Spatiotemporal Characteristics of Meteorological Drought and Wetness Events across the Coastal Savannah Agroecological Zone of Ghana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Quality Control
2.3. Methods
2.3.1. Homogeneity Tests of the Observed Temperature and Rainfall Time-Series Data
Criteria for Homogeneity Analysis
2.3.2. Computation of SPEI
2.3.3. Computation of Drought/Wetness Characteristics
2.3.4. Trend Analysis
Mann–Kendall Test and Theil–Sen Slope Estimator
2.3.5. Spatial Interpolation
3. Results
3.1. Changepoint Analysis
3.2. Monthly Variations in Drought and Wetness Events
Temporal Evolution and Trends in Drought and Wetness Events
3.3. Spatial Evolution of SPEI
3.4. Spatial Distribution of Drought and Wetness Characteristics
3.5. Spatial Distribution of Drought and Wetness Trends
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, C.; Yang, C.; Yang, Q.; Wang, J. Spatiotemporal drought analysis by the standardized precipitation index (SPI) and standardized precipitation evapotranspiration index (SPEI) in Sichuan Province, China. Sci. Rep. 2021, 11, 1280. [Google Scholar] [CrossRef] [PubMed]
- Cook, B.I.; Smerdon, J.E.; Seager, R.; Cook, E.R. Pan-Continental Droughts in North America over the Last Millennium. J. Clim. 2014, 27, 383–397. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J. Geophys. Res. Atmos. 2011, 116, 4100509. [Google Scholar] [CrossRef] [Green Version]
- Dai, A. The influence of the inter-decadal Pacific oscillation on US precipitation during 1923–2010. Clim. Dyn. 2013, 41, 633–646. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Su, H.; Chen, F.; Wu, J.; Qi, J. The changing characteristics of drought in China from 1982 to 2005. Nat. Hazards 2013, 68, 723–743. [Google Scholar] [CrossRef]
- Spinoni, J.; Naumann, G.; Carrao, H.; Barbosa, P.; Vogt, J. World drought frequency, duration, and severity for 1951–2010. Int. J. Climatol. 2014, 34, 2792–2804. [Google Scholar] [CrossRef] [Green Version]
- Wilhite, D.A. Drought and Water Crises: Science, Technology, and Management Issues; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar] [CrossRef]
- Zuo, D.; Cai, S.; Xu, Z.; Peng, D.; Kan, G.; Sun, W.; Pang, B.; Yang, H. Assessment of meteorological and agricultural droughts using in-situ observations and remote sensing data. Agric. Water Manag. 2019, 222, 125–138. [Google Scholar] [CrossRef]
- EM-DAT: The CRED/OFDA International Disaster Database, Université Catholique de Louvain, Brussels, Belgium. Available online: https://www.emdat.be/ (accessed on 15 August 2022).
- Capacity Development for Hazard Risk Reduction and Adaptation (CATALYST). Before Disaster Strikes: Transformation in Practice and Policy. (n.d). Available online: https://twas.org/sites/default/files/bpp_ewa_cs.pdf (accessed on 15 August 2022).
- Wilhelmi, O.V.; Wilhite, D.A. Assessing vulnerability to agricultural drought: A Nebraska case study. Nat. Hazards 2002, 25, 37–58. [Google Scholar] [CrossRef]
- Heim, R.R. A review of twentieth-century drought indices used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef]
- Kogan, F.N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef]
- Alley, W.M. The Palmer drought severity index: Limitations and assumptions. J. Appl. Meteorol. Climatol. 1984, 23, 1100–1109. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Wilhite, D.A.; Glantz, M.H. Understanding: The drought phenomenon: The role of definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Dracup, J.A.; Lee, K.S.; Paulson, E.G., Jr. On the definition of droughts. Water Resour. Res. 1980, 16, 297–302. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A review of drought concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Tran, T.V.; Tran, D.X.; Myint, S.W.; Latorre-Carmona, P.; Ho, D.D.; Tran, P.H.; Dao, H.N. Assessing spatiotemporal drought dynamics and its related environmental issues in the Mekong River Delta. Remote Sens. 2019, 11, 2742. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological Drought Research Paper No. 45; Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Nakalembe, C. Characterizing agricultural drought in the Karamoja subregion of Uganda with meteorological and satellite-based indices. Nat. Hazards 2018, 91, 837–862. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Guo, E. Spatial distribution and temporal variation of drought in Inner Mongolia during 1901–2014 using Standardized Precipitation Evapotranspiration Index. Sci. Total Environ. 2019, 654, 850–862. [Google Scholar] [CrossRef]
