Assessment of Surface Water Quality Using the Water Quality Index (IWQ), Multivariate Statistical Analysis (MSA) and Geographic Information System (GIS) in Oued Laou Mediterranean Watershed, Morocco
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Sampling and Chemical Analysis
2.3. Multivariate Statistical Analysis
2.4. Water Quality Index WQI
2.5. Irrigation Water Quality IWQI
3. Results and Discussion
3.1. Hydro Chemical Characteristics of Surface Water
3.2. Hydro Chemical Evolution and Surface Water Types
3.3. Correlation Matrix
3.4. Principal Component Analysis
3.5. Hierarchical Cluster Analysis
3.6. Water Quality Index
3.7. Hierarchical Cluster Analysis and WQIs
3.8. Irrigation Water Quality Assessment
Index Classification | Range | Reference | Range (No. of Samples) | Remark on Quality | Water Type | Salinity Hazard Class |
---|---|---|---|---|---|---|
Salinity | 100–250 | - | Excellent | Low salinity water | C1 | |
hazard | 250–750 | 301–524 (13 samples) | Good | Medium salinity | C2 | |
EC (μS/cm) | 750–2250 | [29] | - | Doubtful | High salinity water | C3 |
>2500 | - | Unsuitable | Very high salinity | C4 | ||
<10 | 0.18–2.51 (13 samples) | Excellent | Low sodium water | S1 | ||
SAR | 10–18 | [105] | -- | Good | Medium Sodium | S2 |
19–26 | -- | Doubtful | High sodium water | S3 | ||
>26 | -- | Unsuitable | Very high Sodium | S4 And S5 | ||
<20 | 4.73–9.18 (4 samples) | Excellent | -- | -- | ||
20–40 | 23.33–39.90 (7 samples) | Good | -- | -- | ||
Sodium (%) | 40–60 | [29] | 44.13–44.66 (2 samples) | Permissible | -- | -- |
60–80 | Nil | Doubtful | -- | -- | ||
>80 | Nil | Unsuitable | -- | -- | ||
<1.25 | Nil | Safe/Good | -- | -- | ||
RSC | 1.25–2.5 | [110] | 1.71 (1 sample) | Marginal/Doubtful | -- | -- |
>2.5 | 4.8–8.12 (12 Samples) | Unsuitable | -- | -- | ||
RSBC | <0 | Nil | Non-alkaline | -- | ||
0 | Nil | Normal | -- | |||
0–2.5 | 1.03–2.4 (4 Samples) | Satisfactory | Low alkalinity | |||
2.5–5 | [118] | 2.56–4.06 (9 Samples) | Medium alkalinity | |||
5–10 | Nil | Marginal | High alkalinity | |||
>10 | Nil | Very high alkalinity | ||||
<3 | 0.72–2.69 (6 samples) | Excellent | -- | -- | ||
PS | 3–5 | [112] | 3.28–4.73 (7 samples) | Good | -- | -- |
>5 | Nil | Unsuitable | -- | -- | ||
>75% | Nil | Good | ||||
PI | 25–75% | [112] | 26.12–48.40 (13 samples) | Suitable | ||
<25% | Nil | Unsuitable | ||||
KI | <1 | [116] | 0.04–0.79 (13 samples) | Suitable | -- | -- |
>1 | Nil | Unsuitable | -- | -- | ||
MH | <50 | [114] | 50 (11 samples) | suitability for irrigation | -- | -- |
>50 | 50–52 (2 samples) | Unsuitable for irrigation | -- | -- |
3.9. Spatial Division
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shil, S.; Singh, U.K.; Mehta, P. Water quality assessment of a tropical river using water quality index (WQI), multivariate statistical techniques and GIS. Appl. Water Sci. 2019, 9, 168. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.Y.A.; Gani, K.M.; Chakrapani, G.J. Assessment of surface water quality and its spatial variation. A case study of Ramganga River, Ganga Basin, India. Arab. J. Geosci. 2016, 9, 28. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, S.K. A critical review on water quality index tool: Genesis, evolution and future directions. Ecol. Inform. 2021, 63, 101299. [Google Scholar] [CrossRef]
- Kareem, S.L.; Jaber, W.S.; Al-Maliki, L.A.; Al-Husseiny, R.A.; Al-Mamoori, S.K.; Alansari, N. Water quality assessment and phosphorus effect using water quality indices: Euphrates River-Iraq as a case study. Groundw. Sustain. Dev. 2021, 14, 100630. [Google Scholar] [CrossRef]
- Devi, P.; Singh, P.; Kansal, S.K. Inorganic Pollutants in Water; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-818965-8. [Google Scholar]
- Uddin, G.; Nash, S.; Olbert, A.I. A review of water quality index models and their use for assessing surface water quality. Ecol. Indic. 2020, 122, 107218. [Google Scholar] [CrossRef]
- Wu, Z.; Lai, X.; Li, K. Water quality assessment of rivers in Lake Chaohu Basin (China) using water quality index. Ecol. Indic. 2020, 121, 107021. [Google Scholar] [CrossRef]
- Jahin, H.; Abuzaid, A.S.; Abdellatif, A.D. Using multivariate analysis to develop irrigation water quality index for surface water in Kafr El-Sheikh Governorate, Egypt. Environ. Technol. Innov. 2020, 17, 100532. [Google Scholar] [CrossRef]
- Gaur, N.; Sarkar, A.; Dutta, D.; Gogoi, B.J.; Dubey, R.; Dwivedi, S.K. Evaluation of water quality index and geochemical characteristics of surfacewater from Tawang India. Sci. Rep. 2022, 12, 11698. [Google Scholar] [CrossRef]
- Soumaila, K.I.; Mustapha, N.; Mohamed, C. Assessment of Surface Water Quality using Indices and Geographic Information System in the Sebou River Basin, Morocco. Eur. Sci. J. 2021, 17, 249. [Google Scholar] [CrossRef]
- Barakat, A.; El Baghdadi, M.; Rais, J.; Aghezzaf, B.; Slassi, M. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int. Soil Water Conserv. Res. 2016, 4, 284–292. [Google Scholar] [CrossRef]
- Molle, F.; Tanouti, O. Squaring the circle: Agricultural intensification vs. water conservation in Morocco. Agric. Water Manag. 2017, 192, 170–179. [Google Scholar] [CrossRef]
- Obiri-Nyarko, F.; Asugre, S.J.; Asare, S.V.; Duah, A.A.; Karikari, A.Y.; Kwiatkowska-Malina, J.; Malina, G. Hydrogeochemical Studies to Assess the Suitability of Groundwater for Drinking and Irrigation Purposes: The Upper East Region of Ghana Case Study. Agriculture 2022, 12, 1973. [Google Scholar] [CrossRef]
