Dam Renovation to Prolong Reservoir Life and Mitigate Dam Impacts
Abstract
:1. Introduction
2. Effects of Dams
2.1. Dam-Induced Changes in Connectivity and Flow
2.2. Sediment Trapping by Reservoirs and Dam-Induced Decrease in Downstream Sediment Load
2.3. Vegetation Encroachment
2.4. Large Wood
3. Dam Renovation Strategies
3.1. Dam Rehabilitation
3.2. Fishway Retrofits to Provide Passage for Migratory Fish
3.3. Reservoir Reoperation
3.4. Sustainable Sediment Management
3.5. Morphogenic Flows and Sediment Augmentation
3.6. Designing Dams to Pass Sediment
4. Case Studies
4.1. Introduction to the Case Studies
4.2. Rehabilitation of BF Sisk Dam (San Luis Reservoir), California USA
4.3. Rehabilitation of Hydropower Dams Southwestern Connecticut, USA
4.4. Rehabilitation of Pian Telessio and Isola Dams, Italian and Swiss Alps
4.5. River Murray Fishways, Australia
4.6. Penobscot River, USA
4.7. Pelton Fish Ladder, Deschutes River, USA
4.8. Savannah River Reservoir Reoperation, USA
4.9. Roanoke River Reservoir Reoperation, USA
4.10. Normandy Dam, Duck River, USA
4.11. California System Reoperation Program, USA
4.12. Sustainable Sediment Management at Verbois and Génissiat Dams, Rhône River, Switzerland and France
4.13. Sediment Management at Sanmenxia Reservoir, Yellow River, China
5. Conclusions
5.1. Overview of Case Studies
5.2. Increasing Importance of Dam Renovation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grill, G.; Lehner, B.; Thieme, M.; Geenen, B.; Tickner, D.; Antonelli, F.; Babu, S.; Borrelli, P.; Cheng, L.; Crochetiere, H.; et al. Mapping the World’s Free-Flowing Rivers. Nature 2019, 569, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Madani, K.; Lund, J.R. Estimated Impacts of Climate Warming on California’s High-Elevation Hydropower. Clim. Change 2010, 102, 521–538. [Google Scholar] [CrossRef] [Green Version]
- Nearing, M.A.; Pruski, F.F.; O’neal, M.R. Expected Climate Change Impacts on Soil Erosion Rates: A Review. J. Soil Water Conserv. 2004, 59, 43–50. [Google Scholar]
- Pittock, J.; Hartmann, J. Taking a Second Look: Climate Change, Periodic Relicensing and Improved Management of Dams. Mar. Freshw. Res. 2011, 62, 312. [Google Scholar] [CrossRef]
- World Commission on Dams. Dams and Development: A New Framework for Decision-Making: The Report of the World Commission on Dams; Earthscan: London, UK, 2000. [Google Scholar]
- American Society of Civil Engineers. 2009 Report Card for America’s Infrastructure; American Society of Civil Engineers: Reston, VA, USA, 2009; ISBN 978-0-7844-1037-0. [Google Scholar]
- Lejon, A.G.C.; Renöfält, B.M.; Nilsson, C. Conflicts Associated with Dam Removal in Sweden. Ecol. Soc. 2009, 14, 4. [Google Scholar] [CrossRef] [Green Version]
- Kondolf, G.M.; Boulton, A.J.; O’Daniel, S.; Poole, G.C.; Rahel, F.J.; Stanley, E.H.; Wohl, E.; Bång, A.; Carlstrom, J.; Cristoni, C.; et al. Process-Based Ecological River Restoration: Visualizing Three-Dimensional Connectivity and Dynamic Vectors to Recover Lost Linkages. Ecol. Soc. 2006, 11, 5. [Google Scholar] [CrossRef]
