Application of Functional Modification of Iron-Based Materials in Advanced Oxidation Processes (AOPs)
Abstract
:1. Introduction
2. Data Sources and Search Strategy
3. Iron-Based Materials in AOPs: Systematic Classification and Mechanism Analysis
4. Mechanism of Modified Materials to Raise the Content of Fe2+ of Iron-Based Materials in AOPs
4.1. Modified Materials Accelerate the Electron Transfer in AOPs
4.1.1. Electron-Rich Functional Groups in Modified Materials Facilitate Electron Transport
4.1.2. Redox Pairs in the Bimetallic System Facilitates Electron Transfer
4.1.3. The FeS Layer Formed during Sulfide Modification of Iron-Based Materials Promotes Electron Transport
4.1.4. Quinone Structure Formed by Organic Quinones-Modified Iron-Based Materials as Electron Shuttle Mediators to Facilitate Electron Transfer
4.1.5. The Unique Hybrid Structure Formed by Non-Metal Element-Doped Carbon-Based Materials Promotes Electron Transfer
4.2. Modified Materials to form Iron Complex or Surface Bonding with Iron to Increase Fe2+
4.2.1. Formation of Iron Ion-Chelates Using Chelating Agents as Stabilizers for Iron-Based Materials to Increase Fe2+
4.2.2. Fe-Si Bonding with SiO2 as Porous Supporting Materials for Iron-Based Materials to Increase Fe2+
5. Key Properties and Commercialization Challenges of Iron-Based Materials in AOPs
5.1. Key Properties of Iron-Based Materials in AOPs
5.2. Commercialization Challenges of Iron-Based Materials in AOPs
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Xu, J.; Zhang, X.; Sun, C.; Wan, J.; He, H.; Wang, F.; Dai, Y.; Yang, S.; Lin, Y.; Zhan, X. Insights into removal of tetracycline by persulfate activation with peanut shell biochar coupled with amorphous Cu-doped FeOOH composite in aqueous solution. Environ. Sci. Pollut. Res. 2019, 26, 2820–2834. [Google Scholar] [CrossRef] [PubMed]
- Rayaroth, M.P.; Prasanthkumar, K.P.; Kang, Y.-G.; Lee, C.-S.; Chang, Y.-S. Degradation of carbamazepine by singlet oxygen from sulfidized nanoscale zero-valent iron-citric acid system. Chem. Eng. J. 2020, 382, 122828. [Google Scholar] [CrossRef]
- Zhu, S.; Xu, Y.; Zhu, Z.; Liu, Z.; Wang, W. Activation of peroxymonosulfate by magnetic Co-Fe/SiO2 layered catalyst derived from iron sludge for ciprofloxacin degradation. Chem. Eng. J. 2020, 384, 123298. [Google Scholar] [CrossRef]
- Amina; Si, X.; Wu, K.; Si, Y.; Yousaf, B. Mechanistic insights into the reactive radicals-assisted degradation of sulfamethoxazole via calcium peroxide activation by manganese-incorporated iron oxide-graphene nanocomposite: Formation of radicals and degradation pathway. Chem. Eng. J. 2020, 384, 123360. [Google Scholar] [CrossRef]
- Ghanbari, F.; Moradi, M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: Review. Chem. Eng. J. 2017, 310, 41–62. [Google Scholar] [CrossRef]
- Liu, C.; Liu, S.; Liu, L.; Tian, X.; Liu, L.; Xia, Y.; Liang, X.; Wang, Y.; Song, Z.; Zhang, Y.; et al. Novel carbon based Fe-Co oxides derived from Prussian blue analogues activating peroxymonosulfate: Refractory drugs degradation without metal leaching. Chem. Eng. J. 2020, 379, 122274. [Google Scholar] [CrossRef]
- Heidarpour, H.; Padervand, M.; Soltanieh, M.; Vossoughi, M. Enhanced decolorization of rhodamine B solution through simultaneous photocatalysis and persulfate activation over Fe/C3N4 photocatalyst. Chem. Eng. Res. Des. 2020, 153, 709–720. [Google Scholar] [CrossRef]
- Su, S.; Liu, Y.; He, W.; Tang, X.; Jin, W.; Zhao, Y. A novel graphene oxide-carbon nanotubes anchored alpha-FeOOH hybrid activated persulfate system for enhanced degradation of Orange II. J. Environ. Sci. 2019, 83, 73–84. [Google Scholar] [CrossRef]