- Himi, M.; Stitou, J.; Rivero, L.; Salhi, A.; Tapias, J.; Casas, A. Geophysical Surveys for Delineating Salt Water Intrusion and Fresh Water Resources in the Oued Laou Coastal Aquifer. In Proceedings of the Near Surface 2010—16th EAGE European Meeting of Environmental and Engineering Geophysics, Zurich, Switzerland, 6–8 September 2010; European Association of Geoscientists & Engineers: Bunnik, The Netherlands, 2010. [Google Scholar] [CrossRef]
- Nouayti, N.; Cherif, E.K.; Algarra, M.; Pola, M.L.; Fernández, S.; Nouayti, A.; da Silva, J.C.G.E.; Driss, K.; Samlani, N.; Mohamed, H.; et al. Determination of Physicochemical Water Quality of the Ghis-Nekor Aquifer (Al Hoceima, Morocco) Using Hydrochemistry, Multiple Isotopic Tracers, and the Geographical Information System (GIS). Water 2022, 14, 606. [Google Scholar] [CrossRef]
- Alsubih, M.; Mallick, J.; Islam, A.R.M.T.; Almesfer, M.K.; Ben Kahla, N.; Talukdar, S.; Ahmed, M. Assessing Surface Water Quality for Irrigation Purposes in Some Dams of Asir Region, Saudi Arabia Using Multi-Statistical Modeling Approaches. Water 2022, 14, 1439. [Google Scholar] [CrossRef]
- El Bilali, A.; Taleb, A. Prediction of irrigation water quality parameters using machine learning models in a semi-arid environment. J. Saudi Soc. Agric. Sci. 2020, 19, 439–451. [Google Scholar] [CrossRef]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of river water quality indices—A review. Environ. Monit. Assess. 2016, 188, 58. [Google Scholar] [CrossRef] [Green Version]
- Kikuda, R.; Gomes, R.P.; Gama, A.R.; Silva, J.A.D.P.; Dos Santos, A.P.; Alves, K.R.; Arruda, P.N.; Scalize, P.S.; Vieira, J.D.G.; Carneiro, L.C.; et al. Evaluation of Water Quality of Buritis Lake. Water 2022, 14, 1414. [Google Scholar] [CrossRef]
- Banda, T.D.; Kumarasamy, M.V. Development of Water Quality Indices (WQIs): A Review. Pol. J. Environ. Stud. 2020, 29, 2011–2021. [Google Scholar] [CrossRef]
- Gad, M.; Saleh, A.H.; Hussein, H.; Farouk, M.; Elsayed, S. Appraisal of Surface Water Quality of Nile River Using Water Quality Indices, Spectral Signature and Multivariate Modeling. Water 2022, 14, 1131. [Google Scholar] [CrossRef]
- Chen, D.; Elhadj, A.; Xu, H.; Xu, X.; Qiao, Z. A Study on the Relationship between Land Use Change and Water Quality of the Mitidja Watershed in Algeria Based on GIS and RS. Sustainability 2020, 12, 3510. [Google Scholar] [CrossRef]
- Kumar, A.; Matta, G.; Bhatnagar, S. A coherent approach of Water Quality Indices and Multivariate Statistical Models to estimate the water quality and pollution source apportionment of River Ganga System in Himalayan region, Uttarakhand, India. Environ. Sci. Pollut. Res. 2021, 28, 42837–42852. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.K. An Index Number System for Rating Water Quality. J. Walter Poll. Cont. Fed. 1965, 37, 300–306. [Google Scholar]
- Brown, R. Psycholinguistics: Selected Papers by Roger Brown; Free Press: New York, NY, USA, 1970; 392p. [Google Scholar]
- Akhtar, N.; Ishak, M.; Ahmad, M.; Umar, K.; Yusuff, M.M.; Anees, M.; Qadir, A.; Almanasir, Y.A. Modification of the Water Quality Index (WQI) Process for Simple Calculation Using the Multi-Criteria Decision-Making (MCDM) Method: A Review. Water 2021, 13, 905. [Google Scholar] [CrossRef]
- Asadollah, S.B.H.S.; Sharafati, A.; Motta, D.; Yaseen, Z.M. River water quality index prediction and uncertainty analysis: A comparative study of machine learning models. J. Environ. Chem. Eng. 2021, 9, 104599. [Google Scholar] [CrossRef]
- Xu, J.; Bai, Y.; You, H.; Wang, X.; Ma, Z.; Zhang, H. Water quality assessment and the influence of landscape metrics at multiple scales in Poyang Lake basin. Ecol. Indic. 2022, 141, 109096. [Google Scholar] [CrossRef]
- Wilcox, L.V. Classification and Use of Irrigation Waters; U.S. Department of Agriculture: Washington, DC, USA, 1955.
- Singh, G.; Rishi, M.S.; Arora, N.K. Integrated GIS-based modelling approach for irrigation water quality suitability zonation in parts of Satluj River Basin, Bist Doab region, North India. SN Appl. Sci. 2019, 1, 1438. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, S.; Hussein, H.; Moghanm, F.S.; Khedher, K.M.; Eid, E.M.; Gad, M. Application of Irrigation Water Quality Indices and Multivariate Statistical Techniques for Surface Water Quality Assessments in the Northern Nile Delta, Egypt. Water 2020, 12, 3300. [Google Scholar] [CrossRef]
- Samtio, M.S.; Hakro, A.A.A.D.; Jahangir, T.M.; Mastoi, A.S.; Lanjwani, M.F.; Rajper, R.H.; Lashari, R.A.; Agheem, M.H.; Noonari, M.W. Impact of rock-water interaction on hydrogeochemical characteristics of groundwater: Using multivariate statistical, water quality index and irrigation indices of chachro sub-district, thar desert, sindh, Pakistan. Groundw. Sustain. Dev. 2023, 20, 100878. [Google Scholar] [CrossRef]
- Ferahtia, A.; Mohammed Tahar, H.; Fateh, M.; Bensaci, E. Surface water quality assessment in semi-arid region (El Hodna watershed, Algeria) based on water quality index (WQI). Stud. Univ. Babeș-Bolyai Chem. 2021, 66, 127–142. [Google Scholar] [CrossRef]
- Yang, F.; Liu, S.; Jia, C.; Gao, M.; Chang, W.; Wang, Y. Hydrochemical characteristics and functions of groundwater in southern Laizhou Bay based on the multivariate statistical analysis approach. Estuar. Coast. Shelf Sci. 2020, 250, 107153. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.; Tang, Q.; Xu, H.; Huang, S.; Shang, D.; Liu, R. Water quality assessment and source identification of the Shuangji River (China) using multivariate statistical methods. PLoS ONE 2021, 16, e0245525. [Google Scholar] [CrossRef] [PubMed]