- Silva, A.T.; Lucas, M.C.; Castro-Santos, T.; Katopodis, C.; Baumgartner, L.J.; Thiem, J.D.; Aarestrup, K.; Pompeu, P.S.; O’Brien, G.C.; Braun, D.C.; et al. The Future of Fish Passage Science, Engineering, and Practice. Fish Fish. 2018, 19, 340–362. [Google Scholar] [CrossRef] [Green Version]
- Lucas, M.; Baras, E. Migration of Freshwater Fishes; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Pedersen, M.I.; Jepsen, N.; Aarestrup, K.; Koed, A.; Pedersen, S.; Økland, F. Loss of European Silver Eel Passing a Hydropower Station. J. Appl. Ichthyol. 2012, 28, 189–193. [Google Scholar] [CrossRef]
- Ashraf, F.B.; Haghighi, A.T.; Riml, J.; Mathias Kondolf, G.; Kløve, B.; Marttila, H. A Method for Assessment of Sub-Daily Flow Alterations Using Wavelet Analysis for Regulated Rivers. Water Resour. Res. 2022, e2021WR030421. [Google Scholar] [CrossRef]
- Baltz, D.M.; Moyle, P.B. Invasion Resistance to Introduced Species by a Native Assemblage of California Stream Fishes. Ecol. Appl. 1993, 3, 246–255. [Google Scholar] [CrossRef]
- Wang, H.-W.; Kondolf, G.M. Upstream Sediment-Control Dams: Five Decades of Experience in the Rapidly Eroding Dahan River Basin, Taiwan. JAWRA J. Am. Water Resour. Assoc. 2014, 50, 735–747. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Podolak, K. Space and Time Scales in Human-Landscape Systems. Environ. Manag. 2014, 53, 76–87. [Google Scholar] [CrossRef]
- Kondolf, G.M. Hungry Water: Effects of Dams and Gravel Mining on River Channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Loire, R.; Piégay, H.; Malavoi, J.-R. Dams and Channel Morphology. In Environmental Flow Assessment; John Wiley & Sons: Hoboken, NJ, USA, 2019; pp. 143–161. ISBN 978-1-119-21737-4. [Google Scholar]
- Blum, M.D.; Roberts, H.H. Drowning of the Mississippi Delta Due to Insufficient Sediment Supply and Global Sea-Level Rise. Nat. Geosci. 2009, 2, 488–491. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Schmitt, R.J.P.; Carling, P.; Darby, S.; Arias, M.; Bizzi, S.; Castelletti, A.; Cochrane, T.A.; Gibson, S.; Kummu, M.; et al. Changing Sediment Budget of the Mekong: Cumulative Threats and Management Strategies for a Large River Basin. Sci. Total Environ. 2018, 625, 114–134. [Google Scholar] [CrossRef] [Green Version]
- Randle, T.J.; Morris, G.L.; Tullos, D.D.; Weirich, F.H.; Kondolf, G.M.; Moriasi, D.N.; Annandale, G.W.; Fripp, J.; Minear, J.T.; Wegner, D.L. Sustaining United States Reservoir Storage Capacity: Need for a New Paradigm. J. Hydrol. 2021, 602, 126686. [Google Scholar] [CrossRef]
- Annandale, G. Quenching the Thirst: Sustainable Water Supply and Climate Change; CreateSpace Independent Publishing Platform: North Charleston, SC, USA, 2013; ISBN 978-1-4802-6515-8. [Google Scholar]
- Wang, H.-W.; Kondolf, M.; Tullos, D.; Kuo, W.-C. Sediment Management in Taiwan’s Reservoirs and Barriers to Implementation. Water 2018, 10, 1034. [Google Scholar] [CrossRef] [Green Version]
- Williams, G.P.; Wolman, M.G. Downstream Effects of Dams on Alluvial Rivers; US Geological Survey Professional Paper; U.S. Government Printing Office: Washington, DC, USA, 1984; Volume 1286.
