Hydroclimate Impact Analyses and Water Management in the Central Rift Valley Basin in Ethiopia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Location
2.2. Sub-Basin Selection Methods (Boundary Delineation)
2.3. Data Definition
2.3.1. Spatial Data
2.3.2. Climate Data
2.3.3. Baseline Data Processing with SWAT Weather Generator (SWAT-WGEN)
2.4. Arc SWAT Application
The Water Balance Equations
2.5. Model Parameter Sensitivity Analysis
2.6. Model Calibration and Validation
2.7. Model Performance Evaluations
2.8. The Climate Scenario Application and Analyses Methods
2.8.1. Climate Scenario Analyses Setting and Simulation
2.8.2. Data Downscaling
2.8.3. Bias Correction
3. Results and Discussion
3.1. Results of the Model Parameters Sensitivity Analyses
3.2. Results of the Calibration and Validation of the Model
3.3. Climate Scenario Analyses Results and Discussion
3.3.1. Ketar Sub-Basin
3.3.2. Meki Sub-Basin
3.3.3. Shalla Sub-Basin
4. Discussion for Water Management Options
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Worku, G.; Teferi, E.; Bantider, A.; Dile, Y.T. Prioritization of Watershed Management Scenarios under Climate Change in the Jemma Sub-Basin of the Upper Blue Nile Basin, Ethiopia. J. Hydrol. Reg. Stud. 2020, 31, 100714. [Google Scholar] [CrossRef]
- Belay, A.; Recha, J.W.; Woldeamanuel, T.; Morton, J.F. Smallholder Farmers’ Adaptation to Climate Change and Determinants of Their Adaptation Decisions in the Central Rift Valley of Ethiopia. Agric. Food Secur. 2017, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Gebrechorkos, S.H.; Bernhofer, C.; Hülsmann, S. Climate Change Impact Assessment on the Hydrology of a Large River Basin in Ethiopia Using a Local-Scale Climate Modelling Approach. Sci. Total Environ. 2020, 742, 140504. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, E.; Zemadim, B. Expanding Sustainable Land Management in Ethiopia: Scenarios for Improved Agricultural Water Management in the Blue Nile. Agric. Water Manag. 2015, 158, 166–178. [Google Scholar] [CrossRef]
- Ayenew, T. Water Management Problems in the Ethiopian Rift: Challenges for Development. J. Afr. Earth Sci. 2007, 48, 222–236. [Google Scholar] [CrossRef]
- Gosain, A.K.; Rao, S.; Basuray, D. Climate Change Impact Assessment on Hydrology of Indian River Basins. Curr. Sci. 2006, 90, 346–353. [Google Scholar]
- Alemayehu, T.; Furi, W.; Legesse, D. Impact of Water Overexploitation on Highland Lakes of Eastern Ethiopia. Environ. Geol. 2007, 52, 147–154. [Google Scholar] [CrossRef]
- Ahmed, M.H. Climate Change Adaptation Strategies of Maize Producers of the Central Rift Valley of Ethiopia. J. Agric. Rural Dev. Trop. Subtrop. JARTS 2016, 117, 175–186. [Google Scholar]
- Ngigi, S.N. Climate Change Adaptation Strategies: Water Resources Management Options for Smallholder Farming Systems in Sub-Saharan Africa; The Earth Institute at Columbia University: New York, NY, USA, 2009; ISBN 978-92-9059-264-8. [Google Scholar]
- Hagemann, S.; Chen, C.; Clark, D.B.; Folwell, S.; Gosling, S.N.; Haddeland, I.; Hanasaki, N.; Heinke, J.; Ludwig, F.; Voss, F.; et al. Climate Change Impact on Available Water Resources Obtained Using Multiple Global Climate and Hydrology Models. Earth Syst. Dyn. 2013, 4, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Casagrande, E.; Recanati, F.; Rulli, M.C.; Bevacqua, D.; Melià, P. Water Balance Partitioning for Ecosystem Service Assessment. A Case Study in the Amazon. Ecol. Indic. 2021, 121, 107155. [Google Scholar] [CrossRef]