- Poyatos, J.M.; Muñio, M.M.; Almecija, M.C.; Torres, J.C.; Hontoria, E.; Osorio, F. Advanced Oxidation Processes for Wastewater Treatment: State of the Art. Water Air Soil Pollut. 2009, 205, 187–204. [Google Scholar] [CrossRef]
- Lee, J.; von Gunten, U.; Kim, J.H. Persulfate-Based Advanced Oxidation: Critical Assessment of Opportunities and Roadblocks. Environ. Sci. Technol. 2020, 54, 3064–3081. [Google Scholar] [CrossRef]
- Li, X.; Wu, D.; Hua, T.; Lan, X.; Han, S.; Cheng, J.; Du, K.S.; Hu, Y.; Chen, Y. Micro/macrostructure and multicomponent design of catalysts by MOF-derived strategy: Opportunities for the application of nanomaterials-based advanced oxidation processes in wastewater treatment. Sci. Total Environ. 2022, 804, 150096. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, I.M.F.; Cardoso, R.M.F.; da Silva, J. Advanced Oxidation Processes Coupled with Nanomaterials for Water Treatment. Nanomaterials 2021, 11, 2045. [Google Scholar] [CrossRef] [PubMed]
- Bethi, B.; Sonawane, S.H.; Bhanvase, B.A.; Gumfekar, S.P. Nanomaterials-based advanced oxidation processes for wastewater treatment: A review. Chem. Eng. Process.-Process Intensif. 2016, 109, 178–189. [Google Scholar] [CrossRef]
- Xiao, R.; Luo, Z.; Wei, Z.; Luo, S.; Spinney, R.; Yang, W.; Dionysiou, D.D. Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Curr. Opin. Chem. Eng. 2018, 19, 51–58. [Google Scholar] [CrossRef]
- Heidari, Z.; Pelalak, R.; Alizadeh, R.; Oturan, N.; Shirazian, S.; Oturan, M.A. Application of Mineral Iron-Based Natural Catalysts in Electro-Fenton Process: A Comparative Study. Catalysts 2021, 11, 57. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chem. Eng. J. 2018, 334, 1502–1517. [Google Scholar] [CrossRef]
- Qu, J.; Che, T.; Shi, L.; Lu, Q.; Qi, S. A novel magnetic silica supported spinel ferrites NiFe2O4 catalyst for heterogeneous Fenton-like oxidation of rhodamine B. Chin. Chem. Lett. 2019, 30, 1198–1203. [Google Scholar] [CrossRef]
- Lee, H.; Yoo, H.-Y.; Choi, J.; Nam, I.-H.; Lee, S.; Lee, S.; Kim, J.-H.; Lee, C.; Lee, J. Oxidizing Capacity of Periodate Activated with Iron-Based Bimetallic Nanoparticles. Environ. Sci. Technol. 2014, 48, 8086–8093. [Google Scholar] [CrossRef]
- Shukla, P.; Wang, S.; Sun, H.; Ang, H.-M.; Tade, M. Adsorption and heterogeneous advanced oxidation of phenolic contaminants using Fe loaded mesoporous SBA-15 and H2O2. Chem. Eng. J. 2010, 164, 255–260. [Google Scholar] [CrossRef]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Liu, Y.; Xu, P.; Zhang, C.; Wan, J.; Hu, L.; Xiong, W.; et al. Salicylic acid-methanol modified steel converter slag as heterogeneous Fenton-like catalyst for enhanced degradation of alachlor. Chem. Eng. J. 2017, 327, 686–693. [Google Scholar] [CrossRef]
- Yao, S.H.; Chen, X.J.; Gomez, M.A.; Ma, X.C.; Wang, H.B.; Zang, S.Y. One-step synthesis of zerovalent-iron-biochar composites to activate persulfate for phenol degradation. Water Sci. Technol. 2019, 80, 1851–1860. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.L.S.; Caldara, J.A.; Rocco, A.M.; Borges, C.P.; Fonseca, F.V. Evaluation of Nano Zero-Valent Iron (nZVI) Activity in Solution and Immobilized in Hydrophilic PVDF Membrane for Drimaren Red X-6BN and Bisphenol-a Removal in Water. Processes 2019, 7, 904. [Google Scholar] [CrossRef]
- Nguyen, V.-T.; Hung, C.-M.; Nguyen, T.-B.; Chang, J.-H.; Wang, T.-H.; Wu, C.-H.; Lin, Y.-L.; Chen, C.-W.; Dong, C.-D. Efficient Heterogeneous Activation of Persulfate by Iron-Modified Biochar for Removal of Antibiotic from Aqueous Solution: A Case Study of Tetracycline Removal. Catalysts 2019, 9, 49. [Google Scholar] [CrossRef]
