa. Groundw. Sustain. Dev. 2020, 10, 100336. [Google Scholar] [CrossRef]
- Nasher, N.M.R.; Ahmed, M.H. Groundwater geochemistry and hydrogeochemical processes in the Lower Ganges-Brahmaputra-Meghna River Basin areas, Bangladesh. J. Asian Earth Sci. X 2021, 6, 100062. [Google Scholar]
- Vinnarasi, F.; Srinivasamoorthy, K.; Saravanan, K. Hydrogeochemical characteristics and risk evaluation of potential toxic elements in groundwater from Shanmughanadhi, Tamilnadu, India. Environ. Res. 2022, 204, 112199. [Google Scholar] [CrossRef]
- Gomo, M. Conceptual hydrogeochemical characteristics of a calcite and dolomite acid mine drainage neutralised circumneutral groundwater system. Water Sci. 2018, 32, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Rumuri, R. Dataset on hydrogeochemical characteristics of groundwater and surface water in Kattumannarkoil Taluk, India. Data Brief 2020, 32, 106058. [Google Scholar] [CrossRef]
- Aher, S.; Deshmukh, K.; Gawali, P. Hydrogeochemical characteristics and groundwater quality investigation along the basinal cross-section of Pravara River, Maharashtra, India. J. Asian Earth Sci. X 2022, 30, 100082. [Google Scholar] [CrossRef]
- Chu, W.; Chen, F.; Xiong, W.; Ge, Z.; Yuzhe, Z. Hydrogeochemical characterization and quality assessment of groundwater using self-organizing maps in the Hangjinqi gasfield area, Ordos Basin. NW China. Geosci. Front. 2021, 12, 781–790. [Google Scholar]
- Zhaoshi, W.; Xijun, L.; Kuanyi, L. Water quality assessment of rivers in Lake Chaohu Basin (China) using water quality index. Ecol. Indic. 2021, 20, 121. [Google Scholar]
- Peng, K.; Liu, W.; Wei, S.; Liu, C.; Chen, Y.; Dong, H.; Su, D.; Yuan, W.; Han, L. Study on the recharge source of karst groundwater in Jinan city based on hydrogeochenmical and isotopic characteristics. Carsologica Sin. 2020, 39, 650–657. [Google Scholar]
- Gao, Z.; Liu, J.; Li, Y.; Li, N.; Wang, M.; Wang, Z.; Wang, Z.; Liu, M. Hydrochenmical characteristics and hydrogeochenmical simulation of pore groundwater in Lhasa valley area. J. Shandong Univ. Sci. Technol. (Nat. Sci.) 2020, 39, 1–10. [Google Scholar]
- Jia, Z.; Zang, H.; Hobbs, P.; Zheng, X.; Xu, Y.; Wang, K. Application of inverse modeling in a study of the hydrogeochemical evolution of karst groundwater in the Jinci Spring region, northern China. Environ. Earth Sci. 2017, 76, 312. [Google Scholar] [CrossRef]
- Ren, X.; Li, P.; He, X.; Su, F.; Elumalai, V. Hydrogeochemical processes affecting groundwater chemistry in the central part of the Guanzhong Basin, China. Arch. Environ. Contam. Toxicol. 2021, 80, 74–91. [Google Scholar] [CrossRef]
- Wei, M.; Wu, J.; Li, W.; Zhang, Q.; Su, F.; Wang, Y. Groundwater Geochemistry and its Impacts on Groundwater Arsenic Enrichment, Variation, and Health Risks in Yongning County, Yinchuan Plain of Northwest China. Expo. Health. 2021, 1–20. [Google Scholar] [CrossRef]
