Wastewater Management: From Ancient Greece to Modern Times and Future
Abstract
:1. Prolegomena
The history is studied, not to learn what happened at some point in the past, but to understand the present and to trace the future.Andreas N. Angelakis
2. Wastewater Management until the Middle Ages (ca. 3200 BC–1400 AD)
2.1. Prehistoric Times (ca. 3200–1100 BC)
2.2. Historical Times (ca. 1100 BC–476 AD)
2.2.1. Classical and Hellenistic Periods
2.2.2. Roman Period
2.3. Medieval Times (ca. 476–1400 AD)
3. Wastewater Management in Early and Mid-Modern Times (ca. 1400–1900 AD)
4. Wastewater Management in Contemporary Times (1900 AD–Present)
Centralization vs. Decentralization: An Ongoing Debate
5. Evolution of Wastewater Treatment Technologies
5.1. Earth/Soil Systems
5.2. Natural Wastewater Treatment Systems (NWTSs)
5.3. Engineered Biological Systems
5.3.1. Anaerobic Treatment Technology
5.3.2. Recent Advances in Water and Wastewater Treatment Technology
5.3.3. Considerations on Centralized vs. Decentralized Approaches in Present Times
6. Sustainability of Water and Wastewater Management
7. Epilogue (Conclusions)
Όμοια γάρ ως επί το πολύ τα μέλλοντα τοις γεγονόσιν, i.e., The events to come extensively resemble to those of the pastUNESCO’s ‘Aristotle Anniversary Year’ 2016.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- UN. The 17 Goals. Department of Economic and Social Affairs. Sustainable Development. 2022. Available online: https://sdgs.un.org/goals (accessed on 18 July 2022).
- IMCC. Goal 6: Clean Water and Sanitation. Available online: http://www.hk-imcc.com/index.php?case=archive&act=show&aid=523 (accessed on 18 July 2022).
- Lofrano, G.; Brown, J. Wastewater management through the ages: A history of mankind. Sci. Tot. Environ. 2010, 408, 5254–5264. [Google Scholar] [CrossRef] [PubMed]
- Angelakis, A.N.; Spyridakis, S.V. The status of water resources in Minoan times: A preliminary study. In Diachronic Climatic Impacts on Water Resources; Springer: Berlin/Heidelberg, Germany, 1996; pp. 161–191. [Google Scholar]
- Golfinopoulos, A. The Diachronic Management of Waste in Antiquity in Greece. Bachelor’s Thesis, Hellenic Open University, Patra, Greece, 15 March 2016. [Google Scholar]
- Karman, D. The ‘Cloaka Maxima’ and the monumental manipulation of water in archaic Rome. Water Rome 2007, 4, 1–15. [Google Scholar]
- BBC. Joseph Bazalgette: How the Man Who Transformed London Paved the Way for Your Loo. 2022. Available online: https://www.historyextra.com/period/victorian/joseph-bazalgette-who-london-sewers-work-toilets/ (accessed on 4 April 2022).
- US EPA. Learn about Small Wastewater Systems; United States Environmental Protection Agency: Washington, DC, USA, 2020.
- US EPA. Decentralized Wastewater Systems: A Program Strategy; United States Environmental Protection Agency: Washington, DC, USA, 2017.
- Capodaglio, A.G. Fit-for-purpose urban wastewater reuse: Analysis of issues and available technologies for sustainable multiple barrier approaches. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1619–1666. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Integrated, decentralized wastewater management for resource recovery in rural and peri-urban areas. Resources 2017, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Maurer, M.; Rothenberger, D.; Larsen, T.A. Decentralised wastewater treatment technologies from a national perspective: At what cost are they competitive? Water Supply 2005, 5, 145–154. [Google Scholar] [CrossRef]
- Risch, E.; Gutierrez, O.; Roux, P.; Boutin, C.; Corominas, L. Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems. Water Res. 2015, 77, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Jung, Y.T.; Narayanan, N.C.; Cheng, Y.L. Cost comparison of centralized and decentralized wastewater management systems using optimization model. J. Environ. Manag. 2018, 213, 90–97. [Google Scholar] [CrossRef]
- Evans, A. The Palace of Minos at Knossos: A Comparative Account of the Successive Stages of the Early Cretan Civilization as Illustrated by the Discoveries; Macmillan and Co.: London, UK, 1921; Volume I. [Google Scholar]
- MacDonald, C.F.; Driessen, J.M. The Storm Drains of the East Wing at Knossos. Available online: https://www.academia.edu/653852/The_Drainage_system_in_the_East_Wing_at_Knossos (accessed on 13 December 2022).
