Application of Cosmic-Ray Neutron Sensor Method to Calculate Field Water Use Efficiency
Abstract
:1. Introduction
2. Study Site and Experimental Design
2.1. Study Site
2.2. Experimental Design
3. Methods
3.1. Cosmic-Ray Neutron Method
3.1.1. Correction for the Number of Neutrons
- Correction for Air Pressure
- Correction for Atmospheric Water Vapor
- Correction for Incident Neutron Intensity
3.1.2. SM Calibration
3.2. Calculation Method for Canal Head and Tail Water
4. Results and Discussion
4.1. Response of CRNS Data to Moisture Changes
4.2. Irrigation Event Identification
4.3. On-Farm Water Efficiency
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CRNS | Cosmic-Ray Neutron Sensor |
SM | Soil Moisture |
TDR | Time-Domain Reflector |
AWS | Autonomous Weather Station |
References
- Rehana, S.; Mujumdar, P.P. Regional impacts of climate change on irrigation water demands. Hydrol. Process. 2013, 27, 2918–2933. [Google Scholar] [CrossRef]
- Waqas, M.S.; Cheema, M.J.M.; Hussain, S.; Ullah, M.K.; Iqbal, M.M. Delayed irrigation: An approach to enhance crop water productivity and to investigate its effects on potato yield and growth parameters. Agric. Water Manag. 2021, 245, 106576. [Google Scholar] [CrossRef]
- Wallace, J.S. Increasing agricultural water use efficiency to meet future food production. Agric. Ecosyst. Environ. 2000, 82, 105–119. [Google Scholar] [CrossRef]
- Yang, C.; Huang, G.; Chai, Q.; Luo, Z. Water use and yield of wheat/maize intercropping under alternate irrigation in the oasis field of northwest China. Field Crops Res. 2011, 124, 426–432. [Google Scholar] [CrossRef]
- Babaeian, E.; Paheding, S.; Siddique, N.; Devabhaktuni, V.K.; Tuller, M. Estimation of root zone soil moisture from ground and remotely sensed soil information with multisensor data fusion and automated machine learning. Remote Sens. Environ. 2021, 260, 112434. [Google Scholar] [CrossRef]
- Waqas, M.S.; Cheema, M.J.M.; Waqas, A.; Hussain, S. Enhancing Water Productivity of Potato (Solanum tuberosum L.) Through Drip Irrigation System. In Proceedings of the Pakistan Society for Horticultural Science, Faisalabad, Pakistan, 18–20 February 2016; Volume 18–20, pp. 249–256. [Google Scholar]
- Aslam, F.; Nawaz, G.; Hussain, S.; Ahmed, S. Investigating MAD and Fertigation Effects on Tomato Under Drip Irrigation System in Greenhouse. In Proceedings of the Pakistan Society for Horticultural Science, Faisalabad, Pakistan, 18–20 February 2016; pp. 264–270. [Google Scholar]
- Zhang, C.; Xie, Z.; Wang, Q.; Tang, M.; Feng, S.; Cai, H. AquaCrop modeling to explore optimal irrigation of winter wheat for improving grain yield and water productivity. Agric. Water Manag. 2022, 266, 107580. [Google Scholar] [CrossRef]
- Lankford, B. Localising irrigation efficiency. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2006, 55, 345–362. [Google Scholar] [CrossRef]
- Wang, Z.; Zerihun, D.; Feyen, J. General irrigation efficiency Management for field Water. Agric. Water Manag. 1995, 30, 123–132. [Google Scholar] [CrossRef]
- Gao, F.; Zhao, J.; Xu, J.; Huang, X.; Ni, W.; Li, Y.; Wang, J. Study on measuring method of use efficiency of irrigation water. J. Irrig. Drain. 2004, 23, 14–20. [Google Scholar] [CrossRef]
- Ma, W.B.; Lai, B.; Luan, Q.H.; He, S. Determination and Analysis of Effective Use efficiency of Well Irrigation Water in the Eastern Plain of Handan. J. Irrig. Drain. 2020, 39 (Supp. 2), 45–49. [Google Scholar] [CrossRef]
- Shen, P.P.; Yang, L.H.; Xie, X.T.; Ren, X.W. Research on the connotation and measurement method of the effective use efficiency of irrigation water in irrigation areas. China Rural. Water Resour. Hydropower 2013, 6, 73–75. [Google Scholar] [CrossRef]