- Kajani, A.A.; Bordbar, A.-K. Biogenic magnetite nanoparticles: A potent and environmentally benign agent for efficient removal of azo dyes and phenolic contaminants from water. J. Hazard. Mater. 2019, 366, 268–274. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, Y.; Zhao, N.; Liu, H.; Wei, Y. Citrate modified ferrihydrite microstructures: Facile synthesis, strong adsorption and excellent Fenton-like catalytic properties. RSC Adv. 2014, 4, 21575–21583. [Google Scholar] [CrossRef]
- Luo, H.; Zeng, Y.; He, D.; Pan, X. Application of iron-based materials in heterogeneous advanced oxidation processes for wastewater treatment: A review. Chem. Eng. J. 2021, 407, 127191. [Google Scholar] [CrossRef]
- Dong, C.-D.; Chen, C.-W.; Tsai, M.-L.; Chang, J.-H.; Lyu, S.-Y.; Hung, C.-M. Degradation of 4-nonylphenol in marine sediments by persulfate over magnetically modified biochars. Bioresour. Technol. 2019, 281, 143–148. [Google Scholar] [CrossRef]
- Zhao, G.; Zou, J.; Chen, X.; Liu, L.; Wang, Y.; Zhou, S.; Long, X.; Yu, J.; Jiao, F. Iron-based catalysts for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Chem. Eng. J. 2021, 421, 127845. [Google Scholar] [CrossRef]
- Malakootian, M.; Shahesmaeili, A.; Faraji, M.; Amiri, H.; Silva Martinez, S. Advanced oxidation processes for the removal of organophosphorus pesticides in aqueous matrices: A systematic review and meta-analysis. Process Saf. Environ. Prot. 2020, 134, 292–307. [Google Scholar] [CrossRef]
- Azari, A.; Nabizadeh, R.; Nasseri, S.; Mahvi, A.H.; Mesdaghinia, A.R. Comprehensive systematic review and meta-analysis of dyes adsorption by carbon-based adsorbent materials: Classification and analysis of last decade studies. Chemosphere 2020, 250, 126238. [Google Scholar] [CrossRef]
- Zhang, S.; Gao, H.; Huang, Y.; Wang, X.; Hayat, T.; Li, J.; Xu, X.; Wang, X. Ultrathin g-C3N4 nanosheets coupled with amorphous Cu-doped FeOOH nanoclusters as 2D/0D heterogeneous catalysts for water remediation. Environ. Sci.-Nano 2018, 5, 1179–1190. [Google Scholar] [CrossRef]
- Wang, J.; Shen, M.; Gong, Q.; Wang, X.; Cai, J.; Wang, S.; Chen, Z. One-step preparation of ZVI-sludge derived biochar without external source of iron and its application on persulfate activation. Sci. Total Environ. 2020, 714, 136728. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Guo, W.; Liu, Z.; Wang, R.; Liu, H. Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A. J. Hazard. Mater. 2017, 324, 665–672. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, Y.; Yang, Y.; Han, Y.; Wang, T.; Chen, J.; Tsang, D.C.W. Biochar-supported nanoscale zero-valent iron as an efficient catalyst for organic degradation in groundwater. J. Hazard. Mater. 2020, 383, 121240. [Google Scholar] [CrossRef] [PubMed]
- Belattar, S.; Debbache, N.; Ghoul, I.; Sehili, T.; Abdessemed, A. Photodegradation of phenol red in the presence of oxyhydroxide of Fe(III) (Goethite) under artificial and a natural light. Water Environ. J. 2018, 32, 358–365. [Google Scholar] [CrossRef]
- Salari, H. Kinetics and mechanism of enhanced photocatalytic activity under visible light irradiation using Cr2O3/Fe2O3 nanostructure derived from bimetallic metal organic framework. J. Environ. Chem. Eng. 2019, 7, 103092. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Yang, C.X.; Yan, X.P. Fabrication of metal-organic framework MIL-88B films on stainless steel fibers for solid-phase microextraction of polychlorinated biphenyls. J. Chromatogr. A 2014, 1334, 1–8. [Google Scholar] [CrossRef]
- Li, X.; Guo, W.; Liu, Z.; Wang, R.; Liu, H. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl. Surf. Sci. 2016, 369, 130–136. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, S.; Zhang, H.; Fan, X.; Gao, C.; Yu, H.; Quan, X. Carbon nanotubes-incorporated MIL-88B-Fe as highly efficient Fenton-like catalyst for degradation of organic pollutants. Front. Environ. Sci. Eng. 2019, 13, 18. [Google Scholar] [CrossRef]