- Abdulsalam, A.; Ramli, M.F.; Jamil, N.R.; Ashaari, Z.H.; Umar, D.A. Hydrochemical characteristics and identification of groundwater pollution sources in tropical savanna. Environ. Sci. Pollut. Res. 2022, 29, 37384–37398. [Google Scholar] [CrossRef] [PubMed]
- Abuzaid, A.S.; Abdel-Salam, M.A.; Ahmad, A.F.; Fathy, H.A.; Fadl, M.E.; Scopa, A. Effect of Marginal-Quality Irrigation on Accumulation of some Heavy Metals (Mn, Pb, and Zn) in TypicTorripsamment Soils and Food Crops. Sustainability 2022, 14, 1067. [Google Scholar] [CrossRef]
- Arifullah; Changsheng, H.; Akram, W.; Rashid, A.; Ullah, Z.; Shah, M.; Alrefaei, A.F.; Kamel, M.; Aleya, L.; Abdel-Daim, M.M. Quality Assessment of Groundwater Based on Geochemical Modelling and Water Quality Index (WQI). Water 2022, 14, 3888. [Google Scholar] [CrossRef]
- Tharmar, E.; Abraham, M.; Prakash, R.; Sundaram, A.; Flores, E.S.; Canales, C.; Alam, M.A. Hydrogeochemistry and Water Quality Assessment in the Thamirabarani River Stretch by Applying GIS and PCA Techniques. Sustainability 2022, 14, 16368. [Google Scholar] [CrossRef]
- Akoto, O.; Adopler, A.; Tepkor, H.E.; Opoku, F. A comprehensive evaluation of surface water quality and potential health risk assessments of Sisa river, Kumasi. Groundw. Sustain. Dev. 2021, 15, 100654. [Google Scholar] [CrossRef]
- Ghesquière, O.; Walter, J.; Chesnaux, R.; Rouleau, A. Scenarios of groundwater chemical evolution in a region of the Canadian Shield based on multivariate statistical analysis. J. Hydrol. Reg. Stud. 2015, 4, 246–266. [Google Scholar] [CrossRef] [Green Version]
- Khouni, I.; Louhichi, G.; Ghrabi, A. Use of GIS based Inverse Distance Weighted interpolation to assess surface water quality: Case of Wadi El Bey, Tunisia. Environ. Technol. Innov. 2021, 24, 101892. [Google Scholar] [CrossRef]
- Ben Brahim, F.; Boughariou, E.; Bouri, S. Multicriteria-analysis of deep groundwater quality using WQI and fuzzy logic tool in GIS: A case study of Kebilli region, SW Tunisia. J. Afr. Earth Sci. 2021, 180, 104224. [Google Scholar] [CrossRef]
- Ma, X.; Wang, L.; Yang, H.; Li, N.; Gong, C. Spatiotemporal Analysis of Water Quality Using Multivariate Statistical Techniques and the Water Quality Identification Index for the Qinhuai River Basin, East China. Water 2020, 12, 2764. [Google Scholar] [CrossRef]
- Amellah, O.; el Morabiti, K. Assessment of soil erosion risk severity using GIS, remote sensing and RUSLE model in Oued Laou Basin (north Morocco). Soil Sci. Annu. 2021, 72, 142530. [Google Scholar] [CrossRef]
- Bayed, A.; Ater, M. Du Bassin Versant Vers La Mer: Analyse Multidisciplinaire Pour Une Gestion Durable; Institut Scientifique, Université Mohammed V de Rabat: Rabat, Morocco, 2008; ISBN 978-9954-20-660-7. [Google Scholar]
- Aqnouy, M.; El Messari, J.E.S.; Ismail, H.; Bouadila, A.; Moreno Navarro, J.G.; Loubna, B.; Mansour, M.R.A. Assessment of the SWAT Model and the Parameters Affecting the Flow Simulation in the Watershed of Oued Laou (Northern Morocco). J. Ecol. Eng. 2019, 20, 104–113. [Google Scholar] [CrossRef]
- Tiwari, K.; Goyal, R.; Sarkar, A. GIS-Based Spatial Distribution of Groundwater Quality and Regional Suitability Evaluation for Drinking Water. Environ. Process. 2017, 4, 645–662. [Google Scholar] [CrossRef]
- Kaiser, H.F. The varimax criterion for analytic rotation in factor analysis. Psychometrika 1958, 23, 187–200. [Google Scholar] [CrossRef]
- Oladipo, J.O.; Akinwumiju, A.S.; Aboyeji, O.; Adelodun, A.A. Comparison between fuzzy logic and water quality index methods: A case of water quality assessment in Ikare community, Southwestern Nigeria. Environ. Chall. 2021, 3, 100038. [Google Scholar] [CrossRef]
- Backhaus, K.; Erichson, B.; Gensler, S.; Weiber, R.; Weiber, T. Cluster Analysis. In Multivariate Analysis: An Application-Oriented Introduction; Backhaus, K., Erichson, B., Gensler, S., Weiber, R., Weiber, T., Eds.; Springer Fachmedien: Wiesbaden, Germany, 2021; pp. 451–530. ISBN 978-3-658-32589-3. [Google Scholar]
- Costa, D.D.A.; de Azevedo, J.P.S.; dos Santos, M.A.; Assumpção, R.D.S.F.V. Water quality assessment based on multivariate statistics and water quality index of a strategic river in the Brazilian Atlantic Forest. Sci. Rep. 2020, 10, 22038. [Google Scholar] [CrossRef]
- Ward, J.H., Jr. Hierarchical Grouping to Optimize an Objective Function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Chakravarty, T.; Gupta, S. Assessment of water quality of a hilly river of south Assam, north east India using water quality index and multivariate statistical analysis. Environ. Chall. 2021, 5, 100392. [Google Scholar] [CrossRef]
- Jehan, S.; Ullah, I.; Khan, S.; Muhammad, S.; Khattak, S.A.; Khan, T. Evaluation of the Swat River, Northern Pakistan, water quality using multivariate statistical techniques and water quality index (WQI) model. Environ. Sci. Pollut. Res. 2020, 27, 38545–38558. [Google Scholar] [CrossRef]
- Azzirgue, E.M.; Cherif, E.K.; Tchakoucht, T.A.; El Azhari, H.; Salmoun, F. Testing Groundwater Quality in Jouamaa Hakama Region (North of Morocco) Using Water Quality Indices (WQIs) and Fuzzy Logic Method: An Exploratory Study. Water 2022, 14, 3028. [Google Scholar] [CrossRef]
- Kulisz, M.; Kujawska, J.; Przysucha, B.; Cel, W. Forecasting Water Quality Index in Groundwater Using Artificial Neural Network. Energies 2021, 14, 5875. [Google Scholar] [CrossRef]