- Conway, D.; Hanson, C.E.; Doherty, R.; Persechino, A. GCM Simulations of the Indian Ocean Dipole Influence on East African Rainfall: Present and Future. Geophys. Res. Lett. 2007, 34, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Khalilian, S.; Shahvari, N. A SWAT Evaluation of the Effects of Climate Change on Renewable Water Resources in Salt Lake Sub-Basin, Iran. AgriEngineering 2019, 1, 44–57. [Google Scholar] [CrossRef]
- Müller Schmied, H.; Adam, L.; Eisner, S.; Fink, G.; Flörke, M.; Kim, H.; Oki, T.; Portmann, F.T.; Reinecke, R.; Riedel, C.; et al. Variations of Global and Continental Water Balance Components as Impacted by Climate Forcing Uncertainty and Human Water Use. Hydrol. Earth Syst. Sci. 2016, 20, 2877–2898. [Google Scholar] [CrossRef] [Green Version]
- Uniyal, B.; Jha, M.K.; Verma, A.K. Assessing Climate Change Impact on Water Balance Components of a River Basin Using SWAT Model. Water Resour. Manag. 2015, 29, 4767–4785. [Google Scholar] [CrossRef]
- Gadissa, T.; Nyadawa, M.; Behulu, F.; Mutua, B. The Effect of Climate Change on Loss of Lake Volume: Case of Sedimentation in Central Rift Valley Basin, Ethiopia. Hydrology 2018, 5, 67. [Google Scholar] [CrossRef] [Green Version]
- Molla, M. The Effect of Climate Change and Variability on the Livelihoods of Local Communities: In the Case of Central Rift Valley Region of Ethiopia. OALib 2014, 01, 1–10. [Google Scholar] [CrossRef]
- Shumet, A.G.; Mengistu, K. Assessing the Impact of Existing and Future Water Demand on Economic and Environmental Aspects (Case Study from Rift Valley Lake Basin: Meki-Ziway Sub Basin), Ethiopia. Int. J. Waste Resour. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- Worqlul, A.W.; Dile, Y.T.; Schmitter, P.; Jeong, J.; Meki, M.N.; Gerik, T.J.; Srinivasan, R.; Lefore, N.; Clarke, N. Water Resource Assessment, Gaps, and Constraints of Vegetable Production in Robit and Dangishta Watersheds, Upper Blue Nile Basin, Ethiopia. Agric. Water Manag. 2019, 226, 105767. [Google Scholar] [CrossRef]
- Musie, M.; Sen, S.; Chaubey, I. Hydrologic Responses to Climate Variability and Human Activities in Lake Ziway Basin, Ethiopia. Water 2020, 12, 164. [Google Scholar] [CrossRef] [Green Version]
- Mengistu, D.; Bewket, W.; Dosio, A.; Panitz, H.-J. Climate Change Impacts on Water Resources in the Upper Blue Nile (Abay) River Basin, Ethiopia. J. Hydrol. 2021, 592, 125614. [Google Scholar] [CrossRef]
- Beyene, T.; Lettenmaier, D.P.; Kabat, P. Hydrologic Impacts of Climate Change on the Nile River Basin: Implications of the 2007 IPCC Scenarios. Clim. Change 2010, 100, 433–461. [Google Scholar] [CrossRef]
- Musie, M.; Sen, S.; Srivastava, P. Application of CORDEX-AFRICA and NEX-GDDP Datasets for Hydrologic Projections under Climate Change in Lake Ziway Sub-Basin, Ethiopia. J. Hydrol. Reg. Stud. 2020, 31, 100721. [Google Scholar] [CrossRef]
- Pascual-Ferrer, J.; Candela, L. ‘Water Balance on the Central Rift Valley’, in case studies for developing globally responsible engineers GDEE (eds), Global Dimension in Engineering Education Barcelona. 2015, p. 31. Available online: http://gdee.eu/index.php/resources.