- Zhang, A.; Jia, G. Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote sensing data. Remote Sens. Environ. 2013, 134, 12–23. [Google Scholar] [CrossRef]
- Wang, X.; Zhuo, L.; Li, C.; Engel, B.A.; Sun, S.; Wang, Y. Temporal and spatial evolution trends of drought in northern Shaanxi of China: 1960–2100. Theor. Appl. Climatol. 2020, 139, 965–979. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Quiring, S.M.; Ganesh, S. Evaluating the utility of the Vegetation Condition Index (VCI) for monitoring meteorological drought in Texas. Agric. For. Meteorol. 2010, 150, 330–339. [Google Scholar] [CrossRef]
- Guttman, N.B.; Wallis, J.R.; Hosking, J.R.M. Spatial comparability of the palmer drought severity index. JAWRA J. Am. Water Resour. Assoc. 1992, 28, 1111–1119. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, P. Meteorological drought over the Chinese Loess Plateau: 1971–2010. Nat. Hazards 2013, 67, 951–961. [Google Scholar] [CrossRef]
- Guttman, N.B. Accepting the standardized precipitation index: A calculation algorithm. JAWRA J. Am. Water Resour. Assoc. 1999, 35, 311–322. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Shao, M.; Jia, X.; Li, X. Spatiotemporal analysis of multiscalar drought characteristics across the Loess Plateau of China. J. Hydrol. 2016, 534, 281–299. [Google Scholar] [CrossRef]
- Minea, I.; Iosub, M.; Boicu, D. Multi-scale approach for different type of drought in temperate climatic conditions. Nat. Hazards 2022, 110, 1153–1177. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P.; Desai, V.R. Drought characterization: A probabilistic approach. Stoch. Environ. Res. Risk Assess. 2009, 23, 41–55. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative analysis of drought indicated by the SPI and SPEI at various timescales in inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Chen, Q.; Timmermans, J.; Wen, W.; van Bodegom, P.M. A multi-metric assessment of drought vulnerability across different vegetation types using high resolution remote sensing. Sci. Total Environ. 2022, 832, 154970. [Google Scholar] [CrossRef]
- Paulo, A.A.; Rosa, R.D.; Pereira, L.S. Climate trends and behaviour of drought indices based on precipitation and evapotranspiration in Portugal. Nat. Hazards Earth Syst. Sci. 2012, 12, 1481–1491. [Google Scholar] [CrossRef]
- Stagge, J.H.; Tallaksen, L.M.; Gudmundsson, L.; Van Loon, A.F.; Stahl, K. Candidate distributions for climatological drought indices (SPI and SPEI). Int. J. Climatol. 2015, 35, 4027–4040. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, Q.; Lu, H.; Wang, Z.; Zhang, K.; Wang, P. Future droughts in China using the standardized precipitation evapotranspiration index (SPEI) under multi-spatial scales. Nat. Hazards 2021, 109, 615–636. [Google Scholar] [CrossRef]
- Liu, X.; Zhu, X.; Pan, Y.; Li, S.; Liu, Y.; Ma, Y. Agricultural drought monitoring: Progress, challenges, and prospects. J. Geogr. Sci. 2016, 26, 750–767. [Google Scholar] [CrossRef] [Green Version]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Env. 1996, 266, 257–266. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report; Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435–438. [Google Scholar] [CrossRef]
- Wang, G.; Gong, T.; Lu, J.; Lou, D.; Hagan, D.F.T.; Chen, T. On the long-term changes of drought over China (1948–2012) from different methods of potential evapotranspiration estimations. Int. J. Climatol. 2018, 38, 2954–2966. [Google Scholar] [CrossRef]
- Wilhite, D.A. Chapter 1 drought as a natural hazard: Concepts and definitions. In Drought Mitigation Center Faculty Publications; Routledge: London, UK, 2000; p. 69. [Google Scholar]
- World Meteorological Organization. Experts Recommend Agricultural Drought Indices for improved understanding of food production conditions. In Developments in Earth Surface Processes; WMO: Murcia, Spain, 2010. [Google Scholar]
- Trenberth, K.E.; Dai, A.; Van Der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Change 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Ayugi, B.; Tan, G.; Rouyun, N.; Zeyao, D.; Ojara, M.; Mumo, L.; Babaousmail, H.; Ongoma, V. Evaluation of meteorological drought and flood scenarios over Kenya, East Africa. Atmosphere 2020, 11, 307. [Google Scholar] [CrossRef]
