Prediction of Sediment Yield in a Data-Scarce River Catchment at the Sub-Basin Scale Using Gridded Precipitation Datasets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydro-Meteorological Data
2.3. Methods
2.3.1. Precipitation Analysis
2.3.2. SWAT Model Setup
- Reclassification of land use and soil type maps was carried out by importing these datasets into Arc SWAT.
- Five slope classes were selected, and land use and soil maps were overlaid with these slopes to finalize HRUs.
- A total of 220 HRUs and 32 sub-basins were defined for the selected catchment.
2.3.3. Model Calibration
3. Results and Discussion
3.1. Precipitation Analysis
3.2. Runoff Simulations
3.2.1. Runoff Estimations Using Observed Precipitation Dataset
3.2.2. Runoff Computations Using Gridded Data Precipitation Datasets
3.3. Sediment Yield Estimations
3.4. Spatial Distribution of Sediment
4. Conclusions and Recommendations
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hussain, F.; Nabi, G.; Wu, R.S.; Hussain, B.; Abbas, T. Parameter evaluation for soil erosion estimation on small watersheds using SWAT model. Int. J. Agric. Biol. Eng. 2019, 12, 96–108. [Google Scholar] [CrossRef] [Green Version]
- Haq, I.U.L. Sediment Management of Tarbela Reservoir. Paper No. 733. 72nd Annu. Sess. Pakistan Eng. Congr. 2012. Available online: https://pecongress.org.pk/images/upload/books/2-Dr.%20Izhar%20ul%20Haq.pdf (accessed on 18 April 2022).
- Ahmad, M.-u.-D.; Peña-Arancibia, J.L.; Yu, Y.; Stewart, J.P.; Podger, G.M.; Kirby, J.M. Climate change and reservoir sedimentation implications for irrigated agriculture in the Indus Basin Irrigation System in Pakistan. J. Hydrol. 2021, 603, 126967. [Google Scholar] [CrossRef]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An assessment of the global impact of 21st century land use change on soil erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [Green Version]
- Bhatti, M.T.; Ashraf, M.; Anwar, A.A. Soil erosion and sediment load management strategies for sustainable irrigation in arid regions. Sustainability 2021, 13, 3547. [Google Scholar] [CrossRef]
- Aghsaei, H.; Mobarghaee Dinan, N.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Environ. 2020, 712, 136449. [Google Scholar] [CrossRef]
- Li, B.; Li, C.; Liu, J.; Zhang, Q.; Duan, L. Decreased streamflow in the Yellow River basin, China: Climate change or human-induced? Water 2017, 9, 116. [Google Scholar] [CrossRef]
- Abebe, T.; Gebremariam, B. Modeling runoff and sediment yield of Kesem dam watershed, Awash basin, Ethiopia. SN Appl. Sci. 2019, 1, 446. [Google Scholar] [CrossRef] [Green Version]
- Dutta, S.; Sen, D. Application of SWAT model for predicting soil erosion and sediment yield. Sustain. Water Resour. Manag. 2018, 4, 447–468. [Google Scholar] [CrossRef]
- Samad, N.; Chauhdry, M.H.; Ashraf, M.; Saleem, M.; Hamid, Q.; Babar, U.; Tariq, H.; Farid, M.S. Sediment yield assessment and identification of check dam sites for Rawal Dam catchment. Arab. J. Geosci. 2016, 9, 1–14. [Google Scholar] [CrossRef]
- Miralles, D.G.; Jiménez, C.; Jung, M.; Michel, D.; Ershadi, A.; Mccabe, M.F.; Hirschi, M.; Martens, B.; Dolman, A.J.; Fisher, J.B.; et al. The WACMOS-ET project—Part 2: Evaluation of global terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. 2016, 20, 823–842. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Vergopolan, N.; Pan, M.; Levizzani, V.; van Dijk, A.I.J.M.; Weedon, G.P.; Brocca, L.; Pappenberger, F.; Huffman, G.J.; Wood, E.F. Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling. Adv. Glob. Chang. Res. 2020, 69, 625–653. [Google Scholar] [CrossRef]
- Faiz, M.A.; Zhang, Y.; Baig, F.; Wrzesiński, D.; Naz, F. Identification and inter-comparison of appropriate long-term precipitation datasets using decision tree model and statistical matrix over China. Int. J. Climatol. 2021, 41, 5003–5021. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Wang, X.; Nawaz, N.; Najeebullah, K. Evaluation of gridded precipitation datasets over arid regions of Pakistan. Water 2019, 11, 210. [Google Scholar] [CrossRef] [Green Version]