- Taye, M.T.; Dyer, E.; Hirpa, F.A.; Charles, K. Climate Change Impact on Water Resources in the Awash Basin, Ethiopia. Water 2018, 10, 1560. [Google Scholar] [CrossRef] [Green Version]
- Legesse, D.; Vallet-Coulomb, C.; Gasse, F. Hydrological Response of a Catchment to Climate and Land Use Changes in Tropical Africa: Case Study South Central Ethiopia. J. Hydrol. 2003, 275, 67–85. [Google Scholar] [CrossRef]
- Getnet, M.; Hengsdijk, H.; van Ittersum, M. Disentangling the Impacts of Climate Change, Land Use Change, and Irrigation on the Central Rift Valley Water System of Ethiopia. Agric. Water Manag. 2014, 137, 104–115. [Google Scholar] [CrossRef]
- Tekle, A. Assessment of Climate Change Impact on Water Availability of Bilate Watershed, Ethiopian Rift Valley Basin. In Proceedings of the AFRICON 2015, Addis Ababa, Ethiopia, 14–17 September 2015; pp. 1–5. [Google Scholar]
- Muluneh, A.; Biazin, B.; Stroosnijder, L.; Bewket, W.; Keesstra, S. Impact of Predicted Changes in Rainfall and Atmospheric Carbon Dioxide on Maize and Wheat Yields in the Central Rift Valley of Ethiopia. Reg. Environ. Change 2015, 15, 1105–1119. [Google Scholar] [CrossRef]
- Feleke, H.G. Assessing Weather Forecasting Needs of Smallholder Farmers for Climate Change Adaptation in the Central Rift Valley of Ethiopia. J. Earth Sci. 2015, 6, 312. [Google Scholar] [CrossRef]
- Jansen, H.C.; Hengsdijk, H.; Legesse, D.; Ayenew, T.; Hellegers, P.; Spliethoff, P.C. Land and Water Resources Assessment in the Ethiopian Central Rift Valley: Project: Ecosystems for Water, Food and Economic Development in the Ethiopian Central Rift Valley. 2007. Available online: https://library.wur.nl/WebQuery/wurpubs/fulltext/19397 (accessed on 19 March 2021).
- Gadissa, T.; Nyadawa, M.; Behulu, F.; Mutua, B. Chapter 13 - Assessment of Catchment Water Resources Availability under Projected Climate Change Scenarios and Increased Demand in Central Rift Valley Basin. In Extreme Hydrology and Climate Variability; Melesse, A.M., Abtew, W., Senay, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 151–163. ISBN 978-0-12-815998-9. [Google Scholar]
- Legesse Belachew, D.; Abiye, T.; Vallet-coulomb, C.; H, A. Streamflow Sensitivity to Climate and Land Cover Changes: Meki River, Ethiopia. Hydrol. Earth Syst. Sci. 2010, 14, 2277–2287. [Google Scholar] [CrossRef] [Green Version]
- Kassie, B.T.; Asseng, S.; Rotter, R.P.; Hengsdijk, H.; Ruane, A.C.; Van Ittersum, M.K. Exploring Climate Change Impacts and Adaptation Options for Maize Production in the Central Rift Valley of Ethiopia Using Different Climate Change Scenarios and Crop Models. Clim. Change 2015, 129, 145–158. [Google Scholar] [CrossRef]
- Asefa Bogale, G.; Temesgen, T. Environment Pollution and Climate Change Impacts and Challenges of Seasonal Variabilities of El Niño and La Niña on Crop and Livestock Production in The Central Rift Valley of Ethiopia: A Review. Env. Pollut Clim. Chang. 2021, 5, 2. [Google Scholar]