- Haile, G.G.; Tang, Q.; Leng, G.; Jia, G.; Wang, J.; Cai, D.; Sun, S.; Baniya, B.; Zhang, Q. Long-term spatiotemporal variation of drought patterns over the Greater Horn of Africa. Sci. Total Environ. 2020, 704, 135299. [Google Scholar] [CrossRef]
- Okpara, J.N.; Afiesimama, E.A.; Anuforom, A.C.; Owino, A.; Ogunjobi, K.O. The applicability of Standardized Precipitation Index: Drought characterization for early warning system and weather index insurance in West Africa. Nat. Hazards 2017, 89, 555–583. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Jiapaer, G.; Ndayisaba, F.; Jiang, L.; Kurban, A.; De Maeyer, P. Spatial and temporal characteristics of droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018, 624, 1523–1538. [Google Scholar] [CrossRef] [PubMed]
- Miyan, M.A. Droughts in Asian least developed countries: Vulnerability and sustainability. Weather Clim. Extrem. 2015, 7, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Chen, W.; Fu, Q.; Huang, G.; Wang, Q.; Chotamonsak, C.; Limsakul, A. Super droughts over East Asia since 1960 under the impacts of global warming and decadal variability. Int. J. Climatol. 2021, 42, 4508–4521. [Google Scholar] [CrossRef]
- Deo, R.C.; Byun, H.R.; Adamowski, J.F.; Begum, K. Application of effective drought index for quantification of meteorological drought events: A case study in Australia. Theor. Appl. Climatol. 2017, 128, 359–379. [Google Scholar] [CrossRef]
- Hoque, M.A.A.; Pradhan, B.; Ahmed, N.; Sohel, M.S.I. Agricultural drought risk assessment of Northern New South Wales, Australia using geospatial techniques. Sci. Total Environ. 2021, 756, 143600. [Google Scholar] [CrossRef]
- Rahmat, S.N.; Jayasuriya, N.; Bhuiyan, M. Assessing droughts using meteorological drought indices in Victoria, Australia. Hydrol. Res. 2015, 46, 463–476. [Google Scholar] [CrossRef]
- Lehner, B.; Döll, P.; Alcamo, J.; Henrichs, T.; Kaspar, F. Estimating the impact of global change on flood and drought risks in Europe: A continental, integrated analysis. Clim. Change 2006, 75, 273–299. [Google Scholar] [CrossRef]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Change 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Cook, E.R.; Seager, R.; Cane, M.A.; Stahle, D.W. North American drought: Reconstructions, causes, and consequences. Earth-Sci. Rev. 2007, 81, 93–134. [Google Scholar] [CrossRef]
- Shrestha, R.R.; Bonsal, B.R.; Bonnyman, J.M.; Cannon, A.J.; Najafi, M.R. Heterogeneous snowpack response and snow drought occurrence across river basins of northwestern North America under 1.0 °C to 4.0 °C global warming. Clim. Change 2021, 164, 40. [Google Scholar] [CrossRef]
- Junqueira, R.; Amorim, J.da.S.; Viola, M.R.; Mello, C.R.d.; Uddameri, V.; Prado, L.F. Drought occurrences and impacts on the upper Grande river basin, Brazil. Meteorol. Atmos. Phys. 2022, 134, 45. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—Past, present, and future. Theor. Appl. Climatol. 2017, 129, 1189–1200. [Google Scholar] [CrossRef]
- Rivera, J.A.; Penalba, O.C. Spatio-temporal assessment of streamflow droughts over Southern South America: 1961–2006. Theor. Appl. Climatol. 2018, 133, 1021–1033. [Google Scholar] [CrossRef]
- Burke, E.J.; Brown, S.J.; Christidis, N. Modelling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeorol. 2006, 7, 1113–1125. [Google Scholar] [CrossRef]
- Kogan, F.N. Global Drought Watch from Space. Bull. Am. Meteorol. Soc. 1997, 78, 621–636. [Google Scholar] [CrossRef]
- Wang, T.; Tu, X.; Singh, V.P.; Chen, X.; Lin, K. Global data assessment and analysis of drought characteristics based on CMIP6. J. Hydrol. 2021, 596, 126091. [Google Scholar] [CrossRef]
- Thiaw, W.M.; Kumar, V.B. NOAA’S African Desk: Twenty years of developing capacity in weather and climate forecasting in Africa. Bull. Am. Meteorol. Soc. 2015, 96, 737–753. [Google Scholar] [CrossRef]
- Okpara, J.N.; Tarhule, A.; Perumal, M. Study of climate change in Niger River Basin, West Africa: Reality not a myth. In Climate Change - Realities Impacts Over Ice Cap Sea Level Risks; InTech: London, UK, 2013; Volume 1, pp. 3–38. [Google Scholar] [CrossRef]
- Dei, G.J. Coping with the effects of the 1982–83 drought in Ghana: The view from the village. Afr. Dev. Afr. Développement 1988, 13, 107–122. [Google Scholar]
- Antwi-Agyei, P.; Fraser, E.D.G.; Dougill, A.J.; Stringer, L.C.; Simelton, E. Mapping the vulnerability of crop production to drought in Ghana using rainfall, yield and socioeconomic data. Appl. Geogr. 2012, 32, 324–334. [Google Scholar] [CrossRef]