- Taleb, M.F.A. Adsorption and photocatalytic degradation of 2-CP in wastewater onto CS/CoFe2O4 nanocomposite synthesized using gamma radiation. Carbohydr. Polym. 2014, 114, 65–72. [Google Scholar] [CrossRef]
- Liu, D.; Wang, C.; Song, Y.; Wei, Y.; He, L.; Lan, B.; He, X.; Wang, J. Effective mineralization of quinoline and bio-treated coking wastewater by catalytic ozonation using CuFe2O4/Sepiolite catalyst: Efficiency and mechanism. Chemosphere 2019, 227, 647–656. [Google Scholar] [CrossRef]
- Tan, C.; Jian, X.; Dong, Y.; Lu, X.; Liu, X.; Xiang, H.; Cui, X.; Deng, J.; Gao, H. Activation of peroxymonosulfate by a novel EGCE@Fe3O4 nanocomposite: Free radical reactions and implication for the degradation of sulfadiazine. Chem. Eng. J. 2019, 359, 594–603. [Google Scholar] [CrossRef]
- Chen, L.; Zuo, X.; Yang, S.; Cai, T.; Ding, D. Rational design and synthesis of hollow Co3O4@Fe2O3 core-shell nanostructure for the catalytic degradation of norfloxacin by coupling with peroxymonosulfate. Chem. Eng. J. 2019, 359, 373–384. [Google Scholar] [CrossRef]
- Yue, S.; Qiyan, F.; Xiangdong, L. Application of response surface methodology to optimize degradation of polyacrylamide in aqueous solution using heterogeneous Fenton process. Desalination Water Treat. 2013, 53, 1923–1932. [Google Scholar] [CrossRef]
- Peng, Q.; Ding, Y.; Zhu, L.; Zhang, G.; Tang, H. Fast and complete degradation of norfloxacin by using Fe/Fe3C@NG as a bifunctional catalyst for activating peroxymonosulfate. Sep. Purif. Technol. 2018, 202, 307–317. [Google Scholar] [CrossRef]
- Dai, X.-H.; Fan, H.-X.; Yi, C.-Y.; Dong, B.; Yuan, S.-J. Solvent-free synthesis of a 2D biochar stabilized nanoscale zerovalent iron composite for the oxidative degradation of organic pollutants. J. Mater. Chem. A 2019, 7, 6849–6858. [Google Scholar] [CrossRef]
- Boruah, P.K.; Sharma, B.; Karbhal, I.; Shelke, M.V.; Das, M.R. Ammonia-modified graphene sheets decorated with magnetic Fe3O4 nanoparticles for the photocatalytic and photo-Fenton degradation of phenolic compounds under sunlight irradiation. J. Hazard. Mater. 2017, 325, 90–100. [Google Scholar] [CrossRef]
- Liu, L.; Xu, X.; Li, Y.; Su, R.; Li, Q.; Zhou, W.; Gao, B.; Yue, Q. One-step synthesis of “nuclear-shell” structure iron-carbon nanocomposite as a persulfate activator for bisphenol A degradation. Chem. Eng. J. 2020, 382, 122780. [Google Scholar] [CrossRef]
- Guo, F.; Lu, J.; Liu, Q.; Zhang, P.; Zhang, A.; Cai, Y.; Wang, Q. Degradation of Acid Orange 7 by peroxymonosulfate activated with the recyclable nanocomposites of g-C3N4 modified magnetic carbon. Chemosphere 2018, 205, 297–307. [Google Scholar] [CrossRef]
- Luo, H.; Lin, Q.; Zhang, X.; Huang, Z.; Liu, S.; Jiang, J.; Xiao, R.; Liao, X. New insights into the formation and transformation of active species in nZVI/BC activated persulfate in alkaline solutions. Chem. Eng. J. 2019, 359, 1215–1223. [Google Scholar] [CrossRef]
- Daud, N.K.; Ahmad, M.A.; Hameed, B.H. Decolorization of Acid Red 1 dye solution by Fenton-like process using Fe-Montmorillonite K10 catalyst. Chem. Eng. J. 2010, 165, 111–116. [Google Scholar] [CrossRef]
- Danish, M.; Gu, X.; Lu, S.; Xu, M.; Zhang, X.; Fu, X.; Xue, Y.; Miao, Z.; Naqvi, M.; Nasir, M. Role of reactive oxygen species and effect of solution matrix in trichloroethylene degradation from aqueous solution by zeolite-supported nano iron as percarbonate activator. Res. Chem. Intermed. 2016, 42, 6959–6973. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, L.; Zhang, Y.; Yan, J.; Lu, X.; Huang, Y.; Tang, H. Removing organic contaminants with bifunctional iron modified rectorite as efficient adsorbent and visible light photo-Fenton catalyst. J. Hazard. Mater. 2012, 215, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; He, D.; Yang, Y.; Lv, H.; Cai, Y.; Liang, Y. Long-lasting activity of Fe-0-C internal microelectrolysis-Fenton system assisted by Fe@C-montmorillonites nanocomposites. Appl. Catal. B-Environ. 2019, 256, 117820. [Google Scholar] [CrossRef]