- Piégay, H.; Landon, N. Promoting ecological management of riparian forests on the Drôme River, France. Aquat. Conserv. Mar. Freshw. Ecosyst. 1997, 7, 287–304. [Google Scholar] [CrossRef]
- Gregory, S.; Boyer, K.; Gurnell, A. The Ecology and Management of Wood in Rivers. Freshw. Sci. 2004, 23, 663–665. [Google Scholar] [CrossRef]
- Clay, C.H.; Eng, P. Design of Fishways and Other Fish Facilities; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Larinier, M.; Marmulla, G. Fish Passes: Types, Principles and Geographical Distribution-an Overview. In Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries, Phnom Penh, Cambodia, 11–14 February 2003; RAP Publication: Bangkok, Thailand, 2004; Volume 2, pp. 183–206. [Google Scholar]
- March, P.A.; Fisher, R.K. It’s Not Easy Being Green: Environmental Technologies Enhance Conventional Hydropower’s Role in Sustainable Development. Annu. Rev. Energy Environ. 1999, 24, 173–188. [Google Scholar] [CrossRef] [Green Version]
- Krchnak, K.; Richter, B.; Thomas, G. Integrating Environmental Flows into Hydropower Dam Planning, Design, and Operations; The World Bank: Washington, DC, USA, 2009. [Google Scholar]
- Kondolf, G.M.; Gao, Y.; Annandale, G.W.; Morris, G.L.; Jiang, E.; Zhang, J.; Cao, Y.; Carling, P.; Fu, K.; Guo, Q.; et al. Sustainable Sediment Management in Reservoirs and Regulated Rivers: Experiences from Five Continents. Earths Future 2014, 2, 256–280. [Google Scholar] [CrossRef]
- Opperman, J.J.; Royte, J.; Banks, J.; Day, L.R.; Apse, C. The Penobscot River, Maine, USA: A Basin-Scale Approach to Balancing Power Generation and Ecosystem Restoration. Ecol. Soc. 2011, 16, 7. [Google Scholar] [CrossRef]
- Pyle, M.T. Beyond Fish Ladders: Dam Removal as a Strategy for Restoring America’s Rivers. Stan. Envtl. LJ 1995, 14, 97. [Google Scholar]
- Hart, D.D.; Poff, N.L. A Special Section on Dam Removal and River Restoration. BioScience 2002, 52, 653–655. [Google Scholar] [CrossRef]
- Central Water Commission, Government of India. Manual For Rehabilitation of Large Dams; Central Water Commission, Government of India: New Delhi, India, 2018.
- Zheng, Z.; Qiang, Y.; Ran, H.; Zhang, J. Study on Safety Assessment and Renovation Measures of a Reservoir Dam. In Proceedings of the 2019 International Conference on Modeling, Analysis, Simulation Technologies and Applications (MASTA 2019), Hangzhou, China, 26–27 May 2019; Atlantis Press: Hangzhou, China, 2019. [Google Scholar]
- Roux, G.; Fischer, J.-L.; Lacques, X. Renovation of an Underground Hydroelectric Dam Gallery Using High Wear-Resistant UHPFRC Screed. In Proceedings of the International Interactive Symposium on Ultra-High Performance Concrete, Albany, NY, USA, 2–5 June 2019; Volume 2. [Google Scholar] [CrossRef]
- Hieb, L.R. Renovation of the Shoshone Powerplant, Wyoming; ASCE: Reston, VA, USA, 1986; pp. 1550–1559. [Google Scholar]
- Amberg, F. Performance of Dams Affected by Expanding Concrete. In Dams and Reservoirs under Changing Challenges; CRC Press: Boca Raton, FL, USA, 2011; pp. 115–122. [Google Scholar]
- Sigourney, D.B.; Zydlewski, J.D.; Hughes, E.; Cox, O. Transport, Dam Passage, and Size Selection of Adult Atlantic Salmon in the Penobscot River, Maine. N. Am. J. Fish. Manag. 2015, 35, 1164–1176. [Google Scholar] [CrossRef]
- South Carolina Department of Natural Resrouces St. Stephen Fish Lift. Available online: https://www.dnr.sc.gov/fish/fishlift/fishlift.html (accessed on 18 February 2022).