- Dumenu, W.K.; Obeng, E.A. Climate change and rural communities in Ghana: Social vulnerability, impacts, adaptations and policy implications. Environ. Sci. Policy 2016, 55, 208–217. [Google Scholar] [CrossRef]
- Kasei, R.; Diekkrüger, B.; Leemhuis, C. Drought frequency in the Volta Basin of West Africa. Sustain. Sci. 2010, 5, 89–97. [Google Scholar] [CrossRef]
- Ndehedehe, C.E.; Awange, J.L.; Corner, R.J.; Kuhn, M.; Okwuashi, O. On the potentials of multiple climate variables in assessing the spatio-temporal characteristics of hydrological droughts over the Volta Basin. Sci. Total Environ. 2016, 557–558, 819–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyatuame, M.; Agodzo, S. Analysis of Extreme Rainfall Events (Drought and Flood) over Tordzie Watershed in the Volta Region of Ghana. J. Geosci. Environ. Prot. 2017, 5, 275–295. [Google Scholar] [CrossRef] [Green Version]
- Oguntunde, P.G.; Abiodun, B.J.; Lischeid, G. Impacts of climate change on hydro-meteorological drought over the Volta Basin, West Africa. Glob. Planet. Change 2017, 155, 121–132. [Google Scholar] [CrossRef]
- Dovie, D.B.K.; Kasei, R.A. Hydro-climatic stress, shallow groundwater wells and coping in Ghana’s White Volta basin. Sci. Total Environ. 2018, 636, 1268–1278. [Google Scholar] [CrossRef]
- Akurugu, B.A.; Obuobie, E.; Yidana, S.M.; Stisen, S.; Seidenfaden, I.K.; Chegbeleh, L.P. Groundwater resources assessment in the Densu Basin: A review. J. Hydrol. Reg. Stud. 2022, 40, 101017. [Google Scholar] [CrossRef]
- Nasirudeen, A.F.; Kabo-bah, A.T.; Amo-Boateng, M.; Karthikeyan, B. Analysis of drought patterns in the Tano river basin of Ghana. Sci. Afr. 2021, 13, e00883. [Google Scholar] [CrossRef]
- Addi, M.; Asare, K.; Fosuhene, S.K.; Ansah-Narh, T.; Aidoo, K.; Botchway, C.G. Impact of Large-Scale Climate Indices on Meteorological Drought of Coastal Ghana. Adv. Meteorol. 2021, 2021, 8899645. [Google Scholar] [CrossRef]
- Asare-Nuamah, P.; Botchway, E. Understanding climate variability and change: Analysis of temperature and rainfall across agroecological zones in Ghana. Heliyon 2019, 5, e02654. [Google Scholar] [CrossRef] [Green Version]
- Bessah, E.; Amponsah, W.; Ansah, S.O.; Afrifa, A.; Yahaya, B.; Wemegah, C.S.; Tanu, M.; Amekudzi, L.K.; Agyare, W.A. Climatic zoning of Ghana using selected meteorological variables for the period 1976–2018. Meteorol. Appl. 2022, 29, 1–15. [Google Scholar] [CrossRef]
- Gbangou, T.; Ludwig, F.; van Slobbe, E.; Greuell, W.; Kranjac-Berisavljevic, G. Rainfall and dry spell occurrence in Ghana: Trends and seasonal predictions with a dynamical and a statistical model. Appl. Climatol. 2020, 141, 371–387. [Google Scholar] [CrossRef] [Green Version]
- Baidu, M.; Amekudzi, L.K.; Aryee, J.N.A.; Annor, T. Assessment of Long-Term Spatio-Temporal Rainfall Variability over Ghana using Wavelet Analysis. Climate 2017, 5, 30. [Google Scholar] [CrossRef] [Green Version]
- Ghana Statistical Service. 2010 Population and Housing Census; National Analytical Report; Ghana Statistical Service: Accra, Ghana, 2013; p. 430. Available online: https://statsghana.gov.gh/gssmain/fileUpload/pressrelease/2010_PHC_National_Analytical_Report.pdf (accessed on 16 November 2022).
- Dickson, K.B.; Benneh, G. A New Geography of Ghana, Revised Edition; Longman Group Ltd.: London, UK, 2001. [Google Scholar]
- NASA Prediction of Worldwide Energy Resources. The Power Project. (n.d). Available online: https://power.larc.nasa.gov/ (accessed on 7 June 2022).
- Monteiro, L.A.; Sentelhas, P.C.; Pedra, G.U. Assessment of NASA/POWER satellite-based weather system for Brazilian conditions and its impact on sugarcane yield simulation. Int. J. Climatol. 2018, 38, 1571–1581. [Google Scholar] [CrossRef]
- Marzouk, O.A. Assessment of global warming in Al Buraimi, sultanate of Oman based on statistical analysis of NASA POWER data over 39 years, and testing the reliability of NASA POWER against meteorological measurements. Heliyon 2021, 7, e06625. [Google Scholar] [CrossRef]
- Mourtzinis, S.; Edreira, J.I.R.; Conley, S.P.; Grassini, P. From grid to field: Assessing quality of gridded weather data for agricultural applications. Eur. J. Agron. 2017, 82, 163–172. [Google Scholar] [CrossRef] [Green Version]
- R-Instat. Version 0.70. Available online: http://r-instat.org/About.html (accessed on 7 June 2022).