- Rupias, O.J.B.; Pereira, S.Y.; de Abreu, A.E.S. Hydrogeochemistry and groundwater quality assessment using the water quality index and heavy-metal pollution index in the alluvial plain of Atibaia river- Campinas/SP, Brazil. Groundw. Sustain. Dev. 2021, 15, 100661. [Google Scholar] [CrossRef]
- Masoud, M.; El Osta, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Evaluation of groundwater quality for agricultural under different conditions using water quality indices, partial least squares regression models, and GIS approaches. Appl. Water Sci. 2022, 12, 244. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating First Addendum; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-154995-0. [Google Scholar]
- Chucuya, S.; Vera, A.; Pino-Vargas, E.; Steenken, A.; Mahlknecht, J.; Montalván, I. Hydrogeochemical Characterization and Identification of Factors Influencing Groundwater Quality in Coastal Aquifers, Case: La Yarada, Tacna, Peru. Int. J. Environ. Res. Public Health 2022, 19, 2815. [Google Scholar] [CrossRef] [PubMed]
- Kachroud, M.; Trolard, F.; Kefi, M.; Jebari, S.; Bourrié, G. Water Quality Indices: Challenges and Application Limits in the Literature. Water 2019, 11, 361. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, I.; Singh, U.K.; Chakma, S. Evaluation of groundwater quality for irrigation water supply using multi-criteria decision-making techniques and GIS in an agroeconomic tract of Lower Ganga basin, India. J. Environ. Manag. 2022, 309, 114691. [Google Scholar] [CrossRef]
- Batarseh, M.; Imreizeeq, E.; Tilev, S.; Al Alaween, M.; Suleiman, W.; Al Remeithi, A.M.; Al Tamimi, M.K.; Al Alawneh, M. Assessment of groundwater quality for irrigation in the arid regions using irrigation water quality index (IWQI) and GIS-Zoning maps: Case study from Abu Dhabi Emirate, UAE. Groundw. Sustain. Dev. 2021, 14, 100611. [Google Scholar] [CrossRef]
- Mahammad, S.; Hoque, M.M.; Islam, A.; Majumder, A. Chapter 16—Assessment of Groundwater Quality for Irrigation Purposes: A Case Study of Hooghly District, West Bengal, India. In Case Studies in Geospatial Applications to Groundwater Resources; Shit, P., Bhunia, G., Adhikary, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 289–314. ISBN 978-0-323-99963-2. [Google Scholar]
- Basha, U.I.; Rajasekhar, M.; Ghosh, S.; Das, P.; Suresh, U. Spatial assessment of groundwater quality using CCME-WQI and hydrochemical indices: A case study from Talupula Mandal, Ananthapuramu district, South India. Appl. Water Sci. 2022, 12, 168. [Google Scholar] [CrossRef]
- Elemile, O.; Ibitogbe, E.; Okikiola, B.; Ejigboye, P. Groundwater quality using indices for domestic and irrigation purposes in Akure, Nigeria. Results Eng. 2022, 13, 100347. [Google Scholar] [CrossRef]
- Rahman, M.M.; Haque, T.; Mahmud, A.; Amin, A.; Hossain, S.; Hasan, Y.; Shaibur, M.R.; Hossain, S.; Hossain, A.; Bai, L. Drinking water quality assessment based on index values incorporating WHO guidelines and Bangladesh standards. Phys. Chem. Earth Parts A/B/C 2022, 129, 103353. [Google Scholar] [CrossRef]
- Marghade, D.; Malpe, D.B.; Rao, N.S. Applications of geochemical and multivariate statistical approaches for the evaluation of groundwater quality and human health risks in a semi-arid region of eastern Maharashtra, India. Environ. Geochem. Health 2021, 43, 683–703. [Google Scholar] [CrossRef] [PubMed]
- Ansari, J.A.; Umar, R. Evaluation of hydrogeochemical characteristics and groundwater quality in the quaternary aquifers of Unnao District, Uttar Pradesh, India. Hydroresearch 2019, 1, 36–47. [Google Scholar] [CrossRef]
- Bao, Z.; Hu, Q.; Qi, W.; Tang, Y.; Wang, W.; Wan, P.; Chao, J.; Yang, X.J. Nitrate reduction in water by aluminum alloys particles. J. Environ. Manag. 2017, 196, 666–673. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P. Potential Health Impacts of Hard Water. Int. J. Prev. Med. 2013, 4, 866–875. [Google Scholar]
- Listyani, T.; A Prabowo, I. Groundwater in Bener area, its quality and contribution for agriculture. IOP Conf. Ser.: Earth Environ. Sci. 2022, 985, 012028. [Google Scholar] [CrossRef]
- Dimri, D.; Daverey, A.; Kumar, A.; Sharma, A. Monitoring water quality of River Ganga using multivariate techniques and WQI (Water Quality Index) in Western Himalayan region of Uttarakhand, India. Environ. Nanotechnol. Monit. Manag. 2020, 15, 100375. [Google Scholar] [CrossRef]
- Makubura, R.; Meddage, D.P.P.; Azamathulla, H.M.; Pandey, M.; Rathnayake, U. A Simplified Mathematical Formulation for Water Quality Index (WQI): A Case Study in the Kelani River Basin, Sri Lanka. Fluids 2022, 7, 147. [Google Scholar] [CrossRef]
- Talat, R.A.; Al-Assaf, A.Y.; Al-Saffawi, A.Y.T. Valuation of water quality for drinking and domestic purposes using WQI: Acase study for groundwater of Al-Gameaa and Al-Zeraee qaurters in Mosul city/Iraq. J. Phys. Conf. Ser. 2019, 1294, 072011. [Google Scholar] [CrossRef]
- Kambire, O.; Yao, K.M.; Eblin, S.G.; Tokpa, D.A.R.; Koffi-Nevry, R. Microbiological and physico-chemical characterisation of well water in the town of Korhogo, Côte d’Ivoire. Int. J. Biol. Chem. Sci. 2021, 15, 1264–1275. [Google Scholar] [CrossRef]
- Zlatković, S.; Medić, O.; Predojević, D.; Nikolić, I.; Subakov-Simić, G.; Onjia, A.; Berić, T.; Stanković, S. Spatio-Temporal Dynamics in Physico-Chemical Properties, Phytoplankton and Bacterial Diversity as an Indication of the Bovan Reservoir Water Quality. Water 2022, 14, 391. [Google Scholar] [CrossRef]
- Piper, A.M. A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans. Am. Geophys. Union 1944, 25, 914–928. [Google Scholar] [CrossRef]