- Lu, H.; Sui, M.; Yuan, B.; Wang, J.; Lv, Y. Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals. Chem. Eng. J. 2019, 357, 140–149. [Google Scholar] [CrossRef]
- Ji, Q.; Li, J.; Xiong, Z.; Lai, B. Enhanced reactivity of microscale Fe/Cu bimetallic particles (mFe/Cu) with persulfate (PS) for p-nitrophenol (PNP) removal in aqueous solution. Chemosphere 2017, 172, 10–20. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Han, D.; Huang, W.; Yang, C. New insights into the role of Ni loading on the surface structure and the reactivity of nZVI toward tetrabromo- and tetrachlorobisphenol A. Chem. Eng. J. 2017, 311, 173–182. [Google Scholar] [CrossRef]
- Gomez-Obando, V.A.; Garcia-Mora, A.M.; Basante, J.S.; Hidalgo, A.; Galeano, L.A. CWPO Degradation of Methyl Orange at Circumneutral pH: Multi-Response Statistical Optimization, Main Intermediates and by-Products. Front. Chem. 2019, 7, 772. [Google Scholar] [CrossRef]
- Silveira, J.E.; Barreto-Rodrigues, M.; Cardoso, T.O.; Pliego, G.; Munoz, M.; Zazo, J.A.; Casas, J.A. Nanoscale Fe/Ag particles activated persulfate: Optimization using response surface methodology. Water Sci. Technol. 2017, 75, 2216–2224. [Google Scholar] [CrossRef]
- Liu, X.; Fan, J.-H.; Ma, L.-M. Elimination of 4-chlorophenol in aqueous solution by the bimetallic Al-Fe/O-2 at normal temperature and pressure. Chem. Eng. J. 2014, 236, 274–284. [Google Scholar] [CrossRef]
- Yamaguchi, R.; Kurosu, S.; Suzuki, M.; Kawase, Y. Hydroxyl radical generation by zero-valent iron/Cu (ZVI/Cu) bimetallic catalyst in wastewater treatment: Heterogeneous Fenton/Fenton-like reactions by Fenton reagents formed in-situ under oxic conditions. Chem. Eng. J. 2018, 334, 1537–1549. [Google Scholar] [CrossRef]
- Song, S.; Su, M.; Adeleye, A.S.; Zhang, Y.; Zhou, X. Optimal design and characterization of sulfide-modified nanoscale zerovalent iron for diclofenac removal. Appl. Catal. B-Environ. 2017, 201, 211–220. [Google Scholar] [CrossRef]
- Huang, R.; Liu, Y.; Chen, Z.; Pan, D.; Li, Z.; Wu, M.; Shek, C.-H.; Wu, C.M.L.; Lai, J.K.L. Fe-Species-Loaded Mesoporous MnO2 Superstructural Requirements for Enhanced Catalysis. Acs Appl. Mater. Interfaces 2015, 7, 3949–3959. [Google Scholar] [CrossRef] [PubMed]
- Lyu, C.; He, D.; Mou, Z.; Yang, X. Synergetic activation of peroxymonosulfate by MnO2-loaded beta-FeOOH catalyst for enhanced degradation of organic pollutant in water. Sci. Total Environ. 2019, 693, 133589. [Google Scholar] [CrossRef]
- Wei, X.; Yin, H.; Peng, H.; Chen, R.; Lu, G.; Dang, Z. Reductive debromination of decabromodiphenyl ether by iron sulfide-coated nanoscale zerovalent iron: Mechanistic insights from Fe(II) dissolution and solvent kinetic isotope effects. Environ. Pollut. 2019, 253, 161–170. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Sun, Y.; Liang, L.; Pan, B.; Zhang, W.; Guan, X. Advances in Sulfidation of Zerovalent Iron for Water Decontamination. Environ. Sci. Technol. 2017, 51, 13533–13544. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, C.; Deng, J.; Jiang, Z.; Zhang, L.; Cheng, Y.; Hou, K.; Tang, L.; Zeng, G. Factors influencing degradation of trichloroethylene by sulfide-modified nanoscale zero-valent iron in aqueous solution. Water Res 2018, 135, 1–10. [Google Scholar] [CrossRef]