- Richter, B.; Thomas, G. Restoring Environmental Flows by Modifying Dam Operations. Ecol. Soc. 2007, 12, 12. [Google Scholar] [CrossRef]
- Kondolf, G.M.; Wilcock, P.R. The Flushing Flow Problem: Defining and Evaluating Objectives. Water Resour. Res. 1996, 32, 2589–2599. [Google Scholar] [CrossRef]
- Yarnell, S.M.; Petts, G.E.; Schmidt, J.C.; Whipple, A.A.; Beller, E.E.; Dahm, C.N.; Goodwin, P.; Viers, J.H. Functional Flows in Modified Riverscapes: Hydrographs, Habitats and Opportunities. BioScience 2015, 65, 963–972. [Google Scholar] [CrossRef] [Green Version]
- Loire, R.; Piégay, H.; Malavoi, J.-R.; Kondolf, G.M.; Bêche, L.A. From Flushing Flows to (Eco)Morphogenic Releases: Evolving Terminology, Practice, and Integration into River Management. Earth-Sci. Rev. 2021, 213, 103475. [Google Scholar] [CrossRef]
- Konrad, C.P.; Olden, J.D.; Lytle, D.A.; Melis, T.S.; Schmidt, J.C.; Bray, E.N.; Freeman, M.C.; Gido, K.B.; Hemphill, N.P.; Kennard, M.J.; et al. Large-Scale Flow Experiments for Managing River Systems. BioScience 2011, 61, 948–959. [Google Scholar] [CrossRef] [Green Version]
- Robinson, C.; Uehlinger, U. Using Artificial Floods for Restoring River Integrity. Aquat. Sci. 2003, 65, 181–182. [Google Scholar] [CrossRef] [Green Version]
- Rivaes, R.; Rodríguez-González, P.M.; Albuquerque, A.; Pinheiro, A.N.; Egger, G.; Ferreira, M.T. Reducing River Regulation Effects on Riparian Vegetation Using Flushing Flow Regimes. Ecol. Eng. 2015, 81, 428–438. [Google Scholar] [CrossRef]
- Wohl, E.; Bledsoe, B.P.; Jacobson, R.B.; Poff, N.L.; Rathburn, S.L.; Walters, D.M.; Wilcox, A.C. The Natural Sediment Regime in Rivers: Broadening the Foundation for Ecosystem Management. BioScience 2015, 65, 358–371. [Google Scholar] [CrossRef] [Green Version]
- Grams, P.E.; Topping, D.J.; Schmidt, J.C.; Hazel, J.E., Jr.; Kaplinski, M. Linking Morphodynamic Response with Sediment Mass Balance on the Colorado River in Marble Canyon: Issues of Scale, Geomorphic Setting, and Sampling Design. J. Geophys. Res. Earth Surf. 2013, 118, 361–381. [Google Scholar] [CrossRef]
- Tena, A.; Batalla, R.J.; Vericat, D. Reach-Scale Suspended Sediment Balance Downstream from Dams in a Large Mediterranean River. Hydrol. Sci. J. 2012, 57, 831–849. [Google Scholar] [CrossRef] [Green Version]
- Kantoush, S.A.; Sumi, T. Sediment Replenishing Measures for Revitalization of Japanese Rivers below Dams. In Proceedings of the 34th World Congress of the International Association for Hydro-Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering, Brisbane, Australia, 26 June–1 July 2011; pp. 2838–2846. [Google Scholar]
- Annandale, G.W.; Morris, G.L.; Karki, P. Extending the Life of Reservoirs: Sustainable Sediment Management for Dams and Run-of-River Hydropower; Directions in Development—Energy and Mining; The World Bank: Washington, DC, USA, 2016; ISBN 978-1-4648-0838-8. [Google Scholar]
- Wang, Z.; Hu, C. Strategies for Managing Reservoir Sedimentation. Int. J. Sediment Res. 2009, 24, 369–384. [Google Scholar] [CrossRef]
- Morris, G.; Fan, J. Reservoir Sedimentation Handbook. Available online: http://reservoirsedimentation.com/ (accessed on 10 April 2022).
- Sumi, T.; Kantoush, S.; Esmaeili, T.; Ock, G. Reservoir Sediment Flushing and Replenishment below Dams: Insights from Japanese Case Studies. In Gravel-Bed Rivers Process and Disasters; Wiley: New York, NY, USA, 2017; pp. 385–414. [Google Scholar]
- Sumi, T. Evaluation of Efficiency of Reservoir Sediment Flushing in Kurobe River. In Proceedings of the Fourth International Conference on Scour and Erosion, Tokyo, Japan, 5–7 November 2008; Volume 7. [Google Scholar]
- Auel, C.; Boes, R. Sustainable Reservoir Management Using Sediment Bypass Tunnels. In Proceedings of the 24th ICOLD Congress, ICOLD (International Commission on Large Dams), Kyoto, Japan, 6–8 June 2012; pp. 224–241. [Google Scholar]
- Mekong River Commission. Preliminary Design Guidance for Proposed Mainstream Dams in the Lower Mekong Basin; Mekong River Commission: Vientiane, Laos, 2009. [Google Scholar]
- Mekong River Commission Secretariat. Proposed Xayaburi Dam Project—Mekong River: Prior Consultation Project Review Report; Mekong River Commission Secretariat: Vientiane, Laos, 2011. [Google Scholar]
- B.F. Sisk Dam Raise and Reservoir Expansion Project Final Environmental Impact Report/Supplemental Environmental Impact Statement; Bureau of Reclamation: Washington, DC, USA, 2020.
