Groundwater Pollution Model and Diffusion Law in Ordovician Limestone Aquifer Owe to Abandoned Red Mud Tailing Pit
Abstract
:1. Introduction
2. Overview of the Study Area
3. Groundwater Pollution Sources
4. Construction of Numerical Simulation Model
4.1. Hydro-Geological Conceptual Model
4.2. Mathematical Model
4.3. Boundary Conditions
4.4. Parameter Partition and Value
5. Model Calibration
5.1. Groundwater Flow Field Simulation
5.2. Multi-Year Water Level Calibration
5.3. Observation Water Level Calibration
5.4. Water Balance Analysis
6. Simulation Result
6.1. Distribution of Pollution Plumes
6.2. The Concentration of Pollutants in Different Locations
7. Discussion
7.1. Fitting Error and Parameter Error
7.2. Precipitation of Fluorine
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Q.S.; Xu, G.Q. The Current Situation and Research Progress of GroundWater Fluorine Pollution in China. Environ. Sci. Manag. 2009, 34, 34–42. [Google Scholar] [CrossRef]
- Yi, C.Y.; Wang, B.G.; Jin, M.G. Research Progress of Migration and Transformation Laws of Fluoride in Groundwater-soil-plant System. Saf. Environ. Eng. 2013, 20, 59–64. [Google Scholar] [CrossRef]
- Aschonitis, V.G.; Mastrocicco, M.; Colombani, N.; Salemi, E.; Kazakis, N.; Voudouris, K.; Castaldelli, G. Assessment of the Intrinsic Vulnerability of Agricultural Land to Water and Nitrogen Losses via Deterministic Approach and Regression Analysis. Water Air Soil Pollut. 2012, 223, 1605–1614. [Google Scholar] [CrossRef]
- He, L.; Tu, C.; He, S.; Long, J.; Sun, Y.; Lin, C. Fluorine enrichment of vegetables and soil around an abandoned aluminium plant and its risk to human health. Environ. Geochem. Health 2021, 43, 1137–1154. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zheng, N.; Liu, H.; Cao, X.; Teng, Y.; Zhai, Y. Distribution, Formation and Human Health Risk of Fluorine in Groundwater in Songnen Plain, NE China. Water 2021, 13, 3236. [Google Scholar] [CrossRef]
- Yang, J.Y.; Gou, M. The Research status of fluorine cintamination in soils of China. Ecol. Environ. Sci. 2017, 26, 506–513. [Google Scholar] [CrossRef]
- Yang, Y.; Li, J.; Li, M.X.; Li, X.; Bai, S.; Xi, B.; Lyn, N.; Yang, Y. Application of HYDRUS-1D model in quantitative assessment of groundwater pollution resource intensity. Chin. J. Environ. Eng. 2014, 8, 5293–5298. [Google Scholar] [CrossRef]
- Zhu, X.Y.; Liu, J.L.; Zhu, J.J.; Chen, Y.D. Numerical Study of contaminants transport in fracture-karst water in dawu well field. Chin. Sci. (D) 2000, 30, 479–485. [Google Scholar] [CrossRef]
- Sathe, S.S.; Mahanta, C. Groundwater flow and arsenic contamination transport modeling for a multi aquifer terrain: Assessment and mitigation strategies. J. Environ. Manag. 2019, 231, 166–181. [Google Scholar] [CrossRef]
- Liu, J.L.; Zhu, X.Y.; Qian, X.X. Study of Some problems on the development and protection of fracture-karst water resources in North China. Acta Geol. Sin. 2000, 74, 344–352. [Google Scholar] [CrossRef]
- Hallett, B.M.; Dharmagunawardhane, H.A.; Atal, S.; Valsami-Jones, E.; Ahmed, S.; Burgess, W. Mineralogical sources of groundwater fluoride in Archaen bedrock/regolith aquifers: Mass balances from southern India and north-central Sri Lanka. J. Hydrol. Reg. Stud. 2015, 4, 111–130. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.H.; Gao, P.; Wu, B.; Zhang, L.Y. Fluorine emission list of China’s key industries and soil fluorine concentration estimation. Chin. J. Appl. Ecol. 2019, 30, 1–9. [Google Scholar] [CrossRef]
- Tong, X.X.; Ning, L.B.; Dong, S.G. GMS Model for Assessment and Prediction of Groundwater Pollution of a Garbage Dumpling Site in Luoyang. Environ. Sci. Technol. 2012, 35, 197–201. [Google Scholar] [CrossRef]
- Zhang, Y. Numerical Simulation and Prediction of Contaminated Groundwater in an Animal Protein Production Site by GMS. Geotech. Eng. Tech. 2017, 31, 258–262. [Google Scholar] [CrossRef]