- Ye, X.; Zhou, Y.; Lu, Y.; Du, X. Hydrochemical Evolution and Quality Assessment of Groundwater in the Sanjiang Plain, China. Water 2022, 14, 1265. [Google Scholar] [CrossRef]
- Apollaro, C.; Di Curzio, D.; Fuoco, I.; Buccianti, A.; Dinelli, E.; Vespasiano, G.; Castrignanò, A.; Rusi, S.; Barca, D.; Figoli, A.; et al. A multivariate non-parametric approach for estimating probability of exceeding the local natural background level of arsenic in the aquifers of Calabria region (Southern Italy). Sci. Total. Environ. 2022, 806, 150345. [Google Scholar] [CrossRef] [PubMed]
- Kothari, V.; Vij, S.; Sharma, S.; Gupta, N. Correlation of various water quality parameters and water quality index of districts of Uttarakhand. Environ. Sustain. Indic. 2021, 9, 100093. [Google Scholar] [CrossRef]
- Nong, X.; Shao, D.; Xiao, Y.; Zhong, H. Spatio-Temporal Characterization Analysis and Water Quality Assessment of the South-to-North Water Diversion Project of China. Int. J. Environ. Res. Public Health 2019, 16, 2227. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, T.; Sabarathinam, C.; Kamaraj, P.; Prasanna, M.V.; Mathivanan, M.; Ghai, M.; Singh, D.K.; Ramanathan A.L. Irrigation Water Quality Assessment Using Water Quality Index and GIS Technique in Pondicherry Region, South India. Int. J. Civ. Environ. Agric. Eng. 2021, 3, 36–50. [Google Scholar] [CrossRef]
- Fuoco, I.; Marini, L.; De Rosa, R.; Figoli, A.; Gabriele, B.; Apollaro, C. Use of reaction path modelling to investigate the evolution of water chemistry in shallow to deep crystalline aquifers with a special focus on fluoride. Sci. Total. Environ. 2022, 830, 154566. [Google Scholar] [CrossRef]
- Abbas, H.; Abuzaid, A.S.; Jahin, H.; Kasem, D. Assessing the quality of untraditional water sources for irrigation purposes in Al-Qalubiya Governorate, Egypt. Egypt. J. Soil Sci. 2020, 60, 157–166. [Google Scholar] [CrossRef]
- Avigliano, E.; Schenone, N.F. Human health risk assessment and environmental distribution of trace elements, glyphosate, fecal coliform and total coliform in Atlantic Rainforest mountain rivers (South America). Microchem. J. 2015, 122, 149–158. [Google Scholar] [CrossRef]
- Adamou, H.; Ibrahim, B.; Salack, S.; Adamou, R.; Sanfo, S.; Liersch, S. Physico-chemical and bacteriological quality of groundwater in a rural area of Western Niger: A case study of Bonkoukou. J. Water Health 2020, 18, 77–90. [Google Scholar] [CrossRef]
- Viaroli, P.; Nizzoli, D.; Pinardi, M.; Rossetti, G.; Bartoli, M. Factors Affecting Dissolved Silica Concentrations, and DSi and DIN Stoichiometry in a Human Impacted Watershed (Po River, Italy). Silicon 2013, 5, 101–114. [Google Scholar] [CrossRef]
- Reddy, B.M.; Sunitha, V.; Prasad, M.; Reddy, Y.S.; Reddy, M.R. Evaluation of groundwater suitability for domestic and agricultural utility in semi-arid region of Anantapur, Andhra Pradesh State, South India. Groundw. Sustain. Dev. 2019, 9, 100262. [Google Scholar] [CrossRef]
- Chadli, K.; Boufala, M. Assessment of water quality using Moroccan WQI and multivariate statistics in the Sebou watershed (Morocco). Arab. J. Geosci. 2021, 14, 27. [Google Scholar] [CrossRef]
- Mohamadi, A.; Demdoum, A.; Bouaicha, F.; Menani, M.R. Evaluation of the quality of groundwater for its appropriateness for irrigation purposes using Water Quality Index (WQI), Mchira-Teleghma aquifer case study, northeastern Algeria. Sustain. Water Resour. Manag. 2021, 7, 97. [Google Scholar] [CrossRef]
- Zegmout, M.; Basraoui, Y.; Meziane, M.; Chahlaoui, A.; Demnati, S.; Chafi, A. Pollution Bacteriologique de la Zone Cotiere Saidia Moulouya (Region Orientale du Maroc); Université Mohammed Premier: Oujda, Morocco, 2011. [Google Scholar]
- Das, C.R.; Das, S.; Panda, S. Groundwater quality monitoring by correlation, regression and hierarchical clustering analyses using WQI and PAST tools. Groundw. Sustain. Dev. 2021, 16, 100708. [Google Scholar] [CrossRef]
- Varol, M.; Gündüz, K.; Sünbül, M.R. Pollution status, potential sources and health risk assessment of arsenic and trace metals in agricultural soils: A case study in Malatya province, Turkey. Environ. Res. 2021, 202, 111806. [Google Scholar] [CrossRef]
- Khatri, N.; Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 2015, 8, 23–39. [Google Scholar] [CrossRef]
- Hong, T.T.K.; Giao, N.T. Analysis of Surface Water Quality in Upstream Province of Vietnamese Mekong Delta Using Multivariate Statistics. Water 2022, 14, 1975. [Google Scholar] [CrossRef]
- Sudhakaran, S.; Mahadevan, H.; Arun, V.; Krishnakumar, A.P.; Krishnan, K.A. A multivariate statistical approach in assessing the quality of potable and irrigation water environs of the Netravati River basin (India). Groundw. Sustain. Dev. 2020, 11, 100462. [Google Scholar] [CrossRef]
- Hou, W.; Sun, S.; Wang, M.; Li, X.; Zhang, N.; Xin, X.; Sun, L.; Li, W.; Jia, R. Assessing water quality of five typical reservoirs in lower reaches of Yellow River, China: Using a water quality index method. Ecol. Indic. 2016, 61, 309–316. [Google Scholar] [CrossRef]
- Taloor, A.K.; Pir, R.A.; Adimalla, N.; Ali, S.; Manhas, D.S.; Roy, S.; Singh, A.K. Spring water quality and discharge assessment in the Basantar watershed of Jammu Himalaya using geographic information system (GIS) and water quality Index (WQI). Groundw. Sustain. Dev. 2020, 10, 100364. [Google Scholar] [CrossRef]
- Kadri, A.; Baouia, K.; Kateb, S.; Al-Ansari, N.; Kouadri, S.; Najm, H.M.; Mashaan, N.S.; Eldirderi, M.M.A.; Khedher, K.M. Assessment of Groundwater Suitability for Agricultural Purposes: A Case Study of South Oued Righ Region, Algeria. Sustainability 2022, 14, 8858. [Google Scholar] [CrossRef]