- Cai, S.H.; Zhang, Z.Y.; Zhang, D.Q. Modified index system for utilization efficiency of irrigation water. J. Hydraul. Eng. 2004, 35, 111–115. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhang, Y.; Wu, F. Evaluation of the most proper management scale on water use efficiency and water productivity: A case study of the Heihe River Basin, China. Agric. Water Manag. 2021, 246, 106671. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, S.; Song, L.; Xu, Z. Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sens. Environ. 2018, 216, 715–734. [Google Scholar] [CrossRef]
- Kang, S.; Do, N.; Hong, S. Assessing Drought Vulnerability using Soil Moisture-based Water Use Efficiency in Northeast Asia dryland regions. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016. [Google Scholar]
- Karatas, B.S.; Akkuzu, E.; Unal, H.B.; Asik, S. Using satellite remote sensing to assess irrigation performance in Water User Associations in the Lower Gediz Basin, Turkey. Agric. Water Manag. 2009, 96, 982–990. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Wang, L.; He, X.; Zhang, X.; Chen, S.; Chen, J.; Yang, Y. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the north China plain. Agric. For. Meteorol. 2008, 148, 1848–1859. [Google Scholar] [CrossRef]
- Meng, G.; Wang, Y.; Qiu, Y.; Chen, X.; Wu, H. Experimental Study on Water Use efficiency of Middle Rice Fields in Gaoguan Irrigation District. J. Irrig. Drain. 2019, 38, 102–106. [Google Scholar] [CrossRef]
- Li, J.; Rao, M.; Zhang, J. A Field Test Study on the Use efficiency of Spraying Water in Arid Areas. Chin. J. Agric. Eng. 2002, 18, 42–45. [Google Scholar] [CrossRef]
- Bell, J.P.; Dean, T.J.; Hodnett, M.G. Soil moisture measurement by an improved capacitance technique, Part II. Field techniques, evaluation and calibration. J. Hydrol. 1987, 93, 79–90. [Google Scholar] [CrossRef]
- Lu, Y.; Song, W.; Lu, J.; Wang, X.; Tan, Y. An examination of soil moisture estimation using ground penetrating radar in desert steppe. Water 2017, 9, 521. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Zhang, Y.; Xie, W.; Li, Y.; Song, J. Summary of remote sensing methods for monitoring soil moisture. Remote Sens. Land Resour. 2014, 26, 19–26. [Google Scholar] [CrossRef]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, proximal, and satellite remote sensing of soil moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef] [Green Version]
- Tavakol, A.; McDonough, K.R.; Rahmani, V.; Hutchinson, S.L.; Hutchinson, J.S. The soil moisture data bank: The ground-based, model-based, and satellite-based soil moisture data. Remote Sens. Appl. Soc. Environ. 2021, 24, 100649. [Google Scholar] [CrossRef]
- Zreda, M.; Shuttleworth, W.J.; Zeng, X.; Zweck, C.; Desilets, D.; Franz, T.; Rosolem, R. COSMOS: The cosmic-ray soil moisture observing system. Hydrol. Earth Syst. Sci. 2012, 16, 4079–4099. [Google Scholar] [CrossRef] [Green Version]
- Zreda, M.; Desilets, D.; Ferré, T.P.A.; Scott, R.L. Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons. Geophys. Res. Lett. 2008, 35, 35655. [Google Scholar] [CrossRef] [Green Version]
- Schrön, M.; Zacharias, S.; Womack, G.; Köhli, M.; Desilets, D.; Oswald, S.E.; Dietrich, P. Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment. Geoscientific Instrumentation. Methods Data Syst. 2018, 7, 83–99. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Franssen, H.J.H.; Bello, M.Á.J.; Rosolem, R.; Bogena, H.; Alzamora, F.M.; Chanzy, A.; Vereecken, H. Simultaneous soil moisture and properties estimation for a drip irrigated field by assimilating cosmic-ray neutron intensity. J. Hydrol. 2016, 539, 611–624. [Google Scholar] [CrossRef]