- Tang, J.; Tang, L.; Feng, H.; Zeng, G.; Dong, H.; Zhang, C.; Huang, B.; Deng, Y.; Wang, J.; Zhou, Y. pH-dependent degradation of p-nitrophenol by sulfidated nanoscale zerovalent iron under aerobic or anoxic conditions. J. Hazard. Mater. 2016, 320, 581–590. [Google Scholar] [CrossRef]
- Dong, H.; Hou, K.; Qiao, W.; Cheng, Y.; Zhang, L.; Wang, B.; Li, L.; Wang, Y.; Ning, Q.; Zeng, G. Insights into enhanced removal of TCE utilizing sulfide-modified nanoscale zero-valent iron activated persulfate. Chem. Eng. J. 2019, 359, 1046–1055. [Google Scholar] [CrossRef]
- Fan, D.; Lan, Y.; Tratnyek, P.G.; Johnson, R.L.; Filip, J.; O’Carroll, D.M.; Nunez Garcia, A.; Agrawal, A. Sulfidation of Iron-Based Materials: A Review of Processes and Implications for Water Treatment and Remediation. Environ. Sci. Technol. 2017, 51, 13070–13085. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, X.; Feng, D.; Hodge, A.K.; Hu, L.; Lu, J.; Li, J. Biochar-Supported FeS/Fe3O4 Composite for Catalyzed Fenton-Type Degradation of Ciprofloxacin. Catalysts 2019, 9, 1062. [Google Scholar] [CrossRef]
- Pang, Y.; Luo, K.; Tang, L.; Li, X.; Song, Y.; Li, C.Y.; Wang, L.P. Preparation and application of magnetic nitrogen-doped rGO for persulfate activation. Environ. Sci. Pollut. Res. Int. 2018, 25, 30575–30584. [Google Scholar] [CrossRef]
- Bin, Q.; Lin, B.; Zhu, K.; Shen, Y.; Man, Y.; Wang, B.; Lai, C.; Chen, W. Superior trichloroethylene removal from water by sulfide-modified nanoscale zero-valent iron/graphene aerogel composite. J. Environ. Sci. 2020, 88, 90–102. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Niv, Y.; Hu, W. Fe/Fe3C nanoparticles loaded on Fe/N-doped graphene as an efficient heterogeneous Fenton catalyst for degradation of organic pollutants. Colloids Surf. A-Physicochem. Eng. Asp. 2017, 518, 145–150. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, Y.; Chen, S.; Zhu, L.; Liu, X.; Kong, L.; Wang, L. Synthesis of nitrogen-doped carbon nanotubes-FePO4 composite from phosphate residue and its application as effective Fenton-like catalyst for dye degradation. J. Environ. Sci. 2019, 76, 188–198. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Luo, R.; Wang, C.; Zhang, M.; Zhang, W.; Klu, P.K.; Yan, Y.; Qi, J.; Sun, X.; Wang, L.; et al. Iron-tannic modified cotton derived Fe-0/graphitized carbon with enhanced catalytic activity for bisphenol A degradation. Chem. Eng. J. 2019, 372, 774–784. [Google Scholar] [CrossRef]
- Peng, G.; Zhang, M.; Deng, S.; Shan, D.; He, Q.; Yu, G. Adsorption and catalytic oxidation of pharmaceuticals by nitrogen-doped reduced graphene oxide/Fe3O4 nanocomposite. Chem. Eng. J. 2018, 341, 361–370. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, L.; Chen, S.; Wang, X.; Ma, Y.; Wu, Q.; Jiang, Y.; Qian, W.; Hu, Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 2013, 135, 1201–1204. [Google Scholar] [CrossRef]
- Chen, X.; Wang, L.; Sun, W.; Yang, Z.; Jin, J.; You, D.; Liu, G. Enhanced electrochemical advanced oxidation on boride activated carbon: The influences of boron groups. Electrochim. Acta 2021, 400, 139462. [Google Scholar] [CrossRef]
- Huang, M.; Wang, X.; Liu, C.; Fang, G.; Gao, J.; Wang, Y.; Zhou, D. Facile ball milling preparation of sulfur-doped carbon as peroxymonosulfate activator for efficient removal of organic pollutants. J. Environ. Chem. Eng. 2021, 9, 106536. [Google Scholar] [CrossRef]
- Pan, Y.; Zhou, M.; Cai, J.; Tian, Y.; Zhang, Y. Mechanism study of nitrilotriacetic acid-modified premagnetized Fe-0/H2O2 for removing sulfamethazine. Chem. Eng. J. 2019, 374, 1180–1190. [Google Scholar] [CrossRef]
- Tan, C.; Lu, X.; Cui, X.; Jian, X.; Hu, Z.; Dong, Y.; Liu, X.; Huang, J.; Deng, L. Novel activation of peroxymonosulfate by an easily recyclable VC@Fe3O4 nanoparticles for enhanced degradation of sulfadiazine. Chem. Eng. J. 2019, 363, 318–328. [Google Scholar] [CrossRef]