- Subba Rao, N.; Ravindra, B.; Wu, J. Geochemical and health risk evaluation of fluoride rich groundwater in Sattenapalle Region, Guntur district, Andhra Pradesh, India. Human Ecol. Risk Assess. 2020, 26, 2316–2348. [Google Scholar] [CrossRef]
- Wu, J.; Li, P.; Wang, D.; Ren, X.; Wei, M. Statistical and multivariate statistical techniques to trace the sources and affecting factors of groundwater pollution in a rapidly growing city on the Chinese Loess Plateau. Human Ecol. Risk Assess. 2020, 26, 1603–1621. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Y.; Zhou, H. Groundwater chemistry and groundwater quality index incorporating health risk weighting in Dingbian County, Ordos basin of northwest China. Geochemistry 2020, 80, 125607. [Google Scholar] [CrossRef]
- Prasanna, M.V.; Chidambaram, S.; Shahul Hameed, A. Srinivasamoorthy, K. Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environ. Monit. Assess. 2010, 168, 63–90. [Google Scholar] [CrossRef] [Green Version]
- Parkhurst, D.L.; Appelo, C.A.J. Description of input and examples for phreeqc version 3—A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In U.S. Geological Survey Techniques and Methods; Book 6, Chaper A43; U.S. Geological Survey: Denver, CO, USA, 2013; p. 497. [Google Scholar]
- Ma, T.; Zhang, C. Chemical characteristics of shallow groundwater in Guo River area. Ground Water 2021, 43, 22–24. [Google Scholar]
- Zheng, T.; Jiao, T.; Hu, B.; Gong, J.; Hou, X.; Wang, H. Hydrochemical characteristics and origin of groundwater in the central Guohe river Basin. Environ. Sci. 2021, 42, 766–775. [Google Scholar]
- He, X.-L.; Wu, Y.-H.; Zhou, J.; Bing, H.-J. Hydro-chemical Characteristics and Quality Assessment of Surface Water in Gongga Mountain Region. Environ. Sci. 2016, 37, 3798–3805. [Google Scholar]
- Wang, X.; Xu, Y.J.; Zhang, L. Watershed scale spatiotemporal nitrogen transport and source tracing using dual isotopes among surface water, sediments and groundwater in the Yiluo River Watershed, Middle of China. Sci. Total Environ. 2022, 833, 155180. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, G.; Xu, Y.J. Impacts of the 2013 extreme flood in Northeast China on regional groundwater depth and quality. Water 2015, 7, 4575–4592. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.H.; Liu, C.L.; Hou, H.B.; Wang, X.Y. Identifying watershed-scale spatiotemporal groundwater and surface water mixing function in the Yiluo River, middle of China. Environ. Sci. Pollut. Res. 2021, 28, 11053–11065. [Google Scholar] [CrossRef]
- Gamvroula, D.; Alexakis, D.; Stamatis, G. Diagnosis of groundwater quality and assessment of contamination sources in the Megara basin (Attica, Greece). Arab. J. Geosci. 2013, 6, 2367–2381. [Google Scholar] [CrossRef]
- Li, H.; Xia, L.; Jiang, G. Analysis on geothermal fluid ion ratios in Tianjin area. Ground Water 2015, 37, 35–37. [Google Scholar]