- Tian, Z.; Li, Z.; Liu, G.; Li, B.; Ren, T. Soil water content determination with cosmic-ray neutron sensor: Correcting aboveground hydrogen effects with thermal/fast neutron ratio. J. Hydrol. 2016, 540, 923–933. [Google Scholar] [CrossRef]
- Baroni, G.; Scheiffele, L.M.; Schrön, M.; Ingwersen, J.; Oswald, S.E. Uncertainty, sensitivity and improvements in soil moisture estimation with cosmic-ray neutron sensing. J. Hydrol. 2018, 564, 873–887. [Google Scholar] [CrossRef]
- Wang, Q.; Fan, J.; Wang, S.; Yong, C.; Ge, J.; You, W. Application and accuracy of cosmic-ray neutron probes in three soil textures on the Loess Plateau, China. J. Hydrol. 2019, 569, 449–461. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Kim, H.; Choi, M. Evaluation of the soil water content using cosmic-ray neutron probe in a heterogeneous monsoon climate-dominated region. Adv. Water Resour. 2017, 108, 125–138. [Google Scholar] [CrossRef]
- Han, X.; Jin, R.; Li, X.; Wang, S. Soil moisture estimation using cosmic-ray soil moisture sensing at heterogeneous farmland. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1659–1663. [Google Scholar] [CrossRef]
- Zhu, X.; Cao, R.; Shao, M.; Liang, Y. Footprint radius of a cosmic-ray neutron probe for measuring soil-water content and its spatiotemporal variability in an alpine meadow ecosystem. J. Hydrol. 2018, 558, 1–8. [Google Scholar] [CrossRef]
- Finkenbiner, C.E.; Franz, T.E.; Gibson, J.; Heeren, D.M.; Luck, J. Integration of hydrogeophysical datasets and empirical orthogonal functions for improved irrigation water management. Precis. Agric. 2019, 20, 78–100. [Google Scholar] [CrossRef] [Green Version]
- Franz, T.E.; Wahbi, A.; Zhang, J.; Vreugdenhil, M.; Heng, L.; Dercon, G.; Strauss, P.; Brocca, L.; Wagner, W. Practical data products from cosmic-ray neutron sensing for hydrological applications. Front. Water 2020, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Baroni, G.; Oswald, S.E. A scaling approach for the assessment of biomass changes and rainfall interception using cosmic-ray neutron sensing. J. Hydrol. 2015, 525, 264–276. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, L.; He, C.; Zhu, Y.; Han, Z.; Li, X. Applicability of cosmic-ray neutron sensor for measuring soil moisture at the agricultural-pastoral ecotone in northwest China. Sci. China Earth Sci. 2020, 63, 1730–1744. [Google Scholar] [CrossRef]
- Schattan, P.; Baroni, G.; Oswald, S.E.; Schöber, J.; Fey, C.; Kormann, C.; Huttenlau, M.; Achleitner, S. Continuous monitoring of snowpack dynamics in alpine terrain by aboveground neutron sensing. Water Resour. Res. 2017, 53, 3615–3634. [Google Scholar] [CrossRef]
- Evans, J.G.; Ward, H.C.; Blake, J.R.; Hewitt, E.J.; Morrison, R.; Fry, M.; Ball, L.A.; Doughty, L.C.; Libre, J.W.; Hitt, O.E.; et al. Soil water content in southern England derived from a cosmic-ray soil moisture observing system—COSMOS-UK. Hydrol. Process. 2016, 30, 4987–4999. [Google Scholar] [CrossRef] [Green Version]
- Baatz, R.; Bogena, H.R.; Franssen, H.J.H.; Huisman, J.A.; Qu, W.; Montzka, C.; Vereecken, H. Calibration of a catchment scale cosmic-ray probe network: A comparison of three parameterization methods. J. Hydrol. 2014, 516, 231–244. [Google Scholar] [CrossRef]
- Hawdon, A.; McJannet, D.; Wallace, J. Calibration and correction procedures for cosmic-ray neutron soil moisture probes located across Australia. Water Resour. Res. 2014, 50, 5029–5043. [Google Scholar] [CrossRef]
- Bogena, H.R.; Huisman, J.A.; Baatz, R.; Hendricks Franssen, H.J.; Vereecken, H. Accuracy of the cosmiche cosmicconter content probe in humid forest ecosystems: The worst case scenario. Water Resour. Res. 2013, 49, 5778–5791. [Google Scholar] [CrossRef] [Green Version]