- MacDonald, C.F.; Driessen, J.M. The Drainage System of the Domestic Quarter in the Palace at Knossos; British School of Athens: Athens, Greece, 1988; Volume 83, pp. 235–358. [Google Scholar]
- Antoniou, G.; Lyberatos, G.; Kanetaki, E.; Kaiafa, A.; Voudouris, K.; Angelakis, A.; Angelakis, A.; Rose, J. History of urban wastewater sanitation technologies in Hellas. In Evolution of Sanitation and Wastewater Management through the Centuries; IWA Publishing: London, UK, 2014; pp. 101–148. [Google Scholar]
- Graham, J.W. The Palaces of Crete. Revised edn; Princeton University Press: Princeton, NJ, USA, 1987. [Google Scholar]
- Angelakis, A. Hydro-technologies in the Minoan Era. Water Sci. Technol. Water Supply 2017, 17, 1106–1120. [Google Scholar] [CrossRef]
- Mosso, A. Escursioni nel Mediterraneo e gli Scavi di Creta; Treves: Milano, Italy, 1907. [Google Scholar]
- Gray, H.F. Sewerage in Ancient and Medieval Times. Sewage Works J. 1940, 12, 939–946. [Google Scholar]
- Angelakis, A.; Koutsoyiannis, D.; Tchobanoglous, G. Urban wastewater and stormwater technologies in ancient Greece. Water Res. 2005, 39, 210–220. [Google Scholar] [CrossRef]
- Crouch, D.P. Avoiding Water Shortages Some Ancient Greek Solutions. In Diachronic Climatic Impacts on Water Resources; Springer: Berlin/Heidelberg, Germany, 1996; pp. 129–160. [Google Scholar]
- Mainardis, M.; Cecconet, D.; Moretti, A.; Callegari, A.; Goi, D.; Freguia, S.; Capodaglio, A.G. Wastewater fertigation in agriculture: Issues and opportunities for improved water management and circular economy. Environ. Pollut. 2021, 296, 118755. [Google Scholar] [CrossRef] [PubMed]
- Brea, L.B. Poliochni: Città preistorica nell’ isola di Lemnos. Am. J. Archaeol. 1966, 70, 291. [Google Scholar]
- Palyvou, K. Akrotiri Thera: An architecture of affluence 3500 years old; INSTAP Philadelphia: Philadelphia, PA, USA, 2005; pp. 41–42. [Google Scholar]
- Palyvou, Κ. Sewage and sanitary installations in the Aegean during the 2nd Millennium BC. Ancient Greek Technology. In Proceedings of the 1st National Conference of Ancient Technology, Thessaloniki, Greece, 24–27 November 1997; pp. 381–389. (In Greek). [Google Scholar]
- Koutsoyiannis, D.; Angelakis, A. Hydrologic and Hydraulic Sciences and Technologies in Ancient Greek Times. In Encyclopedia of Water Science; CRC Press: Boca Raton, FL, USA, 2003; pp. 415–418. [Google Scholar]
- Galanaki, M.E. Water Borne Diseases and Hippocrates: The Treatise On Airs, Waters, and Places. In Evolution of Sanitation and Wastewater Management through the Centuries; Angelakis, A.N., Rose, J.B., Eds.; IWA Publishing: London, UK, 2014; Chapter 21; pp. 419–428. [Google Scholar]
- Angelakis, A.N. Management of Municipal Wastewater; Hellenic Union of Municipal Water Supply and Sewage Enterprises: Larissa, Greece, 2004. [Google Scholar]
- BBC. Who Invented the Flush Toilet? 2022. Available online: https://www.history.com/news/who-invented-the-flush-toilet (accessed on 24 July 2022).