- Musie, M.; Momblanch, A.; Sen, S. Exploring Future Global Change-Induced Water Imbalances in the Central Rift Valley Basin, Ethiopia. Clim. Change 2021, 164, 47. [Google Scholar] [CrossRef]
- Mortezapour, M.; Menounos, B.; Jackson, P.L.; Erler, A.R. Future Snow Changes over the Columbia Mountains, Canada, Using a Distributed Snow Model. Clim. Change 2022, 172, 6. [Google Scholar] [CrossRef]
- Leta, O.T.; El-Kadi, A.I.; Dulai, H.; Ghazal, K.A. Assessment of Climate Change Impacts on Water Balance Components of Heeia Watershed in Hawaii. J. Hydrol. Reg. Stud. 2016, 8, 182–197. [Google Scholar] [CrossRef]
- Kotamarthi, R.; Hayhoe, K.; Wuebbles, D.; Mearns, L.O.; Jacobs, J.; Jurado, J. Downscaling Techniques for High-Resolution Climate Projections: From Global Change to Local Impacts; Cambridge University Press: Cambridge, UK, 2021; ISBN 978-1-108-47375-0. [Google Scholar]
- Desta, H.; Lemma, B. SWAT Based Hydrological Assessment and Characterization of Lake Ziway Sub-Watersheds, Ethiopia. J. Hydrol. Reg. Stud. 2017, 13, 122–137. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Z.; Yan, Z.; Gong, J.; Jia, Y.; Xu, C.-Y.; Wang, H. A New Approach to Separating the Impacts of Climate Change and Multiple Human Activities on Water Cycle Processes Based on a Distributed Hydrological Model. J. Hydrol. 2019, 578, 124096. [Google Scholar] [CrossRef]
- Gadissa, T.; Nyadawa, M.; Mutua, B.M.; Behulu, F. Comparative Assessment of the Effect of Climate Change and Human Activities on Streamflow Regimes in Central Rift Valley Basin, Ethiopia. 2019. Available online: http://erepository.kibu.ac.ke/handle/123456789/950 (accessed on 15 December 2021). [CrossRef]
- Baker, T.J.; Miller, S.N. Using the Soil and Water Assessment Tool (SWAT) to Assess Land Use Impact on Water Resources in an East African Watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Báťková, K.; Miháliková, M.; Matula, S. Hydraulic Properties of a Cultivated Soil in Temperate Continental Climate Determined by Mini Disk Infiltrometer. Water 2020, 12, 843. [Google Scholar] [CrossRef] [Green Version]
- Arnold, J.G.; Kiniry, J.R.; Srinivasan, R.; Williams, J.R.; Haney, E.B.; Neitsch, S.L. Soil and Water Assessment Tool Input/Output File Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011; (accessed on 5 December 2021). [Google Scholar]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A Continental-Scale Hydrology and Water Quality Model for Europe: Calibration and Uncertainty of a High-Resolution Large-Scale SWAT Model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Teshager, A.D.; Gassman, P.W.; Secchi, S.; Schoof, J.T.; Misgna, G. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs. Environ. Manage. 2016, 57, 894–911. [Google Scholar] [CrossRef] [Green Version]
- Lenhart, T.; Eckhardt, K.; Fohrer, N.; Frede, H.-G. Comparison of Two Different Approaches of Sensitivity Analysis. Phys. Chem. Earth Parts ABC 2002, 27, 645–654. [Google Scholar] [CrossRef]