- B.F. Sisk Dam|Bureau of Reclamation. Available online: https://www.usbr.gov/mp/sod/projects/sisk/ (accessed on 18 February 2022).
- Bernard, E.M. Dam Renovation: From Investigation to Repair. J. AWWA 1990, 82, 28–34. [Google Scholar] [CrossRef]
- Lombardi SA—Pian Telessio Dam. Available online: https://www.lombardi.ch/en-gb/Pages/References/Dams/References_111.aspx?Paged=TRUE&p_Modified=20210517%2006%3A55%3A43&p_ID=151&PageFirstRow=4&&View=%7B057D89C0-6B53-44C9-8A9D-B2647D58EAE7%7D (accessed on 17 February 2022).
- Misoxer Kraftwerke: Preventive Renovation of the Isola Dam. Available online: https://www.axpo.com/be/en/media-releases/2019/misoxer-kraftwerke-preventive-renovation-of-the-isola-dam.html (accessed on 17 February 2022).
- Axpo. Renovation of Isola Dam; Axpo Holding, AG: Baden, Switzerland, 2020. [Google Scholar]
- Barrett, J.; Mallen-Cooper, M. The Murray River’s ‘Sea to Hume Dam’ Fish Passage Program: Progress to Date and Lessons Learned. Ecol. Manag. Restor. 2006, 7, 173–183. [Google Scholar] [CrossRef]
- Opperman, J.J.; Kendy, E.; Barrios, E. Securing Environmental Flows Through System Reoperation and Management: Lessons From Case Studies of Implementation. Front. Environ. Sci. 2019, 7, 104. [Google Scholar] [CrossRef] [Green Version]
- Pelton Dam Fish Ladder. Available online: https://www.oregonhistoryproject.org/articles/historical-records/pendleton-dam-fish-ladder/#.Yg7KuhPMKFp (accessed on 17 February 2022).
- Serra-Llobet, A.; Kondolf, G.M.; Magdaleno, F.; Keenan-Jones, D. Flood Diversions and Bypasses: Benefits and Challenges. Wiley Interdiscip. Rev. Water 2022, 9, e1562. [Google Scholar] [CrossRef]
- Normandy. Available online: https://www.tva.com/energy/our-power-system/hydroelectric/normandy (accessed on 18 February 2022).
- NatureServe Explorer Theliderma Intermedia. Available online: https://explorer.natureserve.org/Taxon/ELEMENT_GLOBAL.2.116132/Theliderma_intermedia (accessed on 18 February 2022).