- Tang, C.; Zheng, X.; Liang, Y. Hydrochemical Characteristics and Formation Causes of Ground Karst Water Systems in the Longzici Spring Catchment. Environ. Sci. 2020, 41, 2087–2095. [Google Scholar]
- Sun, P.; Yu, S.; Mo, F.; He, S.; Lu, J.; Yuan, Y. Hydrochemical characteristics and influencing factors in different geological background: A case study in Darongjiang and Lingqu Basin, Guangxi, China. Environ. Sci. 2016, 37, 123–131. [Google Scholar]
- Xu, D. Study on Chemical Evolution Characteristics and Control Factors of Groundwater in Suxian Mining Area. Master’s Degree, Hefei University of Technology, Hefei, China, 2017. [Google Scholar]
- LI, X. Study on Groundwater Circulation Characteristics in Guohe River Basin (Henan Section). Master’s Degree, North China University of Water Resources and Electric Power, Zhengzhou, China, 2020. [Google Scholar]
- Zhang, L. Study on Evaluation and Sustainable Development and Utilization of Geothermal Water Resources in Kaifeng City. Master’s Degree, Henan Polytechnic University, Jiaozuo, China, 2011. [Google Scholar]
- Jiang, X.; Li, J.; Guo, L.; Zhang, T.; Zhu, J. Chemical characteristics and formation mechanism of shallow groundwater in the northern Henan plain. Bull. Geol. Sci. Technol. 2021, 40, 290–300. [Google Scholar]
Type | Project | K+ | Na+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | Hardness | TDS | TDS [35] |
---|---|---|---|---|---|---|---|---|---|---|---|
Shallow | Mean | 2.55 | 147.66 | 89.77 | 73.84 | 117.25 | 126.50 | 686.91 | 528.12 | 917 | 823 |
S.D. | 4.79 | 158.94 | 49.31 | 32.68 | 122.55 | 159.28 | 191.52 | 225.39 | 507 | 321 | |
Min. | 0.30 | 15.90 | 15.30 | 24.90 | 12.30 | 3.82 | 359.00 | 141 | 400 | 289 | |
Max. | 41.80 | 1420.00 | 384.00 | 205.00 | 696.00 | 1287.00 | 1640.00 | 1780 | 4372 | 1620 | |
C.V. 1 | 1.88 | 1.08 | 0.55 | 0.44 | 1.05 | 1.26 | 0.28 | 0.43 | 0.55 | 0.39 | |
Intermediate | Mean | 1.58 | 203.01 | 18.18 | 16.26 | 77.86 | 76.28 | 398.59 | 112.35 | 622 | 1322 |
S.D. | 0.37 | 71.45 | 21.08 | 18.66 | 65.99 | 52.01 | 114.69 | 126.74 | 178 | 264 | |
Min. | 0.60 | 37.00 | 3.30 | 1.70 | 21.50 | 21.50 | 251.00 | 15 | 366 | 869 | |
Max. | 2.40 | 353.00 | 87.80 | 88.90 | 320.00 | 211.00 | 807.00 | 585 | 1080 | 1710 | |
C.V.1 | 0.24 | 0.35 | 1.16 | 1.15 | 0.85 | 0.68 | 0.29 | 1.13 | 0.29 | 0.20 | |
Deep | Mean | 11.16 | 8.19 | 60.80 | 64.73 | 372.61 | 61.63 | 560.00 | 1.56 | 200 | 792 |
S.D. | 15.10 | 10.13 | 42.35 | 40.39 | 60.51 | 78.82 | 136.33 | 0.33 | 58 | 139 | |
Min. | 1.00 | 55.10 | 3.00 | 1.40 | 18.80 | 22.10 | 244.00 | 13 | 347 | 561 | |
Max. | 2.40 | 330.00 | 94.60 | 57.90 | 188.00 | 193.00 | 490.00 | 475 | 950 | 970 | |
C.V. 1 | 1.35 | 1.24 | 0.70 | 0.62 | 0.16 | 1.28 | 0.24 | 0.21 | 0.29 | 0.18 |
Point | SICalcite | SIDolomite | SIGypsum | SIHalite | Point | SICalcite | SIDolomite | SIGypsum | SIHalite |