- Pivić, R.; Maksimović, J.; Dinić, Z.; Jaramaz, D.; Majstorović, H.; Vidojević, D.; Stanojković-Sebić, A. Hydrochemical Assessment of Water Used for Agricultural Soil Irrigation in the Water Area of the Three Morava Rivers in the Republic of Serbia. Agronomy 2022, 12, 1177. [Google Scholar] [CrossRef]
- El-Rawy, M.; Ismail, E.; Abdalla, O. Assessment of groundwater quality using GIS, hydrogeochemsitry, and factor statistical analysis in Qena governorate, Egypt. Desalination Water Treat. 2019, 162, 14–29. [Google Scholar] [CrossRef]
- El-Amier, Y.A.; Kotb, W.K.; Bonanomi, G.; Fakhry, H.; Marraiki, N.A.; Abd-ElGawad, A.M. Hydrochemical Assessment of the Irrigation Water Quality of the El-Salam Canal, Egypt. Water 2021, 13, 2428. [Google Scholar] [CrossRef]
- Richards, L. Diagnosis and improvement of saline and alkali soils. Soil Sci. 1954, 78, 154. [Google Scholar] [CrossRef]
- McGeorge, W.T. Diagnosis and Improvement of Saline and Alkaline Soils. Soil Sci. Soc. Am. J. 1954, 18, 348. [Google Scholar] [CrossRef]
- Amrani, S.; Hinaje, S.; El Fartati, M.; Gharmane, Y.; Yaagoub, D. Assessment of Groundwater Quality for Drinking and Irri-gation in the Timahdite–Almis Guigou Area (Middle Atlas, Morocco). Appl. Water Sci. 2022, 12, 82. [Google Scholar] [CrossRef]
- Tahmasebi, P.; Mahmudy-Gharaie, M.H.; Ghassemzadeh, F.; Karouyeh, A.K. Assessment of groundwater suitability for irrigation in a gold mine surrounding area, NE Iran. Environ. Earth Sci. 2018, 77, 766. [Google Scholar] [CrossRef]
- Khanoranga; Khalid, S. An assessment of groundwater quality for irrigation and drinking purposes around brick kilns in three districts of Balochistan province, Pakistan, through water quality index and multivariate statistical approaches. J. Geochem. Explor. 2018, 197, 14–26. [Google Scholar] [CrossRef]
- Eaton, F.M. Significance of carbonates in irrigation waters. Soil Sci. 1950, 69, 123–134. [Google Scholar] [CrossRef]
- Mukonazwothe, M.; Munyai, L.F.; Mutoti, M.I. Groundwater quality evaluation for domestic and irrigation purposes for the Nwanedi Agricultural Community, Limpopo Province, South Africa. Heliyon 2022, 8, E09203. [Google Scholar] [CrossRef]
- Doneen, L. Notes on Water Quality in Agriculture; Department of Water Sciences and Engineering, University of California: Davis, CA, USA, 1964. [Google Scholar]
- Sharma, D.A.; Rishi, M.S.; Keesari, T. Evaluation of Groundwater Quality and Suitability for Irrigation and Drinking Purposes in Southwest Punjab, India Using Hydrochemical Approach. Appl. Water Sci. 2017, 7, 3137–3150. [Google Scholar] [CrossRef] [Green Version]
- Paliwal, K.V.; Indian Agricultural Research Inst., N.D.W.T.C. Irrigation with Saline Water; New Delhi (India) IARI, Water Technology Centre: New Delhi, India, 1972. [Google Scholar]
- Ghazaryan, K.; Movsesyan, H.; Gevorgyan, A.; Minkina, T.; Sushkova, S.; Rajput, V.; Mandzhieva, S. Comparative hydrochemical assessment of groundwater quality from different aquifers for irrigation purposes using IWQI: A case-study from Masis province in Armenia. Groundw. Sustain. Dev. 2020, 11, 100459. [Google Scholar] [CrossRef]
- Kelley, W.P. Use of saline irrigation water. Soil Sci. 1963, 95, 385–391. [Google Scholar] [CrossRef]
- Gao, L.; Wang, Z.; Shan, J.; Chen, J.; Tang, C.; Yi, M.; Zhao, X. Distribution characteristics and sources of trace metals in sediment cores from a trans-boundary watercourse: An example from the Shima River, Pearl River Delta. Ecotoxicol. Environ. Saf. 2016, 134, 186–195. [Google Scholar] [CrossRef]
- Gupta, S.K.; Gupta, I.C. Management of Saline Soils and Waters; Oxford & IBH Publishing, Co.: New Delhi, India, 1987. [Google Scholar]
Water Quality Parameters | WHO 2017 | Weight Wi | Wr |
---|---|---|---|
EC | 1000 | 4 | 0.074074074 |
pH | 6.5–8.5 | 4 | 0.074074074 |
TH | 500 | 3 | 0.055555556 |
Cl− | 250 | 3 | 0.055555556 |
PO43− | 5 | 3 | 0.055555556 |
NO2− | 3 | 3 | 0.055555556 |
NO3− | 50 | 5 | 0.092592593 |
NH4+ | 35 | 3 | 0.055555556 |
Ca2+ | 75 | 2 | 0.037037037 |
Mg2+ | 50 | 2 | 0.037037037 |
DO | 5 | 5 | 0.092592593 |
SO42− | 250 | 4 | 0.074074074 |
TDS | 1000 | 5 | 0.092592593 |
HCO3− | 120 | 3 | 0.05555556 |
TC | 100 | 3 | 0.05555556 |
BOD5 | 3 | 2 | 0.03703704 |
Ranking | WQI Value | Explanation |
---|---|---|
<50 | Excellent water | Good for human health |
50–100 | Good water | Suitable for human consumption |
100–200 | Poor water | Water in poor condition |
200–300 | Very poor water | Needs special attention before use |
>300 | Unsuitable for drinking | Requires too much attention |
Parameter | Reference | Unit | Suitable Limit for Irrigation | Unit Weight (Wn) |
---|---|---|---|---|
MH | Pawal (1972) | No unit | 50 | 0.110 |
RSC | Eaton (1950) | meq/L | 2.5 | 0.793 |
Na% | Wilcox (1955) | % | 60 | 0.040 |
SAR | Richard (1954) | No unit | 18 | 0.033 |
EC | Wilcox (1955) | µS/cm | 2250 | 0.023 |
PI | Doneen (1964) | No unit | 85 | 0.001 |
Samples | T | EC | pH | TDS | DO | BOD5 | COD | Tur | SAL | TH | TAC | PO43− | Cl− | NO2− | NO3− | SO42− | HCO3− | CO32− | CaCO3 | F− | NH4+ | Na+ | K+ | Ca2+ | Mg2+ | FC | TC |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
QZ1 | 21.4 | 399 | 7.74 | 239.4 | 8.59 | 11.23 | 32.2 | 1.51 | 0.3 | 2.9 | 5.3 | 0.14 | 49.6 | 0.01 | 10.92 | 28.65 | 323.3 | 159 | 265 | 0.31 | 0.91 | 26.67 | 0.34 | 58 | 34.8 | 117 | 32 |
QZ2 | 21.6 | 436 | 7.91 | 261.6 | 6.83 | 14.94 | 31.9 | 1.87 | 0.32 | 2.8 | 5.2 | 0.26 | 59.8 | 0.09 | 10.23 | 30.76 | 317.2 | 156 | 260 | 0.34 | 0.74 | 28.52 | 0.52 | 50 | 33.6 | 180 | 49 |