- Pettitt, A.N. A non-parametric approach to the change-point problem. J. R. Stat. Society. Ser. C (Appl. Stat.) 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Buishand, T.A. Some methods for testing the homogeneity of rainfall records. J. Hydrol. 1982, 58, 11–27. [Google Scholar] [CrossRef]
- Alexandersson, H.A. Homogeneity test applied to precipitation data. J. Climatol. 1986, 6, 661–675. [Google Scholar] [CrossRef]
- Wijngaard, J.B.; Klein Tank, A.M.G.; Können, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- Yildirim, G.; Rahman, A. Homogeneity and trend analysis of rainfall and droughts over Southeast Australia. Nat. Hazards 2022, 112, 1657–1683. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Lohani, A.K.; Tiwari, H.L. Statistical analysis for change detection and trend assessment in climatological parameters. Environ. Process. 2015, 2, 729–749. [Google Scholar] [CrossRef] [Green Version]
- Hargreaves, G.L.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef] [Green Version]
- Gozzo, L.F.; Palma, D.S.; Custodio, M.S.; Machado, J.P. Climatology and trend of severe drought events in the state of Sao Paulo, Brazil, during the 20th Century. Atmosphere 2019, 10, 190. [Google Scholar] [CrossRef] [Green Version]
- Polong, F.; Chen, H.; Sun, S.; Ongoma, V. Temporal and spatial evolution of the standard precipitation evapotranspiration index (SPEI) in the Tana River Basin, Kenya. Appl. Climatol. 2019, 138, 777–792. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1975. [Google Scholar]
- Da Silva, R.M.; Santos, C.A.G.; Moreira, M.; Corte-Real, J.; Silva, V.C.L.; Medeiros, I.C. Rainfall and river flow trends using Mann–Kendall and Sen’s slope estimator statistical tests in the Cobres River basin. Nat. Hazards 2015, 77, 1205–1221. [Google Scholar] [CrossRef]
- Zhang, H.; Ding, M.; Li, L.; Liu, L. Continuous Wetting on the Tibetan Plateau during 1970–2017. Water 2019, 11, 2605. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Change 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Shahid, S. Rainfall variability and the trends of wet and dry periods in Bangladesh. Int. J. Climatol. 2010, 30, 2299–2313. [Google Scholar] [CrossRef]
- Mustafa, A.; Rahman, G. Assessing the spatio-temporal variability of meteorological drought in Jordan. Earth Syst. Env. 2018, 2, 247–264. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, S.; Dong, Y.; Dong, S.; Shi, F. Effects of multi-time scales drought on vegetation dynamics in Qaidam River Basin, Qinghai-Tibet Plateau from 1998 to 2015. Appl. Climatol. 2020, 141, 117–131. [Google Scholar] [CrossRef]
- Dai, A. Future warming patterns linked to today’s climate variability. Sci. Rep. 2016, 6, 19110. [Google Scholar] [CrossRef] [Green Version]
- Lyon, B. Seasonal Drought in the Greater Horn of Africa and its recent increase during the March–May long rains. J. Clim. 2014, 27, 7953–7975. [Google Scholar] [CrossRef]
- García-Marín, A.P.; Estévez, J.; Morbidelli, R.; Saltalippi, C.; Ayuso-Muñoz, J.L.; Flammini, A. Assessing inhomogeneities in extreme annual rainfall data series by multifractal approach. Water 2020, 12, 1030. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, Z.; Yang, H.; Zhao, Y. Study of the temporal and spatial patterns of drought in the Yellow River basin based on SPEI. Sci. China Earth Sci. 2018, 61, 1098–1111. [Google Scholar] [CrossRef]
- An, Q.; He, H.; Nie, Q.; Cui, Y.; Gao, J.; Wei, C.; Xie, X.; You, J. Spatial and temporal variations of drought in Inner Mongolia, China. Water 2020, 12, 1715. [Google Scholar] [CrossRef]
- Ge, Y.; Cai, X.; Zhu, T.; Ringler, C. Drought frequency change: An assessment in northern India plains. Agric. Water Manag. 2016, 176, 111–121. [Google Scholar] [CrossRef]