- Thompson, H.A.; Wycherley, R.E. The Agora of Athens XIV. ASCSA Princeton USA: Princeton, NJ, USA, 1972. [Google Scholar]
- Robinson, D. Excavations at Olynthus, Part VIII, The Hellenic House, a Study of the Houses Found at Olynthus with a Detailed Account of Those Excavated in 1931–1934; Oxford University Press: London, UK, 1938. [Google Scholar]
- De Feo, G.; Antoniou, G.P.; Mays, L.W.; Dragoni, W.; Fardin, H.F.; El-Gohary, F.; Laureano, P.; Kanetaki, E.I.; Zheng, X.Y.; Angelakis, A.N. Historical development of wastewater management. In Handbook of Engineering Hydrology; CRC Press: Boca Raton, FL, USA, 2014; pp. 179–234. [Google Scholar]
- Boguniewicz-Zabłocka, J.; Capodaglio, A.G. Analysis of alternatives for sustainable stormwater management in small developments of Polish urban catchments. Sustainability 2020, 12, 10189. [Google Scholar] [CrossRef]
- Kollyropoulos, K.; Antoniou, G.P.; Kalavrouziotis, I.K.; Krasilnikoff, J.A.; Koutsoyiannis, D.; Angelakis, A.N. Hydraulic Characteristics of the Drainage Systems of Ancient Hellenic Theatres: Case Study of the Theatre of Dionysus and Its Implications. J. Irrig. Drain. Eng. 2015, 141, 04015018. [Google Scholar] [CrossRef] [Green Version]
- Mays, L.; Antoniou, G.P.; Angelakis, A.N. History of Water Cisterns: Legacies and Lessons. Water 2013, 5, 1916–1940. [Google Scholar] [CrossRef] [Green Version]
- Kaiafa, A. Water and Sanitation systems in the Hellenistic and Roman periods in Macedonia. Doctoral Dissertation, School of Architecture, Aristotle University of Thessaloniki, Thessaloniki, Greece, 2008. (In Greek). [Google Scholar]
- Pingiatoglou, S. The sanctuary of Demeter in Dion. The archaeological work in Macedonia and Thrace, 17, 425–434 (in Greek) 2003.
- Grandjean, Y. L’ eau dans la ville de Thassos. L’ eau, la santé et la maladie dans le monde grec, Bulletin de Correspondance Hellénique Supplément. Rev. Des Études Grecques 1994, 28, 283–296. (In French) [Google Scholar]
- Yannopoulos, S.; Yapijakis, C.; Kaiafa-Saropoulou, A.; Antoniou, G.; Angelakis, A.N. History of sanitation and hygiene technologies in the Hellenic world. J. Water Sanit. Hyg. Dev. 2017, 7, 163–180. [Google Scholar] [CrossRef]
- Orlandos, A. Monasterial Architecture (Μοναστηριακή Aρχιτεκτονική), 1st ed.; Estia: Athens, Greece, 1927. [Google Scholar]
- Capodaglio, A.G. Taking the water out of “wastewater”: An ineluctable oxymoron for urban water cycle sustainability. Water Environ. Res. 2020, 92, 2030–2040. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Asano, T.; Bahri, A.; Jimenez, B.E.; Tchobanoglous, G. Water reuse: From ancient to modern times and the future. Front. Environ. Sci. 2018, 6, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Tzanakakis, V.; Koo-Oshima, S.; Haddad, M.; Apostolidis, N.; Angelakis, A.; Angelakis, A.; Rose, J. The history of land application and hydroponic systems for wastewater treatment and reuse. In Evolution of Sanitation and Wastewater Technologies through the Centuries; IWA Publishing: London, UK, 2014; p. 457. [Google Scholar]
- Jimenez, B.; Asano, T. Water Reuse: International Survey of Current Practice, Issues and Needs, Scientific and Technical Report No. 20; IWA Publishing: London, UK, 2008. [Google Scholar]
- Lazarova, V.; Asano, T.; Bahri, A.; Anderson, J. Milestones in Water Reuse—The Best Success Stories; IWA Publishing: London, UK, 2013; p. 408. ISBN 9781780400075. [Google Scholar]
- Metcalf, I.; Asano, T.; Burton, F.L.; Leverenz, H.; Tsuchihashi, R.; Tchobanoglous, G. Water Reuse; McGraw-Hill Professional Publishing: New York, NY, USA, 2007. [Google Scholar]
- Reed, S.C.; Crites, R.W. Handbook of Land Treatment Systems for Industrial and Municipal Wastes; Noyes Pubns: Norwich, NY, USA, 1984. [Google Scholar]
- Kaur, G.; Wong, J.W.C.; Kumar, R.; Patria, R.D.; Bhardwaj, A.; Uisan, K.; Johnravindar, D. Value Addition of Anaerobic Digestate From Biowaste: Thinking Beyond Agriculture. Curr. Sust. Renewa Energy Rep. 2020, 7, 48–55. [Google Scholar] [CrossRef]
- Hoang, S.A.; Bolan, N.; Madhubashani, A.M.P.; Vithanage, M.; Perera, V.; Wijesekara, H.; Wang, H.; Srivastava, P.; Kirkham, M.B.; Mickan, B.S.; et al. Treatment processes to eliminate potential environmental hazards and restore agronomic value of sewage sludge: A review. Environ. Pollut. 2022, 293, 118564. [Google Scholar] [CrossRef]
- The Guardian. Nearly 30,000 Tonnes of Sewage Sludge Containing Human Waste to Enter UK. 2020. Available online: https://www.theguardian.com/environment/2020/sep/02/sewage-sludge-containing-human-waste-uk (accessed on 25 July 2022).