QZ3 | 24.8 | 328 | 8.07 | 196.8 | 7.21 | 12.32 | 44.6 | 0.06 | 0.2 | 2.08 | 4.9 | 0.01 | 27.3 | 0 | 0.9 | 15.13 | 298.9 | 147 | 245 | 0.21 | 0.001 | 9.27 | 0.7 | 41.6 | 25 | 147 | 24 |
QZ4 | 22.2 | 422 | 7.91 | 253.2 | 8.72 | 11.13 | 36 | 1.73 | 0.31 | 2.6 | 5 | 0.18 | 101 | 0.02 | 4.37 | 41.5 | 305 | 150 | 250 | 0.51 | 0 | 51.13 | 3.56 | 52 | 31.2 | 99 | 127 |
QZ5 | 21.9 | 445 | 7.78 | 267 | 9.64 | 10.87 | 36.5 | 1.89 | 0.31 | 2.63 | 5.4 | 0.33 | 79.4 | 0.07 | 7.75 | 40.9 | 329.4 | 162 | 270 | 0.43 | 0 | 57.71 | 3.92 | 52.6 | 31.6 | 123 | 134 |
QZ6 | 19.4 | 432 | 7.94 | 259.2 | 8.89 | 11.07 | 42.5 | 4.67 | 0.30 | 2.58 | 6.3 | 0.17 | 127 | 0.01 | 7.92 | 45.37 | 384.3 | 189 | 315 | 0.66 | 0 | 92.87 | 1.53 | 51.6 | 31 | 89 | 32 |
QZ7 | 19.1 | 487 | 7.97 | 292.2 | 8.31 | 11.03 | 46.9 | 3.54 | 0.33 | 2.44 | 6.5 | 0.32 | 121.3 | 0.01 | 8.21 | 43.12 | 396.5 | 195 | 325 | 0.29 | 0 | 89.76 | 1.43 | 48.8 | 29.3 | 126 | 79 |
QZ8 | 17.7 | 429 | 7.77 | 257.4 | 7.95 | 12.19 | 49.7 | 1.9 | 0.301 | 2.4 | 6 | 0.31 | 129.3 | 0.013 | 8.11 | 47.45 | 366 | 180 | 300 | 1.01 | 0 | 55.09 | 1.34 | 48 | 28.8 | 45 | 119 |
QZ9 | 18 | 488 | 7.5 | 292.8 | 8.05 | 12.05 | 50.7 | 1.12 | 0.331 | 2.39 | 5.7 | 0.27 | 98.38 | 0.011 | 6.94 | 45.34 | 347.7 | 171 | 285 | 0.94 | 0 | 51.67 | 1.65 | 47.8 | 28.7 | 187 | 84 |
QZ10 | 22.7 | 503 | 8.17 | 301.8 | 9.37 | 10.26 | 53.8 | 8.87 | 0.35 | 2.72 | 5.1 | 1.15 | 113 | 0.04 | 8.24 | 68.2 | 311.1 | 162 | 255 | 0.78 | 0 | 36.02 | 3.5 | 54.4 | 32.6 | 220 | 189 |
QZ11 | 20.1 | 301 | 7.86 | 180.6 | 7.66 | 4.21 | 31.1 | 0.09 | 0.19 | 3.67 | 4.7 | 0.01 | 24 | 0 | 0.5 | 19.2 | 286.7 | 141 | 235 | 0.34 | 0.001 | 8.45 | 0.59 | 73.4 | 48.2 | 78 | 6 |
QZ12 | 20.4 | 467 | 8.16 | 280.2 | 9.96 | 9.85 | 59.8 | 9.33 | 0.32 | 2.67 | 5.23 | 0.94 | 110 | 0.04 | 12.42 | 71.13 | 319 | 156.9 | 261.5 | 0.88 | 4.06 | 71.32 | 4.55 | 53.4 | 32 | 276 | 47 |
QZ13 | 20.9 | 524 | 8.11 | 314.4 | 10.22 | 8.89 | 56.2 | 9.02 | 0.36 | 2.79 | 5.71 | 1.2 | 136 | 0.12 | 19.9 | 74.8 | 348.31 | 171.3 | 285.5 | 0.76 | 3.2 | 82.13 | 5.23 | 55.8 | 33.5 | 227 | 58 |
Max | 24.8 | 524 | 8.17 | 314.4 | 10.22 | 14.94 | 59.8 | 9.33 | 0.32 | 3.67 | 6.5 | 1.2 | 136 | 0.12 | 19.9 | 74.8 | 396.5 | 195 | 325 | 1.01 | 4.06 | 92.87 | 5.23 | 73.4 | 48.2 | 276 | 189 |
Min | 17.7 | 301 | 7.5 | 180.6 | 6.83 | 4.21 | 31.1 | 0.06 | 0.2 | 2.08 | 4.7 | 0.01 | 24 | 0 | 0.5 | 15.13 | 286.7 | 141 | 235 | 0.21 | 0 | 8.45 | 0.34 | 41.6 | 25 | 45 | 6 |
MEAN | 20.78 | 435 | 7.91 | 261.3 | 8.57 | 10.77 | 44 | 3.50 | 0.25 | 2.66 | 5.46 | 0.40 | 90.46 | 0.03 | 8.18 | 43.96 | 333.3 | 164.6 | 273.23 | 0.57 | 0.68 | 50.81 | 2.22 | 52.8 | 32.3 | 147 | 75 |
STDV | 1.97 | 64.6 | 0.19 | 38.77 | 1.04 | 2.44 | 9.82 | 3.39 | 0.04 | 0.37 | 0.54 | 0.41 | 38.80 | 0.03 | 4.96 | 18.62 | 33.32 | 16.07 | 27.312 | 0.27 | 1.35 | 28.24 | 1.69 | 7.43 | 5.44 | 67 | 53 |
Variables | EC | pH | TDS | DO | COD | BDO5 | Turb | PO43− | Cl− | NO2− | NO3− | NH4+ | Ca2+ | Mg2+ | SO42− | F− | SAL | TH | TAC | HCO3− | CO32− | Ca CO3 | FC | TC | Na+ | K+ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EC | 1 | |||||||||||||||||||||||||
pH | 0.135 | 1 | ||||||||||||||||||||||||
TDS | 1.000 | 0.135 | 1 | |||||||||||||||||||||||
DO | 0.596 | 0.363 | 0.596 | 1 | ||||||||||||||||||||||
COD | 0.635 | 0.412 | 0.635 | 0.523 | 1 | |||||||||||||||||||||
BDO5 | 0.782 | 0.383 | 0.782 | 0.811 | 0.601 | 1 | ||||||||||||||||||||
Turb | 0.693 | 0.690 | 0.693 | 0.770 | 0.741 | 0.744 | 1 | |||||||||||||||||||
PO43− | 0.738 | 0.590 | 0.738 | 0.733 | 0.749 | 0.775 | 0.937 | 1 | ||||||||||||||||||
Cl− | 0.823 | 0.177 | 0.823 | 0.587 | 0.671 | 0.670 | 0.647 | 0.588 | 1 | |||||||||||||||||
NO2− | 0.535 | 0.303 | 0.535 | 0.412 | 0.171 | 0.553 | 0.492 | 0.615 | 0.266 | 1 | ||||||||||||||||
NO3− | 0.748 | 0.242 | 0.748 | 0.617 | 0.467 | 0.749 | 0.703 | 0.722 | 0.587 | 0.741 | 1 | |||||||||||||||
NH4+ | 0.360 | 0.471 | 0.360 | 0.571 | 0.523 | 0.615 | 0.692 | 0.652 | 0.262 | 0.529 | 0.728 | 1 | ||||||||||||||
Ca2+ | −0.311 | −0.004 | −0.311 | 0.155 | −0.344 | −0.255 | 0.036 | 0.032 | −0.290 | 0.005 | −0.046 | 0.116 | 1 | |||||||||||||
Mg2+ | −0.388 | −0.023 | −0.388 | −0.021 | −0.434 | −0.382 | −0.062 | −0.055 | −0.391 | 0.029 | −0.115 | 0.065 | 0.975 | 1 | ||||||||||||
SO42− | 0.846 | 0.418 | 0.846 | 0.802 | 0.799 | 0.833 | 0.917 | 0.918 | 0.825 | 0.500 | 0.737 | 0.612 | −0.061 | −0.175 | 1 | |||||||||||
F− | 0.564 | −0.065 | 0.564 | 0.429 | 0.720 | 0.434 | 0.508 | 0.545 | 0.704 | 0.124 | 0.396 | 0.317 | −0.130 | −0.207 | 0.735 | 1 | ||||||||||
SAL | 0.283 | 0.029 | 0.283 | 0.273 | −0.041 | 0.339 | 0.337 | 0.351 | −0.040 | 0.669 | 0.688 | 0.669 | 0.211 | 0.232 | 0.278 | 0.073 | 1 | |||||||||
TH | −0.310 | −0.006 | −0.310 | 0.043 | −0.427 | −0.298 | 0.004 | 0.008 | −0.343 | 0.106 | −0.019 | 0.119 | 0.975 | 0.992 | −0.109 | −0.187 | 0.323 | 1 | ||||||||
TAC | 0.529 | −0.164 | 0.529 | 0.163 | 0.325 | 0.213 | 0.173 | 0.054 | 0.710 | −0.022 | 0.373 | −0.058 | −0.370 | −0.420 | 0.307 | 0.289 | −0.160 | −0.403 | 1 | |||||||
HCO3− | 0.529 | −0.164 | 0.529 | 0.163 | 0.325 | 0.213 | 0.173 | 0.054 | 0.710 | −0.022 | 0.373 | −0.058 | −0.370 | −0.420 | 0.307 | 0.289 | −0.160 | −0.403 | 1.000 | 1 | ||||||
CO32− | 0.588 | −0.104 | 0.588 | 0.202 | 0.378 | 0.249 | 0.250 | 0.140 | 0.751 | −0.015 | 0.381 | −0.083 | −0.368 | −0.426 | 0.373 | 0.330 | −0.186 | −0.404 | 0.988 | 0.988 | 1 | |||||