- Los Huertos, M. Ecology and Management of Inland Waters: A Californian Perspective with Global Applications; Elsevier: San Diego, CA, USA, 2020; ISBN 978-0-12-814266-0. [Google Scholar]
- Stroffek, S.; Amoros, C.; Zylberblat, M. La logique de réhabilitation physique appliquée à un grand fleuve: Le Rhône/A Methodology for Physical Restoration applied to a Major River: The Rhône. Géocarrefour 1996, 71, 287–296. [Google Scholar] [CrossRef]
- Thareau, L.; Giuliani, Y.; Jimenez, C.; Doutriaux, E. Gestion Sédimentaire Du Rhône Suisse: Implications Pour La Retenue de Genissiat. In Congrès du Rhône «Du Léman à Fort l’Ecluse, Quelle Gestion Pour le Futur; Congrès du Rhône: Geneva, Switzerland, 2006. [Google Scholar]
- Peteuil, C. Eco-Friendly Flushing Downstream Genissiat Dam, French Upper Rhone River, France. In Proceedings of the 5th International Yellow River Forum - Best Practices for Managing Sediment Flows through Reservoirs, Yellow River Conservancy Commission, Zhengzhou, China, 16–19 October 2012. [Google Scholar]
- Compagnie National du Rhône. Entretien Du Lit Du Rhône: Plan de Gestion des Dragages D’entretien; Compagnie National du Rhône: Lyon, France, 2010. [Google Scholar]
- Zhao, G.; Kondolf, G.M.; Mu, X.; Han, M.; He, Z.; Rubin, Z.; Wang, F.; Gao, P.; Sun, W. Sediment Yield Reduction Associated with Land Use Changes and Check Dams in a Catchment of the Loess Plateau, China. CATENA 2017, 148, 126–137. [Google Scholar] [CrossRef]
- Wang, G.; Wu, B.; Wang, Z.-Y. Sedimentation Problems and Management Strategies of Sanmenxia Reservoir, Yellow River, China. Water Resour. Res. 2005, 41, W09417. [Google Scholar] [CrossRef] [Green Version]
- US Bureau of Reclamation. B.F. Sisk Dam Safety of Dams Modification Project Draft Environmental Impact Statement/Environmental Impact Report; US Bureau of Reclamation: Washington, DC, USA, 2019. [Google Scholar]
Opportunity | Description |
---|---|
Wildlife (‘fish’) passage devices | These devices provide passage for wildlife around barriers, such as dams (e.g., fish ladders, rock ramps and by-pass passages, and fish locks). The design is critical for the effectiveness [26,27]. |
Fish-friendly or aerating turbines | These reduce mortality rates for fish passing through the turbines and improve water quality [28]. |
Thermal pollution mitigation devices | Expensive multi-level off-take towers can draw water from different levels in the dams, releasing water close to ambient/natural temperature of improved quality. Cheap devices (e.g., propellers, adjustable pipes or curtains) are less widely used and have high operating costs [29]. |
Water-release structures | Many dams, particularly hydropower dams, were built with small outlet valves as most river flows were to be diverted. Decisions to increase environmental flow can be difficult to achieve because the dam cannot release enough water [29]. Retrofitting larger outlets that increase turbine and spillway water-release capacities is possible (e.g., rebuilding of the Jindabyne Dam in Australia). |
Sediment flushing | Bypass tunnels and bottom outlets can restore sediment continuity through/around dams by moving sediment around or through the reservoir, delivering it to the downstream river channel. There are dual benefits: to the life expectancy of the reservoir (less sedimentation) and to river health downstream (mitigating sediment starvation in downstream reaches) reducing channel erosion, maintaining sediment supply to support coastal landforms, such as deltas, and maintaining nutrient loads associated with fine sediments [30]. |
Reregulating dams | Hydropower dams often generate peaking power, which requires the sudden release of unnaturally high flows to generate power at times of high demand, often at short notice. These high flows, and the abruptness of flow increases and decreases, have an impact on downstream geomorphology and ecology, and pose a hazard to humans. Reregulating dams downstream can store these ‘peaking’ flows, evening out flow releases downstream [29]. |
Coordinated dam operations | Coordinated operations of dam cascades may improve services (e.g., power generation), enabling lower dams to reregulate flow and minimise environmental impacts downstream [29,31]. Similarly, flushing of fine sediments can be coordinated from dam to dam in a cascade, allowing sediment to pass downstream through a series of dams without deposition [30]. |
Removal | Increasingly, unsafe or redundant dams are removed for safety, to restore fish passage, to restore sediment and nutrient transport downstream, and restore continuity for recreational kayaking and canoeing [32,33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kondolf, M.; Yi, J. Dam Renovation to Prolong Reservoir Life and Mitigate Dam Impacts. Water 2022, 14, 1464. https://doi.org/10.3390/w14091464
Kondolf M, Yi J. Dam Renovation to Prolong Reservoir Life and Mitigate Dam Impacts. Water. 2022; 14(9):1464. https://doi.org/10.3390/w14091464
Chicago/Turabian StyleKondolf, Mathias, and Jaeeung Yi. 2022. "Dam Renovation to Prolong Reservoir Life and Mitigate Dam Impacts" Water 14, no. 9: 1464. https://doi.org/10.3390/w14091464
APA StyleKondolf, M., & Yi, J. (2022). Dam Renovation to Prolong Reservoir Life and Mitigate Dam Impacts. Water, 14(9), 1464. https://doi.org/10.3390/w14091464