- Setegn, S.G.; Srinivasan, R.; Dargahi, B. Hydrological Modelling in the Lake Tana Basin, Ethiopia Using SWAT Model. Open Hydrol. J. 2008, 2, 49–62. [Google Scholar] [CrossRef] [Green Version]
- SWAT: Model Use, Calibration, and Validation. Available online: https://doi.org/10.13031/2013.42256 (accessed on 25 October 2021). [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River Flow Forecasting through Conceptual Models Part I — A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Das, B.; Jain, S.; Singh, S.; Thakur, P. Evaluation of Multisite Performance of SWAT Model in the Gomti River Basin, India. Appl. Water Sci. 2019, 9, 134. [Google Scholar] [CrossRef] [Green Version]
- Bc, H.; Rg, C. Climate Downscaling: Techniques and Application. Clim. Res. 1996, 07, 85–95. [Google Scholar] [CrossRef]
- ARGAW, N. ESTIMATION OF SOLAR RADIATION ENERGY OF ETHIOPIA FROM SUNSHINE DATA. Int. J. Sol. Energy 1996, 18, 103–113. [Google Scholar] [CrossRef]
- Moreira, L.L.; Schwamback, D.; Rigo, D.; Moreira, L.L.; Schwamback, D.; Rigo, D. Sensitivity Analysis of the Soil and Water Assessment Tools (SWAT) Model in Streamflow Modeling in a Rural River Basin. Rev. Ambiente Amp Água 2018, 13, 1–12. [Google Scholar] [CrossRef]
- Zeray, L.; Roehrig, J.; Chekol, D. Climate Change Impact on Lake Ziway Watershed Water Availability, Ethiopia; Institute for Technology in the Tropics, University of Applied Science: Cologne, Germany, 2006. [Google Scholar]
- Amare, D.; Endalew, W. Agricultural Mechanization: Assessment of Mechanization Impact Experiences on the Rural Population and the Implications for Ethiopian Smallholders. Eng. Appl. Sci. 2016, 1, 39–48. [Google Scholar]
- Kifle, M.; Gebretsadikan, T.G. Yield and Water Use Efficiency of Furrow Irrigated Potato under Regulated Deficit Irrigation, Atsibi-Wemberta, North Ethiopia. Agric. Water Manag. 2016, 170, 133–139. [Google Scholar] [CrossRef]
Data | ||||||
---|---|---|---|---|---|---|
Type | Format | Source | Year/scale | Resolution | Purpose | |
Weather data | Relative humidity | .xls | NMA | 1984–2010 | Daily | Analyze water balance (WB) |
Rainfall | .xls | NMA | 1984–2010 | Daily | Analyze rainfall trend and WB | |
Sunshine hours | .xls | NMA | 1984–2010 | Daily | Analyze WB and solar radiation | |
Temperature (Max and Min) | .xls | NMA | 1984–2010 | Daily | Analyze WB, and temp trend | |
Wind | .xls | NMA | 1984–2010 | Daily | Analyze WB and wind trade | |
Spatial data | Land use | .shp | GSII | 1996–2008 | ha | Model land use and runoff |
Soil | .shp | MANR | NA | ha | Determine soil hydrology group | |
DEM | .tiff | OBANR | 2003–2008 | 30 m | Analyze location data sets | |
Hydrology data | River Discharge | .xls | MW | 1900–2010 | Monthly average | Analyze discharge trend, for model calibration and sensitivity |
Class | Mean of Index (I) | Category of Sensitivity |
---|---|---|
1 | 0 ≤ I ≤ 0.05 | Small to negligible |
2 | 0.05 ≤ I ≤ 0.2 | Medium |
3 | 0.2 ≤ I < 1 | High |