- Alsafadi, K.; Mohammed, S.A.; Ayugi, B.; Sharaf, M.; Harsányi, E. Spatial–temporal evolution of drought characteristics over Hungary between 1961 and 2010. Pure Appl. Geophys. 2020, 177, 3961–3978. [Google Scholar] [CrossRef] [Green Version]
- Asante, F.; Amuakwa-Mensah, F. Climate Change and Variability in Ghana: Stocktaking. Climate 2015, 3, 78–99. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S.M. Impacts of drought, food security policy and climate change on performance of irrigation schemes in Sub-Saharan Africa: The case of Sudan. Agric. Water Manag. 2020, 232, 106064. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. Global synthesis of drought effects on maize and wheat Production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef] [Green Version]
- Gautier, D.; Denis, D.; Locatelli, B. Impacts of drought and responses of rural populations in West Africa: A systematic review. WIREs Clim. Change 2016, 7, 666–681. [Google Scholar] [CrossRef]
- Leng, G.; Hall, J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci. Total Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef]
- Li, Q.; Cao, Y.; Miao, S.; Huang, X. Spatiotemporal characteristics of drought and wet events and their impacts on agriculture in the Yellow River Basin. Land 2022, 11, 556. [Google Scholar] [CrossRef]
- Wang, C.; Linderholm, H.W.; Song, Y.; Wang, F.; Liu, Y.; Tian, J.; Xu, J.; Song, Y.; Ren, G. Impacts of drought on maize and soybean production in northeast China during the past five decades. Int. J. Environ. Res. Public Health 2020, 17, 2459. [Google Scholar] [CrossRef] [Green Version]
- Zipper, S.C.; Qiu, J.; Kucharik, C.J. Drought effects on US maize and soyabean production: Spatiotemporal patterns and historical changes. Environ. Res. Lett. 2016, 11, 094021. [Google Scholar] [CrossRef]
- Yaro, J.A. The perception of and adaptation to climate variability/change in Ghana by small-scale and commercial farmers. Reg. Env. Change 2013, 13, 1259–1272. [Google Scholar] [CrossRef]
- Manatsa, D.; Mukwada, G.; Siziba, E.; Chinyanganya, T. Analysis of multidimensional aspects of agricultural droughts in Zimbabwe using the Standardized Precipitation Index (SPI). Appl. Climatol. 2010, 102, 287–305. [Google Scholar] [CrossRef]
- Santos, J.F.; Pulido-Calvo, I.; Portela, M.M. Spatial and temporal variability of droughts in Portugal. Water Resour. Res. 2010, 46, W03503. [Google Scholar] [CrossRef] [Green Version]
- Zhao, G.; Mu, X.; Hörmann, G.; Fohrer, N.; Xiong, M.; Su, B.; Li, X. Spatial patterns and temporal variability of dryness/wetness in the Yangtze River Basin, China. Quat. Int. 2012, 282, 5–13. [Google Scholar] [CrossRef]
- Chiang, F.; Mazdiyasni, O.; AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and intensity. Nat. Commun. 2021, 12, 2754. [Google Scholar] [CrossRef]
- Brito, S.S.B.; Cunha, A.P.M.A.; Cunningham, C.C.; Alvalá, R.C.; Marengo, J.A.; Carvalho, M.A. Frequency, duration and severity of drought in the Semiarid Northeast Brazil region. Int. J. Clim. 2018, 38, 517–529. [Google Scholar] [CrossRef]
- Christidis, N.; Stott, P.A. The influence of anthropogenic climate change on wet and dry summers in Europe. Sci. Bull. 2011, 66, 813–823. [Google Scholar] [CrossRef]
- Kastridis, A.; Kamperidou, V.; Stathis, D. Dendroclimatological analysis of Fir (A. borisii-regis) in Greece in the frame of climate change investigation. Forests 2022, 13, 879. [Google Scholar] [CrossRef]
- Mersin, D.; Tayfur, G.; Vaheddoost, B.; Safari, M.J.S. Historical trends associated with annual temperature and precipitation in Aegean Turkey, where are we heading? Sustainability 2022, 14, 13380. [Google Scholar] [CrossRef]
- Todaro, V.; D’Oria, M.; Secci, D.; Zanini, A.; Tanda, M.G. Climate change over the Mediterranean region: Local temperature and precipitation variations at five pilot sites. Water 2022, 14, 2499. [Google Scholar] [CrossRef]