- Try, S.; Tanaka, S.; Tanaka, K.; Sayama, T.; Oeurng, C.; Uk, S.; Takara, K.; Hu, M.; Han, D. Comparison of gridded precipitation datasets for rainfall-runoff and inundation modeling in the Mekong River Basin. PLoS ONE 2020, 15, e226814. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Zhang, Z.; Huang, Y.; Chen, X.; Chen, S. Evaluating the TRMM Multisatellite Precipitation Analysis for Extreme Precipitation and Streamflow in Ganjiang River Basin, China. Adv. Meteorol. 2017, 2017, 2902493. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, X.; Wang, H.; Yang, M.; Cai, S. Investigate the applicability of CMADS and CFSR reanalysis in Northeast China. Water 2020, 12, 996. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.J.; Koch, M. Correction and informed regionalization of precipitation data in a high mountainous region (Upper Indus Basin) and its effect on SWAT-modelled discharge. Water 2018, 10, 1557. [Google Scholar] [CrossRef] [Green Version]
- Babur, M.; Babel, M.S.; Shrestha, S.; Kawasaki, A.; Tripathi, N.K. Assessment of climate change impact on reservoir inflows using multi climate-models under RCPs-the case of Mangla Dam in Pakistan. Water 2016, 8, 389. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Wang, G.; Wang, L.; Yu, J.; Xu, Z. Evaluation of gridded precipitation data for driving SWAT model in area upstream of three gorges reservoir. PLoS ONE 2014, 9, e112725. [Google Scholar] [CrossRef]
- Daneshvar, F.; Frankenberger, J.R.; Bowling, L.C.; Cherkauer, K.A.; Moraes, A.G.d.L. Development of Strategy for SWAT Hydrologic Modeling in Data-Scarce Regions of Peru. J. Hydrol. Eng. 2021, 26, 05021016. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M.; Nauditt, A.; Birkel, C.; Verbist, K.; Ribbe, L. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 1295–1320. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.S.; Liaqat, U.W.; Baik, J.; Choi, M. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach. Agric. For. Meteorol. 2018, 252, 256–268. [Google Scholar] [CrossRef]
- Zandler, H.; Haag, I.; Samimi, C. Evaluation needs and temporal performance differences of gridded precipitation products in peripheral mountain regions. Sci. Rep. 2019, 9, 15118. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Herold, N.; Behrangi, A.; Alexander, L.V. Large uncertainties in observed daily precipitation extremes over land. J. Geophys. Res. 2017, 122, 668–681. [Google Scholar] [CrossRef]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Beck, H.E.; McNamara, I.; Ribbe, L.; Nauditt, A.; Birkel, C.; Verbist, K.; Giraldo-Osorio, J.D.; Xuan Thinh, N. RF-MEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ. 2020, 239, 111606. [Google Scholar] [CrossRef]
- Abushandi, E.H.; Merkel, B.J. Application of IHACRES rainfall-runoff model to the wadi Dhuliel arid catchment, Jordan. J. Water Clim. Chang. 2011, 2, 56–71. [Google Scholar] [CrossRef]
- Ajaaj, A.A.; Mishra, A.K.; Khan, A.A. Evaluation of Satellite and Gauge-Based Precipitation Products through Hydrologic Simulation in Tigris River Basin under Data-Scarce Environment. J. Hydrol. Eng. 2019, 24, 05018033. [Google Scholar] [CrossRef]
- Haider, H.; Zaman, M.; Liu, S.; Saifullah, M.; Usman, M.; Chauhdary, J.N.; Anjum, M.N.; Waseem, M. Appraisal of climate change and its impact on water resources of pakistan: A case study of mangla watershed. Atmosphere 2020, 11, 1071. [Google Scholar] [CrossRef]
- Rafiei, V.; Ghahramani, A.; An-Vo, D.A.; Mushtaq, S. Modelling hydrological processes and identifying soil erosion sources in a tropical catchment of the great barrier reef using SWAT. Water 2020, 12, 2179. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Ang, R.; Oeurng, C. Simulating streamflow in an ungauged catchment of Tonlesap Lake Basin in Cambodia using Soil and Water Assessment Tool (SWAT) model. Water Sci. 2018, 32, 89–101. [Google Scholar] [CrossRef] [Green Version]