- Jakobi, J.; Huisman, J.A.; Vereecken, H.; Diekkrüger, B.; Bogena, H.R. Cosmic ray neutron sensing for simultaneous soil water content and biomass quantification in drought conditions. Water Resour. Res. 2018, 54, 7383–7402. [Google Scholar] [CrossRef] [Green Version]
- Franz, T.E.; Zreda, M.; Ferre, T.P.A.; Rosolem, R.; Zweck, C.; Stillman, S.; Zeng, X.; Shuttleworth, W.J. Measurement depth of the cosmic ray soil moisture probe affected by hydrogen from various sources. Water Resour. Res. 2012, 48, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Jia, Y.; Peng, X.; Ju, X.; Gao, L. Applicability of cosmic-ray neutron sensing for measuring soil water content to heterogeneous landscapes under subtropical hydroclimatic conditions. J. Hydrol. 2021, 596, 126068. [Google Scholar] [CrossRef]
- Desilets, D.; Zreda, M.; Ferré, T.P.A. Nature’s neutron probe: Land surface hydrology at an elusive scale with cosmic rays. Water Resour. Res. 2010, 46, W11505. [Google Scholar] [CrossRef]
- Franz, T.E.; Zreda, M.; Rosolem, R.; Ferre, T.P.A. Field validation of a cosmic-ray neutron sensor using a distributed sensor network. Vadose Zone J. 2012, 11, vzj2012.0046. [Google Scholar] [CrossRef] [Green Version]
- Shi, J.; Wu, X.; Zhang, M.; Wang, X.; Zuo, Q.; Wu, X.; Ben-Gal, A. Numerically scheduling plant water deficit index-based smart irrigation to optimize crop yield and water use efficiency. Agric. Water Manag. 2021, 248, 106774. [Google Scholar] [CrossRef]
- Wang, Y.T. Research on Crop Water Requirement and Field Water Use Efficiency in Jinghui Canal Irrigation Area. Masters’ Thesis, Northwest A&F University, Beijing, China, 2019. [Google Scholar]
Stage | Sowing | Overwinter | Rejuvenation Period | Jointing Period | Heading Date | Maturity |
---|---|---|---|---|---|---|
Starting Time | 17 October 2018 | 16 December 2018 | 1 March 2019 | 26 March 2019 | 28 April 2019 | 9 June 2019 |
Time | Type | Times of Irrigation in This Round | Irrigation Period |
---|---|---|---|
Irrigation Time | Autumn Irrigation | 1 | 11 October 2018–19 November 2018 |
Winter Irrigation | 1 | 24 December 2018–1 February 2019 | |
Spring Irrigation | 2 | 12 February 2019–12 April 2019 |
Date | Irrigation Times | Irrigation Time Identified | SM Content before Irrigation (%) | SM Content after Irrigation (%) | Net Irrigation Water Consumption per Unit Area (m3/mu) | On-Farm Water Efficiency |
---|---|---|---|---|---|---|
October 2018–June 2019 | 1 | 30 October 2018 | 9.84 | 17.34 | 35.77 | 0.77 |
2 | 25 January 2019 | 10.47 | 19.55 | 43.30 | ||
3 | 8 March 2019 | 15.06 | 28.81 | 65.57 | ||
4 | 23 March 2019 | 10.69 | 19.59 | 42.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Song, W.; Shi, Y.; Liu, W.; Lu, Y.; Pang, Z.; Chen, X. Application of Cosmic-Ray Neutron Sensor Method to Calculate Field Water Use Efficiency. Water 2022, 14, 1518. https://doi.org/10.3390/w14091518
Chen X, Song W, Shi Y, Liu W, Lu Y, Pang Z, Chen X. Application of Cosmic-Ray Neutron Sensor Method to Calculate Field Water Use Efficiency. Water. 2022; 14(9):1518. https://doi.org/10.3390/w14091518
Chicago/Turabian StyleChen, Xiuhua, Wenlong Song, Yangjun Shi, Weidong Liu, Yizhu Lu, Zhiguo Pang, and Xiao Chen. 2022. "Application of Cosmic-Ray Neutron Sensor Method to Calculate Field Water Use Efficiency" Water 14, no. 9: 1518. https://doi.org/10.3390/w14091518
APA StyleChen, X., Song, W., Shi, Y., Liu, W., Lu, Y., Pang, Z., & Chen, X. (2022). Application of Cosmic-Ray Neutron Sensor Method to Calculate Field Water Use Efficiency. Water, 14(9), 1518. https://doi.org/10.3390/w14091518