- Dong, Y.; Cui, X.; Lu, X.; Jian, X.; Xu, Q.; Tan, C. Enhanced degradation of sulfadiazine by novel beta-alaninediacetic acid-modified Fe3O4 nanocomposite coupled with peroxymonosulfate. Sci. Total Environ. 2019, 662, 490–500. [Google Scholar] [CrossRef] [PubMed]
- Nadejde, C.; Neamtu, M.; Hodoroaba, V.D.; Schneider, R.J.; Paul, A.; Ababei, G.; Panne, U. Tannic acid- and natural organic matter-coated magnetite as green Fenton-like catalysts for the removal of water pollutants. J. Nanopart. Res. 2015, 17, 1–10. [Google Scholar] [CrossRef]
- Zhou, R.; Shen, N.; Zhao, J.; Su, Y.; Ren, H. Glutathione-coated Fe3O4 nanoparticles with enhanced Fenton-like activity at neutral pH for degrading 2,4-dichlorophenol. J. Mater. Chem. A 2018, 6, 1275–1283. [Google Scholar] [CrossRef]
- Wang, M.; Fang, G.; Liu, P.; Zhou, D.; Ma, C.; Zhang, D.; Zhan, J. Fe3O4 @β-CD nanocomposite as heterogeneous Fenton-like catalyst for enhanced degradation of 4-chlorophenol (4-CP). Appl. Catal. B Environ. 2016, 188, 113–122. [Google Scholar] [CrossRef]
- Nadejde, C.; Neamtu, M.; Hodoroaba, V.D.; Schneider, R.J.; Ababei, G.; Panne, U. Hybrid iron-based core-shell magnetic catalysts for fast degradation of bisphenol A in aqueous systems. Chem. Eng. J. 2016, 302, 587–594. [Google Scholar] [CrossRef]
- Ferroudj, N.; Nzimoto, J.; Davidson, A.; Talbot, D.; Briot, E.; Dupuis, V.; Bee, A.; Medjram, M.S.; Abramson, S. Maghemite nanoparticles and maghemite/silica nanocomposite microspheres as magnetic Fenton catalysts for the removal of water pollutants. Appl. Catal. B-Environ. 2013, 136, 9–18. [Google Scholar] [CrossRef]
- Mandal, S.; Adhikari, S.; Pu, S.; Wang, X.; Kim, D.-H.; Patel, R.K. Interactive Fe2O3/porous SiO2 nanospheres for photocatalytic degradation of organic pollutants: Kinetic and mechanistic approach. Chemosphere 2019, 234, 596–607. [Google Scholar] [CrossRef]
- Rasoulifard, M.H.; Monfared, H.H.; Masoudian, S. Photo-assisted hetero-Fenton decolorization of azo dye from contaminated water by Fe-Si mixed oxide nanocomposite. Environ. Technol. 2011, 32, 1627–1635. [Google Scholar] [CrossRef]
- Zhu, S.; Wang, W.; Xu, Y.; Zhu, Z.; Liu, Z.; Cui, F. Iron sludge-derived magnetic Fe-0/Fe3C catalyst for oxidation of ciprofloxacin via peroxymonosulfate activation. Chem. Eng. J. 2019, 365, 99–110. [Google Scholar] [CrossRef]
- Ambashta, R.D.; Sillanpaa, M. Water purification using magnetic assistance: A review. J. Hazard Mater. 2010, 180, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Graham, L.J.; Atwater, J.E.; Jovanovic, G.N. Chlorophenol dehalogenation in a magnetically stabilized fluidized bed reactor. AIChE J. 2006, 52, 1083–1093. [Google Scholar] [CrossRef]
- Ohno, T. Development of visible light sensitive TiO2 photocatalysts and their sensitization using Fe3+ ions. J. Jpn. Pet. Inst. 2006, 49, 168–176. [Google Scholar] [CrossRef]
- Jian Zhu, J.R.; Huo, Y.; Bian, Z.; Li, H. Nanocrystalline Fe/TiO2 Visible Photocatalyst with a Mesoporous Structure Prepared via a Nonhydrolytic Sol-Gel Route. J. Phys. Chem. C 2007, 111, 18965–18969. [Google Scholar]
- Kurian, M. Advanced oxidation processes and nanomaterials—A review. Clean. Eng. Technol. 2021, 2, 100090. [Google Scholar] [CrossRef]
- Kohantorabi, M.; Hosseinifard, M.; Kazemzadeh, A. Catalytic activity of a magnetic Fe2O3@CoFe2O4 nanocomposite in peroxymonosulfate activation for norfloxacin removal. New J. Chem. 2020, 44, 4185–4198. [Google Scholar] [CrossRef]