4 | I ≥ 1 | Very high |
Parameter | Description | |
---|---|---|
1 | CN2 | SCS runoff curve number |
2 | ALPHA_BF | Base flow recession constant (days) |
3 | GW_DELAY | Ground water delay time for recharging the aquifer (days) |
4 | GWQMN | Water limit level in the aquifer for the occurrence of base flow (mm) |
5 | REVAPMN | Water limit level in the aquifer for revap to occur (mm) |
6 | GW_REVAP | Groundwater revap coefficient |
7 | ESCO | Soil evaporation compensation factor |
8 | EPCO | Plant uptake compensation factor |
9 | SURLAG | Delay time of direct surface runoff (days) |
10 | SOL_AWC | Available water capacity of the soil layer (mm mm−1) |
11 | SOL_K | Saturated hydraulic conductivity of the soil (mm h−1) |
12 | CH_K2 | Effective hydraulic conductivity of the main channel (mm h−1) |
13 | SOL_Z | Depth from soil surface to the bottom of the layer (mm) |
14 | RCHRG_DP | Deep aquifer percolation fraction |
15 | HRU_SLP | Average slope steepness (m m−1) |
16 | BIOMIX | Bio-mixing efficiency |
Ketar | Meki | Shalla | |||
---|---|---|---|---|---|
Parameter | Adjusting value | Parameter | Adjusting value | Parameter | Adjusting value |
R__CN2.mgt | −0.44 | R__CN2.mgt | −0.586 | R__CN2.mgt | −0.155 |
V__ALPHA_BF.gw | 0.629 | V__ALPHA_BF.gw | 0.348 | R__ALPHA_BF.gw | −0.35 |
A__GW_DELAY.gw | 12.251 | A__GW_DELAY.gw | −17.291 | A__GW_DELAY.gw | 3.283 |
A__GWQMN.gw | 336.23 | A__GWQMN.gw | 109.676 | A__GWQMN.gw | −819.543 |
A__REVAPMN.gw | 13.917 | A__REVAPMN.gw | −126.446 | A__REVAPMN.gw | 213.915 |
A__GW_REVAP.gw | 0.0403 | A__GW_REVAP.gw | 0.143 | V__GW_REVAP.gw | 0.18 |
V__ESCO.bsn | 0.98 | V__ESCO.bsn | 0.43 | V__ESCO.bsn | 0.412 |
V__EPCO.bsn | 0.221 | R__EPCO.bsn | −0.662 | V__EPCO.bsn | 0.417 |
A__SURLAG.bsn | 20.086 | A__SURLAG.bsn | 16.174 | V__SURLAG.bsn | 25.349 |
R__SOL_AWC(..).sol | 1.29 | R__SOL_AWC(..).sol | 1.274 | R__SOL_AWC(..).sol | NA* |
R__SOL_K(..).sol | −0.661 | R__SOL_K(..).sol | 0.166 | R__SOL_K(..).sol | 0.149 |
V__CH_K2.rte | 79.915 | V__CH_K2.rte | NA* | A__CH_K2.rte | −74.91 |
R__SOL_Z(..).sol | 0.665 | R__SOL_Z(..).sol | NA* | R__SOL_Z(..).sol | NA* |
R__RCHRG_DP.gw | −0.122 | V__RCHRG_DP.gw | NA* | V__RCHRG_DP.gw | 0.093 |
R__HRU_SLP.hru | NA* | R__HRU_SLP.hru | 0.783 | R__HRU_SLP.hru | NA* |
R__BIOMIX.mgt | NA* | R__BIOMIX.mgt | 0.205 | R__BIOMIX.mgt | NA* |
Climate Scenario | ||
---|---|---|
No. | Code | Description (Years) |
1 | NT-RCP2.6 | RCP2.6 (2031–2060) |
2 | LT- RCP2.6 | RCP2.6 (2070–2099) |
3 | NT-RCP4.5 | RCP4.5 (2031–2060) |
4 | LT- RCP4.5 | RCP4.5 (2070–2099) |
5 | NT-RCP8.5 | RCP8.5 (2031–2060) |
6 | LT-RCP8.5 | RCP8.5 (2070–2099) |
7 | BD | Observed baseline data (1984–2010) |
Ketar | Meki | Shalla | ||||
---|---|---|---|---|---|---|
Parameter ** | t-stat value | Sensitivity | t-stat value | Sensitivity | t-stat value | Sensitivity |
R__CN2.mgt | 1.408 | Very high | −0.394 | Negligible | −0.111 | Negligible |
V__ALPHA_BF.gw | 0.046 | Low | −0.997 | Negligible | −1.643 | Negligible |