- Rong, S.R.; Peng, D.P.; Chen, J.N. Effect of PH Value on Leaching if Rare Mentals from Red Mud in Simulated Natural Storage Conditions. Env. Eng. 2020, 38, 155–159. [Google Scholar] [CrossRef]
- Nielsen, D.R.; Van Genuchten, M.T.; Biggar, J.W. Water flow and solute transport processes in the unsaturated zone. Water Resour. Res. 1986, 22, 89S–108S. [Google Scholar] [CrossRef]
- Wang, Q.K.; Liang, L.; Chen, C.; Yang, J.Y.; Li, W.; Gong, H.Z.; Zhao, J. Study on Simulations and Control Measures of Leaking Oil Pollution Based on GMS. Environ. Prot. Oil Gas Fields 2018, 28, 12–16. [Google Scholar] [CrossRef]
- Wang, G.H.; Zhang, B.J.; Chen, J.H.; Liu, S.C.; Wang, Q.J.; Li, Y.D. Permeation and Migration of Red Mud in Porous Media. J. Water Resour. Archit. Eng. 2020, 18, 1–5. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, G.X.; Zhu, L.X. Fluorine Pollution and its Formation Analysis of the Shallow Groundwater in Jiaozuo City. Environ. Sci. Manag. 2009, 34, 68–72. [Google Scholar] [CrossRef]
- Li, Q.; Liao, C.N.; Liao, M.X.; Peng, D.P.; Huang, T. Analysis of infiltration mechanism of red mud leachate into sodium-bentonite clay pad. Env. Eng. 2021, 39, 148–153. [Google Scholar] [CrossRef]
- Chen, W.; Hao, C.M.; Ma, Z.Y.; Wang, Y.; Zhang, L.; Xu, R.; Chen, P. Geochemical behavior of fluoride in residual coal in groundwater reservoirs. J. North China Inst. Sci. Technol. 2021, 18, 67–73. [Google Scholar] [CrossRef]
Scheme 42. | F− (mg/L) | SO42− (mg/L) | Al3+ (mg/L) | TDS (mg/L) |
---|---|---|---|---|
1 | 52.40 | 784.34 | 37.96 | 2491.24 |
2 | 18.22 | 663.39 | 0.01 | 1590.86 |
3 | 6.41 | 205.36 | 0.01 | 891.13 |
4 | 5.84 | 216.36 | 0.01 | 782.10 |
5 | 5.57 | 275.76 | 0.01 | 964.06 |
6 | 4.53 | 408.72 | 0.01 | 920.20 |
7 | 2.00 | 1529.03 | 0.15 | 3279.13 |
8 | 1.20 | 378.64 | 0.01 | 1034.02 |
Parameter | Zone | Initial Value | Calibrated |
---|---|---|---|
Horizontal permeability coefficient(m/d) | I | 15.0 | 17.0 |
II | 10.0 | 20.0 | |
III | 0.8 | 1.0 | |
IV | 5.0 | 8.0 | |
Porosity (%) | I | 0.1 | 0.15 |
II | 0.1 | 0.25 | |
III | 0.1 | 0.05 | |
IV | 0.1 | 0.10 | |
Specific yield (%) | - | 0.01 | 0.02 |
Specific storage(1/m) | 1 × 10−4 | 9.6 × 10−4 | |
River conductance (m/d) | - | 3.56 | 3.56 |
Longitudinal dispersivity (m) | - | 50 | 66.7 |
Sources/Sinks | Flow In (×104 m3/d) | Flow Out (×104 m3/d) | Annual Flow In (×104 m3/a) | Annual Flow Out (×104 m3/a) |
---|---|---|---|---|
Constant flow boundary | 2.5432 | −2.4751 | 964.70 | 866.90 |
Wells | 0.0000 | −0.8000 | 0.00 | 292.00 |
River leakage | 0.1213 | −0.0815 | 44.27 | 29.75 |
Recharge | 1.1925 | 0.0000 | 398.76 | 0.00 |
Evapotranspiration | 0.0000 | −0.5045 | 0.00 | 220.64 |
Total source/sink | 3.8570 | −3.8575 | 1407.80 | 1408.00 |
Summary | In-Out | % difference | In-Out | % difference |
Sources/sinks | −0.0005 | 0.0000 | −0.20 | 0.00 |
Cell-to-cell | 0.0000 | 0.0000 | 0.00 | 0.00 |
Total | −0.0005 | 0.0000 | −0.20 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, Y.; Zhou, P.; Wang, J.; Ma, Y.; Wu, J.; Su, C. Groundwater Pollution Model and Diffusion Law in Ordovician Limestone Aquifer Owe to Abandoned Red Mud Tailing Pit. Water 2022, 14, 1472. https://doi.org/10.3390/w14091472
Qi Y, Zhou P, Wang J, Ma Y, Wu J, Su C. Groundwater Pollution Model and Diffusion Law in Ordovician Limestone Aquifer Owe to Abandoned Red Mud Tailing Pit. Water. 2022; 14(9):1472. https://doi.org/10.3390/w14091472
Chicago/Turabian StyleQi, Yueming, Pei Zhou, Junping Wang, Yipeng Ma, Jiaxing Wu, and Chengzhi Su. 2022. "Groundwater Pollution Model and Diffusion Law in Ordovician Limestone Aquifer Owe to Abandoned Red Mud Tailing Pit" Water 14, no. 9: 1472. https://doi.org/10.3390/w14091472
APA StyleQi, Y., Zhou, P., Wang, J., Ma, Y., Wu, J., & Su, C. (2022). Groundwater Pollution Model and Diffusion Law in Ordovician Limestone Aquifer Owe to Abandoned Red Mud Tailing Pit. Water, 14(9), 1472. https://doi.org/10.3390/w14091472