---|---|---|---|---|---|---|---|---|---|
W-Q06 | 0.38 | 0.60 | −2.44 | −7.62 | W-S08 | −0.08 | −0.07 | −3.30 | −6.91 |
W-Q51 | 0.41 | 1.60 | −1.40 | −4.70 | W-S16 | 0.11 | 0.40 | −3.12 | −6.71 |
W-Q88 | 0.54 | 0.88 | −2.01 | −8.01 | W-S22 | 0.45 | 1.14 | −2.96 | −6.73 |
W-Z02 | −0.34 | −0.51 | −2.91 | −6.91 | W-S24 | 0.20 | 0.61 | −3.22 | −6.78 |
W-Z35 | −1.13 | −2.18 | −3.39 | −7.01 | W-S30 | 0.19 | 0.54 | −3.25 | −6.81 |
W-Z36 | −0.56 | −0.85 | −2.04 | −5.57 |
Point | K+ | Na+ | Ca2+ | Mg2+ | Cl− | SO42− | HCO3− | pH | Temp. | TDS |
---|---|---|---|---|---|---|---|---|---|---|
W-Q06 | 2.30 | 32.20 | 92.30 | 33.40 | 27.90 | 13.10 | 472.00 | 7.27 | 19.0 | 453 |
W-Q51 | 2.40 | 1420.00 | 34.00 | 114.00 | 696 | 1287.00 | 1640.00 | 7.57 | 18.7 | 4372 |
W-Z02 | 1.80 | 130.00 | 12.20 | 9.60 | 34.00 | 24.30 | 294.00 | 7.57 | 19.5 | 403 |
W-Z35 | 1.10 | 164.00 | 4.40 | 3.10 | 21.50 | 21.50 | 359.00 | 7.18 | 16.6 | 420 |
W-Z36 | 1.75 | 336.00 | 22.00 | 21.70 | 320.00 | 154.00 | 282.00 | 7.21 | 20.1 | 1080 |
W-S08 | 1.60 | 176.00 | 4.40 | 2.50 | 25.50 | 28.90 | 344.00 | 8.18 | 23.5 | 438 |
W-S16 | 1.30 | 190.00 | 5.00 | 3.00 | 38.60 | 41.20 | 335.00 | 8.28 | 28.6 | 477 |
W-S30 | 1.20 | 230.00 | 3.70 | 2.20 | 25.40 | 45.50 | 461.00 | 8.43 | 26.4 | 552 |
Mineral Phase | Shallow Simulation Path | Intermediate Simulation Path | Deep Simulation Path | ||
---|---|---|---|---|---|
W-Q06→W-Q51 | W-Z02→W-Z35 | W-Z35→W-Z36 | W-S08→W-S16 | W-S16→W-S30 | |
CaCO3 | 12.550 | 1.098 | −4.343 | −1.398 | −1.264 |
CaMg (CO3)2 | 3.408 | −0.268 | 0.767 | 0.021 | −0.033 |
CaSO4·2H2O | 3.246 | −0.109 | 3.693 | 1.476 | 2.284 |
NaCl | 18.940 | −0.353 | 8.430 | 0.370 | −0.452 |
CO2 | −0.089 | 1.495 | 1.552 | 1.210 | 3.398 |
O2 | 20.170 | 0.159 | −4.624 | −2.696 | −4.478 |
H2S | 10.080 | 0.079 | −2.312 | −1.348 | −2.239 |
NaX | 41.080 | 1.833 | −0.648 | 0.167 | 2.038 |
CaX2 | −20.540 | −0.916 | 0.324 | −0.083 | −1.019 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, F.; Zhou, D.; Li, Z.; Li, X. Hydrochemical Characteristics and Hydrogeochemical Simulation Research of Groundwater in the Guohe River Basin (Henan Section). Water 2022, 14, 1461. https://doi.org/10.3390/w14091461
Yu F, Zhou D, Li Z, Li X. Hydrochemical Characteristics and Hydrogeochemical Simulation Research of Groundwater in the Guohe River Basin (Henan Section). Water. 2022; 14(9):1461. https://doi.org/10.3390/w14091461
Chicago/Turabian StyleYu, Furong, Dongxu Zhou, Zhiping Li, and Xiao Li. 2022. "Hydrochemical Characteristics and Hydrogeochemical Simulation Research of Groundwater in the Guohe River Basin (Henan Section)" Water 14, no. 9: 1461. https://doi.org/10.3390/w14091461
APA StyleYu, F., Zhou, D., Li, Z., & Li, X. (2022). Hydrochemical Characteristics and Hydrogeochemical Simulation Research of Groundwater in the Guohe River Basin (Henan Section). Water, 14(9), 1461. https://doi.org/10.3390/w14091461