- Swain, S.; Hayhoe, K. CMIP5 projected changes in spring and summer drought and wet conditions over North America. Clim. Dyn. 2015, 44, 2737–2750. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F. Projected changes in drought occurrence under future global warming from multi-model, multi-scenario, IPCC AR4 simulations. Clim. Dyn. 2008, 31, 79–105. [Google Scholar] [CrossRef]
- Elbeltagi, A.; AlThobiani, F.; Kamruzzaman, M.; Shaid, S.; Roy, D.K.; Deb, L.; Islam, M.M.; Kundu, P.K.; Rahman, M.M. Estimating the standardized precipitation evapotranspiration index using data-driven techniques: A regional study of Bangladesh. Water 2022, 14, 1764. [Google Scholar] [CrossRef]
- Kuntiyawichai, K.; Wongsasri, S. Assessment of drought severity and vulnerability in the Lam Phaniang river basin, Thailand. Water 2021, 13, 2743. [Google Scholar] [CrossRef]
Location | Month | Temperature | Rainfall | ||
---|---|---|---|---|---|
Nature of Series | Year of Change | Nature of Series | Year of Change | ||
Accra, Tema | Jan | HG | − | HG | − |
Feb | HG | − | HG | − | |
Mar | CP | 1996 | HG | − | |
Apr | HG | − | HG | − | |
May | HG | − | HG | − | |
Jun | HG | − | HG | − | |
Jul | HG | − | HG | − | |
Aug | HG | − | HG | − | |
Sep | CP | 2002 | HG | − | |
Oct | CP | 1995 | U | − | |
Nov | HG | − | CP | 2002 | |
Dec | HG | − | HG | − | |
Annual | HG | − | HG | − | |
Ada Foah, Anloga, Keta | Jan | HG | − | HG | − |
Feb | HG | − | HG | − | |
Mar | HG | − | HG | − | |
Apr | HG | − | HG | − | |
May | HG | − | HG | − | |
Jun | CP | 2010 | HG | − | |
Jul | CP | 1997 | HG | − | |
Aug | CP | 2012 | HG | − | |
Sep | CP | 2004 | HG | − | |
Oct | HG | − | HG | − | |
Nov | HG | − | U | − | |
Dec | HG | − | HG | − | |
Annual | HG | HG | − | ||
Cape Coast, Elmina, Moree, Saltpond | Jan | HG | − | HG | − |
Feb | HG | − | CP | 2002 | |
Mar | CP | 1996 | HG | − | |
Apr | HG | − | HG | − | |
May | CP | 1997 | HG | − | |
Jun | HG | − | HG | − | |
Jul | HG | − | HG | − | |
Aug | HG | − | HG | − | |
Sep | CP | 2002 | HG | − | |
Oct | CP | 1996 | HG | − | |
Nov | CP | 1996 | U | − | |
Dec | HG | − | HG | − | |
Annual | CP | 1997 | HG | − | |
Apam, Bortianor, Winneba | Jan | HG | − | HG | − |
Feb | HG | − | HG | − | |
Mar | HG | − | HG | − | |
Apr | HG | − | HG | − | |
May | HG | − | HG | − | |
Jun | HG | − | HG | − | |
Jul | HG | − | HG | − | |
Aug | HG | − | HG | − | |
Sep | CP | 2002 | HG | − | |
Oct | CP | 1995 | U | − | |
Nov | HG | − | CP | 1999 | |
Dec | HG | − | HG | − | |
Annual | HG | − | HG | − | |
Prampram | Jan | HG | − | HG | − |
Feb | HG | − | HG | − | |
Mar | HG | − | HG | − | |
Apr | HG | − | HG | − | |
May | HG | − | HG | − | |
Jun | HG | − | HG | − | |
Jul | HG | − | HG | − | |
Aug | HG | − | HG | − | |
Sep | CP | 1995 | HG | − | |
Oct | HG | − | HG | − | |
Nov | HG | − | CP | 2002 | |
Dec | HG | − | HG | − | |
Annual | HG | − | HG | − | |
Denu | Jan | HG | − | HG | − |
Feb | HG | − | HG | − | |
Mar | CP | 1997 | HG | − | |
Apr | HG | − | HG | − | |
May | HG | − | HG | − | |
Jun | HG | − | HG | − | |
Jul | CP | 2005 | HG | − | |
Aug | HG | − | HG | − | |
Sep | CP | 2002 | HG | − | |
Oct | U | − | HG | − | |
Nov | CP | 1994 | U | − | |
Dec | HG | − | HG | − | |
Annual | HG | 1997 | HG | − | |
Entire zone | Jan | HG | − | HG | − |
Feb | HG | − | HG | − | |
Mar | HG | − | HG | − | |
Apr | HG | − | HG | − | |
May | HG | − | HG | − | |
Jun | HG | − | HG | − | |
Jul | HG | − | HG | − | |
Aug | HG | − | HG | − | |
Sep | CP | 1995 | HG | − | |
Oct | HG | − | HG | − | |
Nov | HG | − | CP | 2002 | |
Dec | HG | − | HG | − | |
Annual | HG | − | HG | − |
Index | Drought/Wet Events | MK Stat (S) | Var (S) | Kendall’s Tau | p-Value | Sen’s Slope |
---|---|---|---|---|---|---|
All months | ||||||
SPEI-3 (SPEI-12) | Moderate drought | 13 (19) | 186.333 (87.667) | 0.229 (0.510) | 0.341 (0.042 *) | 0.000 (0.000) |