- Musie, M.; Sen, S.; Srivastava, P. Comparison and evaluation of gridded precipitation datasets for streamflow simulation in data scarce watersheds of Ethiopia. J. Hydrol. 2019, 579, 124168. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Betrie, G.D.; Mohamed, Y.A.; Van Griensven, A.; Srinivasan, R. Sediment management modelling in the Blue Nile Basin using SWAT model. Hydrol. Earth Syst. Sci. 2011, 15, 807–818. [Google Scholar] [CrossRef] [Green Version]
- Refsgaard, J.C. Parameterisation, calibration and validation of distributed hydrological models. J. Hydrol. 1997, 198, 69–97. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Yang, J.; Maximov, I.; Siber, R.; Bogner, K.; Mieleitner, J.; Zobrist, J.; Srinivasan, R. Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J. Hydrol. 2007, 333, 413–430. [Google Scholar] [CrossRef]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Briak, H.; Moussadek, R.; Aboumaria, K.; Mrabet, R. Assessing sediment yield in Kalaya gauged watershed (Northern Morocco) using GIS and SWAT model. Int. Soil Water Conserv. Res. 2016, 4, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Markhi, A.; Laftouhi, N.; Grusson, Y.; Soulaimani, A. Assessment of potential soil erosion and sediment yield in the semi-arid N′fis basin (High Atlas, Morocco) using the SWAT model. Acta Geophys. 2019, 67, 263–272. [Google Scholar] [CrossRef]
- Schmalz, B.; Fohrer, N. Comparing model sensitivities of different landscapes using the ecohydrological SWAT model. Adv. Geosci. 2009, 21, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Forshay, K.J. Using SWAT to evaluate streamflow and lake sediment loading in the xinjiang river basin with limited data. Water 2020, 12, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camberlin, P.; Barraud, G.; Bigot, S.; Makanzu, F.; Maki, I.J.; Moron, V.; Pellarin, T.; Philippon, N.; Dewitte, O.; Martiny, N.; et al. Evaluation of remotely sensed rainfall products over Central Africa. Q. J. R. Meteorol. Soc. 2019, 145, 2115–2138. [Google Scholar] [CrossRef]
- Diem, J.E.; Ryan, S.J.; Hartter, J. Satellite-based rainfall data reveal a recent drying trend in central equatorial Africa Satellite-based rainfall data reveal a recent drying trend in central equatorial Africa. Clim. Chang. 2014, 126, 263–272. [Google Scholar] [CrossRef]
- Tan, M.L.; Yang, X. Effect of rainfall station density, distribution and missing values on SWAT outputs in tropical region. J. Hydrol. 2020, 584, 124660. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 1–9. [Google Scholar] [CrossRef]
- Lu, C.M.; Chiang, L.C. Assessment of sediment transport functions with the modified SWAT-Twn model for a taiwanese small mountainous watershed. Water 2019, 11, 1749. [Google Scholar] [CrossRef] [Green Version]
- Koirala, P.; Thakuri, S.; Joshi, S.; Chauhan, R. Estimation of Soil Erosion in Nepal using a RUSLE modeling and geospatial tool. Geosciences 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Kondolf, G.M.; Mu, X.; Han, M.; He, Z.; Rubin, Z.; Wang, F.; Gao, P.; Sun, W. Sediment yield reduction associated with land use changes and check dams in a catchment of the Loess Plateau, China. Catena 2017, 148, 126–137. [Google Scholar] [CrossRef]
- Li, E.; Mu, X.; Zhao, G.; Gao, P.; Sun, W. Effects of check dams on runoff and sediment load in a semi-arid river basin of the Yellow River. Stoch. Environ. Res. Risk Assess. 2017, 31, 1791–1803. [Google Scholar] [CrossRef]
- Mishra, A.; Froebrich, J.; Gassman, P.W. Evaluation of the SWAT model for assessing sediment control structures in a small watershed in india. Trans. ASABE 2007, 50, 469–477. [Google Scholar] [CrossRef]
Sr. No | Gridded Precipitation Product | Spatial Resolution (Degree) | Source |
---|---|---|---|
1 | NCEP-CFSR | 0.31 | (https://globalweather.tamu.edu/, accessed on 7 December 2020) |
2 | GPCC | 1.00 | (http://gpcc.dwd.de/, accessed on 12 November 2020) |
3 | TRMM | 0.25 | (https://giovanni.gsfc.nasa.gov, accessed on 1–4 December 2020) |
No. | Slope% | Area (ha) | % Area Coverage |