CaCO3 | 0.529 | −0.164 | 0.529 | 0.163 | 0.325 | 0.213 | 0.173 | 0.054 | 0.710 | −0.022 | 0.373 | −0.058 | −0.370 | −0.420 | 0.307 | 0.289 | −0.160 | −0.403 | 1.000 | 1.000 | 0.988 | 1 | ||||
FC | 0.554 | 0.482 | 0.554 | 0.444 | 0.615 | 0.568 | 0.714 | 0.757 | 0.191 | 0.525 | 0.544 | 0.712 | −0.126 | −0.142 | 0.621 | 0.285 | 0.539 | −0.093 | −0.182 | −0.182 | −0.135 | −0.182 | 1 | |||
TC | 0.534 | 0.027 | 0.534 | 0.338 | 0.268 | 0.493 | 0.260 | 0.409 | 0.477 | 0.162 | 0.061 | −0.266 | −0.244 | −0.311 | 0.458 | 0.394 | −0.265 | −0.278 | 0.064 | 0.064 | 0.165 | 0.064 | 0.068 | 1 | ||
Na+ | 0.703 | 0.137 | 0.703 | 0.594 | 0.499 | 0.578 | 0.534 | 0.383 | 0.870 | 0.242 | 0.567 | 0.316 | −0.246 | −0.342 | 0.649 | 0.420 | 0.040 | −0.300 | 0.817 | 0.817 | 0.809 | 0.817 | 0.138 | 0.157 | 1 | |
K+ | 0.619 | 0.450 | 0.619 | 0.877 | 0.579 | 0.841 | 0.741 | 0.784 | 0.573 | 0.583 | 0.548 | 0.586 | 0.004 | −0.114 | 0.819 | 0.464 | 0.231 | −0.064 | −0.013 | −0.013 | 0.022 | −0.013 | 0.563 | 0.459 | 0.500 | 1 |
Parameters | Components | ||||
---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | |
EC | 0.858 | 0.004 | 0.002 | 0.004 | 0.076 |
pH | 0.114 | 0.198 | 0.042 | 0.033 | 0.306 |
TDS | 0.858 | 0.004 | 0.002 | 0.004 | 0.076 |
DO | 0.530 | 0.148 | 0.033 | 0.044 | 0.000 |
BOD5 | 0.028 | 0.300 | 0.391 | 0.182 | 0.037 |
COD | 0.626 | 0.002 | 0.035 | 0.085 | 0.110 |
Tur | 0.696 | 0.185 | 0.000 | 0.013 | 0.041 |
Sal | 0.066 | 0.289 | 0.000 | 0.552 | 0.035 |
TH | 0.115 | 0.425 | 0.396 | 0.002 | 0.030 |
TAC | 0.305 | 0.500 | 0.159 | 0.021 | 0.009 |
PO43− | 0.665 | 0.247 | 0.009 | 0.019 | 0.000 |
Cl− | 0.796 | 0.071 | 0.035 | 0.037 | 0.005 |
NO2− | 0.267 | 0.199 | 0.014 | 0.197 | 0.085 |
NO3− | 0.637 | 0.061 | 0.014 | 0.219 | 0.004 |
SO42− | 0.877 | 0.072 | 0.001 | 0.032 | 0.002 |
HCO3− | 0.305 | 0.500 | 0.159 | 0.021 | 0.009 |
CO32− | 0.359 | 0.466 | 0.138 | 0.004 | 0.004 |
CaCO3 | 0.305 | 0.500 | 0.159 | 0.021 | 0.009 |
F− | 0.422 | 0.000 | 0.001 | 0.088 | 0.029 |
NH4+ | 0.301 | 0.354 | 0.000 | 0.108 | 0.125 |
Na+ | 0.639 | 0.103 | 0.124 | 0.002 | 0.016 |
K+ | 0.526 | 0.205 | 0.010 | 0.068 | 0.008 |
Ca2+ | 0.093 | 0.405 | 0.468 | 0.011 | 0.014 |
Mg2+ | 0.166 | 0.385 | 0.399 | 0.000 | 0.016 |
FC | 0.321 | 0.286 | 0.164 | 0.030 | 0.023 |
TC | 0.164 | 0.011 | 0.077 | 0.300 | 0.373 |
Eigenvalue | 11.039 | 5.918 | 2.833 | 2.097 | 1.444 |
Variability (%) | 42.459 | 22.761 | 10.896 | 8.064 | 5.555 |
Cumulative | 42.459 | 65.220 | 76.116 | 84.180 | 89.735 |
Sample | SAR | RSC | Na% | MH | PI | RSBC | KI | PS | EC |
---|---|---|---|---|---|---|---|---|---|
QZ1 | 0.68 | 4.8 | 16.76 | 50 | 33.20 | 2.4 | 0.19 | 2.13 | 399 |
QZ2 | 0.76 | 5.1 | 19.12 | 52.83 | 34.98 | 2.7 | 0.23 | 2.45 | 436 |
QZ3 | 0.27 | 5.64 | 9.18 | 50 | 48.40 | 2.82 | 0.09 | 1.25 | 328 |
QZ4 | 1.37 | 4.8 | 30.80 | 50 | 30.05 | 2.4 | 0.42 | 3.31 | 422 |
QZ5 | 1.54 | 5.54 | 33.16 | 50 | 29.84 | 2.77 | 0.47 | 2.69 | 445 |
QZ6 | 2.51 | 7.44 | 44.13 | 50 | 27.61 | 3.72 | 0.78 | 3.90 | 432 |
QZ7 | 2.49 | 8.12 | 44.66 | 50 | 29.35 | 4.06 | 0.79 | 3.71 | 487 |
QZ8 | 1.54 | 7.2 | 33.60 | 50 | 34.21 | 3.6 | 0.49 | 0.72 | 429 |
QZ9 | 1.45 | 6.62 | 32.37 | 50 | 34.09 | 3.31 | 0.46 | 3.28 | 488 |
QZ10 | 0.94 | 5.06 | 23.33 | 50 | 32.04 | 2.38 | 0.28 | 3.93 | 503 |
QZ11 | 0.18 | 1.71 | 4.73 | 52.27 | 26.90 | 1.03 | 0.05 | 1.69 | 301 |
QZ12 | 1.89 | 5.12 | 37.59 | 50 | 27.08 | 2.56 | 0.58 | 3.88 | 467 |
QZ13 | 2.13 | 5.84 | 39.90 | 50 | 26.12 | 2.92 | 0.65 | 4.73 | 524 |
Min | 0.18 | 1.71 | 4.738 | 50 | 26.12 | 1.03 | 0.04 | 0.72 | 301 |
Max | 2.51 | 8.12 | 44.66 | 52.83 | 48.40 | 4.06 | 0.79 | 4.73 | 524 |
Average | 1.37 | 5.61 | 28.41 | 50.39 | 31.84 | 2.82 | 0.42 | 2.90 | 435.46 |
Samples | IWQI | Usage Restriction |
---|---|---|
QZ1 | 50.75 | Good |
QZ2 | 56.34 | Good |
QZ3 | 56.78 | Good |
QZ4 | 51.83 | Good |
QZ5 | 57.91 | Good |
QZ6 | 73.87 | Good |
QZ7 | 79.35 | Good |
QZ8 | 71.09 | Good |
QZ9 | 66.46 | Good |
QZ10 | 51.02 | Good |
QZ11 | 28.52 | Excellent |
QZ12 | 54.96 | Good |
QZ13 | 60.92 | Good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azhari, H.E.; Cherif, E.K.; Sarti, O.; Azzirgue, E.M.; Dakak, H.; Yachou, H.; Esteves da Silva, J.C.G.; Salmoun, F. Assessment of Surface Water Quality Using the Water Quality Index (IWQ), Multivariate Statistical Analysis (MSA) and Geographic Information System (GIS) in Oued Laou Mediterranean Watershed, Morocco. Water 2023, 15, 130. https://doi.org/10.3390/w15010130
Azhari HE, Cherif EK, Sarti O, Azzirgue EM, Dakak H, Yachou H, Esteves da Silva JCG, Salmoun F. Assessment of Surface Water Quality Using the Water Quality Index (IWQ), Multivariate Statistical Analysis (MSA) and Geographic Information System (GIS) in Oued Laou Mediterranean Watershed, Morocco. Water. 2023; 15(1):130. https://doi.org/10.3390/w15010130
Chicago/Turabian StyleAzhari, Hamza El, El Khalil Cherif, Otmane Sarti, El Mustapha Azzirgue, Houria Dakak, Hasna Yachou, Joaquim C. G. Esteves da Silva, and Farida Salmoun. 2023. "Assessment of Surface Water Quality Using the Water Quality Index (IWQ), Multivariate Statistical Analysis (MSA) and Geographic Information System (GIS) in Oued Laou Mediterranean Watershed, Morocco" Water 15, no. 1: 130. https://doi.org/10.3390/w15010130
APA StyleAzhari, H. E., Cherif, E. K., Sarti, O., Azzirgue, E. M., Dakak, H., Yachou, H., Esteves da Silva, J. C. G., & Salmoun, F. (2023). Assessment of Surface Water Quality Using the Water Quality Index (IWQ), Multivariate Statistical Analysis (MSA) and Geographic Information System (GIS) in Oued Laou Mediterranean Watershed, Morocco. Water, 15(1), 130. https://doi.org/10.3390/w15010130