Severe drought | 7 (21) | 146.333 (198.333) | 0.144 (0.349) | 0.563 (0.136) | 0.000 (0.017) | |
Extreme drought | 7 (4) | 15.667 (114.000) | 0.738 (0.099) | 0.077 (0.708) | 0.065 (0.000) | |
Moderate wet | 12 (18) | 164.667 (164.667) | 0.228 (0.342) | 0.350 (0.161) | 0.000 (0.000) | |
Severe wet | 24 (13) | 193.333 (139.667) | 0.410 (0.281) | 0.084 (0.271) | 0.013 (0.000) | |
Extreme wet | −9 (−4) | 151.667 (145.333) | −0.181 (−0.083) | 0.465 (0.740) | 0.000 (0.000) | |
Wet season | ||||||
SPEI-3 (SPEI-12) | Moderate drought | 5 (?) | 7.667 (?) | 0.913 (?) | 0.071 (?) | 0.083 (?) |
Severe drought | 5 (5) | 7.667 (7.667) | 0.913 (0.913) | 0.071 (0.071) | 0.100 (0.100) | |
Extreme drought | NA (?) | NA (?) | NA (?) | NA (?) | NA (?) | |
Moderate wet | 4 (1) | 8.667 (5.000) | 0.667 (0.236) | 0.174 (0.655) | 0.083 (0.000) | |
Severe wet | 3 (0) | 7.667 (2.667) | 0.548 (0) | 0.279 (1.000) | 0.067 (0.000) | |
Extreme wet | 3 (3) | 7.667 (7.667) | 0.548 (0.548) | 0.279 (0.279) | 0.042 (0.067) | |
Minor season | ||||||
Moderate drought | 2 (?) | 2.667 (?) | 0.816 (?) | 0.221 (?) | 0.050 (?) | |
SPEI-3 (SPEI-12) | Severe drought | NA (−2) | NA (2.667) | NA (−0.816) | NA (0.221) | NA (−0.050) |
Extreme drought | 1 (0) | 1.000 (2.667) | 1 (0) | 0.317 (1.000) | 0.050 (0.000) | |
Moderate wet | 0 (2) | 2.667 (2.667) | 0 (0.816) | 1.000 (0.221) | 0.000 (0.050) | |
Severe wet | 1 (?) | 3.667 (?) | 0.333 (?) | 0.602 (?) | 0.050 (?) | |
Extreme wet | 0 (0) | 2.667 (2.667) | 0 (0) | 1.000 (1.000) | 0.000 (0.000) | |
SPEI-3 (SPEI-12) | Dry season | |||||
Moderate drought | 1 (5) | 13.000 (13.000) | 0.120 (0.598) | 0.782 (0.166) | 0.000 (0.012) | |
Severe drought | 0 (7) | 8.000 (13.000) | 0 (0.837) | 1.000 (0.052) | 0.000 (0.021) | |
Extreme drought | 4 (4) | 8.667 (14.667) | 0.667 (0.447) | 0.174 (0.296) | 0.066 (0.011) | |
Moderate wet | 4 (4) | 8.000 (14.667) | 0.632 (0.447) | 0.157 (0.296) | 0.000 (0.010) | |
Severe wet | 8 (5) | 14.667 (13.000) | 0.894 (0.598) | 0.037 * (0.166) | 0.012 (0.010) | |
Extreme wet | −1 (−1) | 5.000 (5.000) | −0.236 (−0.236) | 0.655 (0.655) | 0.000 (0.000) |
Index | Drought/Wetness Event | MK Stat (S) | Var (S) | Kendall’s Tau | p-Value | Sen’s Slope |
---|---|---|---|---|---|---|
SPEI-3 (SPEI-12) | Moderate drought | 13 (1) | 2347.667 (303.667) | 0.039 (0.012) | 0.788 (0.954) | 0.000 (0.000) |
Severe drought | 16 (13) | 366.667 (194.333) | 0.175 (0.220) | 0.403 (0.351) | 0.000 (0.002) | |
Extreme drought | 5 (8) | 23.667 (14.667) | 0.389 (0.894) | 0.304 (0.037 *) | 0.018 (0.017) | |
Moderate wetness | −16 (−3) | 734.667 (111.667) | −0.108 (−0.076) | 0.555 (0.776) | 0.000 (0.000) | |
Severe wetness | 16 (7) | 150.667 (23.667) | 0.325 (0.545) | 0.192 (0.150) | 0.007 (0.003) | |
Extreme wetness | −−1 (1) | 7.667 (1.000) | −0.183 (1) | 0.718 (0.317) | −0.004 (0.200) | |
SPEI-3(SPEI-12) | All drought | 91 (38) | 33,993.667 (568.000) | 0.206 (0.297) | 0.118 (0.111) | 0.008 (0.011) |
All wetness | 32 (23) | 1398.000 (204.333) | 0.133 (0.369) | 0.392 (0.108) | 0.005 (0.012) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ankrah, J.; Monteiro, A.; Madureira, H. Spatiotemporal Characteristics of Meteorological Drought and Wetness Events across the Coastal Savannah Agroecological Zone of Ghana. Water 2023, 15, 211. https://doi.org/10.3390/w15010211
Ankrah J, Monteiro A, Madureira H. Spatiotemporal Characteristics of Meteorological Drought and Wetness Events across the Coastal Savannah Agroecological Zone of Ghana. Water. 2023; 15(1):211. https://doi.org/10.3390/w15010211
Chicago/Turabian StyleAnkrah, Johnson, Ana Monteiro, and Helena Madureira. 2023. "Spatiotemporal Characteristics of Meteorological Drought and Wetness Events across the Coastal Savannah Agroecological Zone of Ghana" Water 15, no. 1: 211. https://doi.org/10.3390/w15010211