A__GW_DELAY.gw | 1.206 | Very high | 1.951 | Very high | −1.032 | Negligible |
A__GWQMN.gw | 0.783 | High | 1.564 | Very high | 2.685 | Very high |
A__REVAPMN.gw | 1.970 | Very high | 1.441 | Very high | −1.116 | Negligible |
A__GW_REVAP.gw | 0.710 | High | 0.844 | High | NI* | NI* |
V__ESCO.bsn | 0.905 | High | 1.181 | Very high | 1.739 | Very high |
V__EPCO.bsn | 1.013 | Very High | −1.210 | Negligible | −1.513 | Negligible |
A__SURLAG.bsn | 2.329 | Very high | −1.242 | Negligible | 0.744 | High |
R__SOL_AWC(..).sol | −1.034 | Negligible | −3.957 | Negligible | NI* | NI* |
R__SOL_K(..).sol | 1.202 | Very high | −1.417 | Negligible | 1.197 | Very high |
V__CH_K2.rte | −0.551 | Negligible | NI* | NI* | 1.926 | Very high |
R__SOL_Z(..).sol | NI* | NI* | NI* | NI* | NI* | NI* |
V__RCHRG_DP.gw | 1.137 | Very high | NI* | NI* | −1.986 | Negligible |
R__HRU_SLP.hru | NI* | NI* | 1.799 | Very high | 0.084 | Low |
R__BIOMIX.mgt | NI* | NI* | 1.669 | Very high | 0.798 | High |
Sub-Basin | Calibration Statistics | Validation Statistics | ||||
---|---|---|---|---|---|---|
R2 | NSE | PBIAS | R2 | NSE | PBIAS | |
Ketar | 0.61 | 0.54 | −22.5 | 0.85 | 0.84 | −2.6 |
Meki | 0.64 | 0.63 | −4.81 | 0.72 | 0.64 | −32.17 |
Shalla | 0.67 | 0.66 | 0.2 | 0.77 | 0.74 | 1.34 |
Sub-Basins | Ketar | Meki | Shalla | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Annual average rainfall (mm) | 798.1 | 674.4 | 713.4 | |||||||
Water balance components | Q | WY | ET | Q | WY | ET | Q | WY | ET | |
Baseline annual average output (mm) | 103.8 | 492.2 | 282.5 | 53.5 | 257.5 | 393.1 | 44.2 | 326.7 | 363.8 | |
% of ∆ | ||||||||||
Scenarios | NT-RCP2.6 | −62.2 | −34.9 | 17.3 | 58.1 | 17.0 | 4.5 | −3.5 | 0.9 | 12.2 |
LT-RCP2.6 | −55.0 | −30.3 | 13.3 | 60.2 | 19.9 | 2.6 | 31.6 | 12.0 | 9.3 | |
NT-RCP4.5 | −13.7 | −35.9 | −4.1 | 6.0 | −1.1 | 5.6 | −21.9 | −10.1 | 9.2 | |
LT-RCP4.5 | 22.9 | −28.7 | −9.4 | 47.7 | 11.2 | 2.6 | 32.8 | 4.2 | 7.8 | |
NT-RCP8.5 | −65.2 | −42.2 | 7.4 | 58.3 | 13.0 | 6.4 | −7.7 | −2.4 | 10.8 | |
LT-RCP8.5 | −60.5 | −39.7 | 8.8 | 85.8 | 23.9 | 9.4 | 23.5 | 7.1 | 15.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Truneh, L.A.; Matula, S.; Báťková, K. Hydroclimate Impact Analyses and Water Management in the Central Rift Valley Basin in Ethiopia. Water 2023, 15, 18. https://doi.org/10.3390/w15010018
Truneh LA, Matula S, Báťková K. Hydroclimate Impact Analyses and Water Management in the Central Rift Valley Basin in Ethiopia. Water. 2023; 15(1):18. https://doi.org/10.3390/w15010018
Chicago/Turabian StyleTruneh, Lemma Adane, Svatopluk Matula, and Kamila Báťková. 2023. "Hydroclimate Impact Analyses and Water Management in the Central Rift Valley Basin in Ethiopia" Water 15, no. 1: 18. https://doi.org/10.3390/w15010018
APA StyleTruneh, L. A., Matula, S., & Báťková, K. (2023). Hydroclimate Impact Analyses and Water Management in the Central Rift Valley Basin in Ethiopia. Water, 15(1), 18. https://doi.org/10.3390/w15010018