---|---|---|---|
1 | 0–20 | 2,252,565 | 65.67 |
2 | 21–40 | 738,221 | 21.52 |
3 | 41–60 | 303,365 | 8.84 |
4 | 61–80 | 98,472 | 2.87 |
5 | >80 | 37,290 | 1.09 |
Total | 100 |
Land Use Type | LU/LC (%) | Soil Texture (% Sand, Silt, Clay) | Area for Each Soil Type (%) |
---|---|---|---|
Agricultural land | 2.08 | Loam (40, 30, 26) | 1.46 |
Barren | 88.61 | Loam (35, 39, 26) | 88.83 |
Loam (45, 33, 22) | 1.70 | ||
Clay-Loam (35,35,30) | 8.00 | ||
Loam (44, 30, 26) | 0.01 | ||
Mosaic Vegetation | 1.74 | ||
Mosaic grassland | 0.97 | ||
Herbaceous vegetation | 6.38 | ||
Sparce vegetation | 0.21 |
Variable | Parameters Name | Description |
---|---|---|
Flow | CN2 | Curve number |
SOL_AWC | Available water capacity of the soil layer | |
SOL_K | Saturated hydraulic conductivity of soil | |
RCHRG_DP | Deep aquifer percolation fraction | |
ALPHA_BF | Base flow alpha-factor (days) | |
ESCO | Soil evaporation compensation factor | |
SURLAG | Surface runoff lag time | |
CH_N2 | Manning’s “n” value for the main channel | |
SLSUBBSN | Average slope length | |
Sediment | SPEXP | Exponent parameter for calculating sediment re-entrained in channel sediment routing |
SPCON | Linear parameter for calculating the maximum amount of sediment that can be re-entrained during channel sediment routing | |
USLE_K | Universal soil loss equation soil erodibility factor | |
USLE_C | Universal soil loss equation land cover factor, | |
USLE_P | Universal soil loss equation practice factor | |
CH_COV1 | Channel erodibility factor | |
CH_COV2 | Channel cover factor | |
CN2 | Curve number |
Parameter Name | Variable | Parameter Initial Range | Fitted Values with Observed Precipitation | Fitted Values with GPCC | Fitted Values with TRMM | Fitted Values with CFSR | |
---|---|---|---|---|---|---|---|
Min | Max | ||||||
CN2 | Flow | 35 | 98 | 58.8 | 67.5 | 46 | 87 |
SOL_AWC | 0 | 1 | 1.38 | 0.85 | 1.04 | 0.85 | |
SOL_K | 0 | 2000 | 167.1 | 262.7 | 194.8 | 190.0 | |
RCHRG_DP | 0 | 1 | 0.13 | 0.00 | 0.07 | 0.21 | |
ALPHA_BF | 0 | 1 | 0.24 | 0.33 | 0.29 | 0.25 | |
ESCO | 0 | 1 | 0.86 | 0.65 | 0.66 | 1.01 | |
SURLAG | 0.05 | 24 | 19.2 | 20.7 | 18.4 | 22.7 | |
CH_N2 | −0.01 | 0.3 | 0.13 | 0.29 | 0.18 | 0.22 | |
SLSUBBSN | 10 | 150 | 94.7 | 90.7 | 60.3 | 24.1 | |
SPEXP | Sediment | 1 | 1.5 | 1.3 | 1.5 | ||
SPCON | 0.0001 | 0.01 | 0.01 | 0.01 | |||
USLE_K | 0.25 | 0.40 | 0.32 | 0.38 | |||
USLE_C | 0.40 | 1.0 | 0.72 | 0.95 | |||
USLE_P | 0 | 1 | 0.96 | 0.97 | |||
CH_COV1 | −0.05 | 0.6 | 0.22 | 0.03 | |||
CH_COV2 | −0.001 | 1 | 0.50 | 0.64 | |||
CN2 | 35 | 98 | 58.3 | 97.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ijaz, M.A.; Ashraf, M.; Hamid, S.; Niaz, Y.; Waqas, M.M.; Tariq, M.A.U.R.; Saifullah, M.; Bhatti, M.T.; Tahir, A.A.; Ikram, K.; et al. Prediction of Sediment Yield in a Data-Scarce River Catchment at the Sub-Basin Scale Using Gridded Precipitation Datasets. Water 2022, 14, 1480. https://doi.org/10.3390/w14091480
Ijaz MA, Ashraf M, Hamid S, Niaz Y, Waqas MM, Tariq MAUR, Saifullah M, Bhatti MT, Tahir AA, Ikram K, et al. Prediction of Sediment Yield in a Data-Scarce River Catchment at the Sub-Basin Scale Using Gridded Precipitation Datasets. Water. 2022; 14(9):1480. https://doi.org/10.3390/w14091480
Chicago/Turabian StyleIjaz, Muhammad Asfand, Muhammad Ashraf, Shanawar Hamid, Yasir Niaz, Muhammad Mohsin Waqas, Muhammad Atiq Ur Rehman Tariq, Muhammad Saifullah, Muhammad Tousif Bhatti, Adnan Ahmad Tahir, Kamran Ikram, and et al. 2022. "Prediction of Sediment Yield in a Data-Scarce River Catchment at the Sub-Basin Scale Using Gridded Precipitation Datasets" Water 14, no. 9: 1480. https://doi.org/10.3390/w14091480
APA StyleIjaz, M. A., Ashraf, M., Hamid, S., Niaz, Y., Waqas, M. M., Tariq, M. A. U. R., Saifullah, M., Bhatti, M. T., Tahir, A. A., Ikram, K., Shafeeque, M., & Ng, A. W. M. (2022). Prediction of Sediment Yield in a Data-Scarce River Catchment at the Sub-Basin Scale Using Gridded Precipitation Datasets. Water, 14(9), 1480. https://doi.org/10.3390/w14091480