- Jiang, Z.; Li, J.; Jiang, D.; Gao, Y.; Chen, Y.; Wang, W.; Cao, B.; Tao, Y.; Wang, L.; Zhang, Y. Removal of atrazine by biochar-supported zero-valent iron catalyzed persulfate oxidation: Reactivity, radical production and transformation pathway. Environ. Res. 2020, 184, 109260. [Google Scholar] [CrossRef]
- Yu, J.; Hou, X.; Hu, X.; Yuan, H.; Wang, J.; Chen, C. Efficient degradation of chloramphenicol by zero-valent iron microspheres and new insights in mechanisms. Appl. Catal. B Environ. 2019, 256, 117876. [Google Scholar] [CrossRef]
Types of AOPs Processes | |||||
---|---|---|---|---|---|
Types of AOPs System | |||||
Photochemical | Photocatalysis | Chemical Oxidation Processes | Persulfate-AOPs | ||
UV/O3, UV/H2O2 | TiO2/UV, Photo-Fenton Reactives | O3, O3/ H2O2, H2O2/Fe2+ | Peroxymonosulfate (PMS)-AOPs | Peroxydisulfate (PDS)-AOPs | |
Oxidation process | |||||
Oxidation properties | ) = +1.90 − +2.70 VNHE | ) = +2.60 − +3.10 VNHE |
Stabilizer Materials | Structure | Functional Groups | Reactions | Reference | |
---|---|---|---|---|---|
Chelatingagent | Ascorbic acid(VC) | -OH-C-O | [82] | ||
Citrate | -COOH-OH | [25] | |||
Nitrilotriacetic acid(NTA) | -COOHC=O-C-O-OH | [81] | |||
β-alanine diacetic acid(β-ADA) | -COOH-C-O-OH | [83] | |||
Epigallocatechin gallate(EGCG) | -OH | [42] | |||
Glutathione(GSH) | -COOH-NH2-SH | [85] | |||
Polymer | Carboxymethyl cellulose(CMC) | -COOH | [22] | ||
Chitosan(CS) | -COOH-NH2-OH | [87] |
Composite Material | Initial Iron-Based Materials | Modified Composite Iron-Based Materials | Stability of Composite Materials | Reference | |||||
---|---|---|---|---|---|---|---|---|---|
Morphology | Properties | Morphology | Properties | Number of Cycles of Composite Materials | Degradation Efficiency at the Last Cycle | ||||
BET Surface Area (m2 g−1) | Lattice Size (nm) | BET Surface Area (m2 g−1) | Lattice Size (nm) | ||||||
Fe3O4@β-CD | / | / | / | 10–20 | 3 | 90% | [86] | ||
spherical | quasi-spherical | ||||||||
β-FeOOH@MnO2 | 144.29 | 0.191 | 341.58 | 0.133 | 5 | 90% | [64] | ||
nanorod structure | spindle-like-nanorod | ||||||||
CuFe2O4/SEP | 28.329 | 9.098 | 42.141 | 10.043 | 5 | 80.8% | [41] | ||
spherical | rough and densely porous | ||||||||
Fe0/Fe3C | / | / | / | 20–30 | 3 | 92% | [91] | ||
irregular shape with porous structure | nano-sphere, core/shell-like structure | ||||||||
γ-Fe2O3/SiO2 MS | / | 8.9 | / | 0.002 | 5 | 88% | [88] | ||
rock-like morphology | spherical shape | ||||||||
MIL-88B-Fe/CNT | 54.82 | / | 98.43 | / | 3 | 100% | [39] | ||
the cambiform architecture | the tubular and cambiform structure | ||||||||
FeO/SiO2 | / | / | / | / | 0.00085–0.0015 | 3 | 98% | [19] | |
elongated hexagonal structure | |||||||||
Fe3O4@C/gC3N4 | 13.67 | / | 29.64 | / | 4 | 85% | [49] | ||
spherical | spherical mesoporous structure |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhao, Z.; He, C.; Wang, F.; Liu, X.; Chen, X.; Liu, J.; Wang, D. Application of Functional Modification of Iron-Based Materials in Advanced Oxidation Processes (AOPs). Water 2022, 14, 1498. https://doi.org/10.3390/w14091498
Liu M, Zhao Z, He C, Wang F, Liu X, Chen X, Liu J, Wang D. Application of Functional Modification of Iron-Based Materials in Advanced Oxidation Processes (AOPs). Water. 2022; 14(9):1498. https://doi.org/10.3390/w14091498
Chicago/Turabian StyleLiu, Mengting, Zhenzhen Zhao, Chiquan He, Feifei Wang, Xiaoyan Liu, Xueping Chen, Jialin Liu, and Daoyuan Wang. 2022. "Application of Functional Modification of Iron-Based Materials in Advanced Oxidation Processes (AOPs)" Water 14, no. 9: 1498. https://doi.org/10.3390/w14091498
APA StyleLiu, M., Zhao, Z., He, C., Wang, F., Liu, X., Chen, X., Liu, J., & Wang, D. (2022). Application of Functional Modification of Iron-Based Materials in Advanced Oxidation Processes (AOPs). Water, 14(9), 1498. https://doi.org/10.3390/w14091498