- Yannopoulos, S.I.; Lyberatos, G.; Theodossiou, N.; Tamburrino, A.; Angelakis, A. Evolution of water lifting devices (Pumps) over the centuries worldwide. Water 2015, 7, 5031–5060. [Google Scholar] [CrossRef] [Green Version]
- Capodaglio, A.G.; Callegari, A.; Molognoni, D. Online monitoring of priority and dangerous pollutants in natural and urban waters: A state-of-the-art review. Manag. Environ. Qual. 2016, 27, 507–536. [Google Scholar] [CrossRef]
- Daneshgar, S.; Buttafava, A.; Callegari, A.; Capodaglio, A.G. Economic and energetic assessment of different phosphorus recovery options from aerobic sludge. J. Clean. Prod. 2019, 223, 729–738. [Google Scholar] [CrossRef]
- Callegari, A.; Capodaglio, A.G. Properties and beneficial uses of (bio) chars, with special attention to products from sewage sludge pyrolysis. Resources 2018, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Capodaglio, A.G.; Olsson, G. Energy Issues in Sustainable Urban Wastewater Management: Use, Demand Reduction and Recovery in the Urban Water Cycle. Sustainability 2020, 12, 266. [Google Scholar] [CrossRef] [Green Version]
- Daneshgar, S.; Callegari, A.; Capodaglio, A.G.; Vaccari, D. The potential phosphorus crisis: Resource conservation and possible escape technologies: A review. Resources 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- De Toffol, S.; Engelhard, C.; Rauch, W. Combined sewer system versus separate system–a comparison of ecological and economical performance indicators. Water Sci. Technol. 2007, 55, 255–264. [Google Scholar] [CrossRef]
- Larsen, T.A.; Gruendl, H.; Binz, C. The potential contribution of urine source separation to the SDG agenda—A review of the progress so far and future development options. Environ. Sci. Water Res. Technol. 2021, 7, 1161–1176. [Google Scholar] [CrossRef]
- Ren, J.; Hao, D.; Jiang, J.; Phuntsho, S.; Freguia, S.; Ni, B.J.; Dai, P.; Guan, J.; Shon, H.K. Fertiliser recovery from source-separated urine via membrane bioreactor and heat localized solar evaporation. Water Res. 2021, 207, 117810. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Critical perspective on advanced treatment processes for water and wastewater: AOPs, ARPs, and AORPs. Appl. Sci. 2020, 10, 4549. [Google Scholar] [CrossRef]
- Trojanowicz, M.; Bojanowska-Czajka, A.; Capodaglio, A.G. Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and waste water? A review. Environ. Sci. Pollut. Res. 2017, 24, 20187–20208. [Google Scholar] [CrossRef] [PubMed]
- Paranychianakis, N.V.; Kotselidou, O.; Vardakou, E.; Angelakis, A.N. Greek Regulations on Wastewater Reclamation and Reuse; Hellenic Union of Municipal Enterprises for Water Supply and Sewage: Larissa, Greece, 2009; p. 160. (In Greek) [Google Scholar]
- Renou, Y. The Governance of Water Services in Developing Countries: An Analysis in Terms of Action Stratification. J. Econ. Issues 2010, 44, 113–138. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Could eb irradiation be the simplest solution for removing emerging contaminants from water and wastewater? Water Pract. Technol. 2018, 13, 172–183. [Google Scholar] [CrossRef]
- Jackson, H. Global Needs and Developments in Urban Sanitation. Low-Cost Sewerage; John Wiley & Sons: Chichester, UK, 1996; pp. 77–90. [Google Scholar]
- Capodaglio, A.; Callegari, A.; Cecconet, D.; Molognoni, D. Sustainability of decentralized wastewater treatment technologies. Water Pract. Technol. 2017, 12, 463–477. [Google Scholar] [CrossRef] [Green Version]
- Tokich, S. Wastewater Management Strategy: Centralized v. Decentralized Technologies for Small Communities; 783 The Center for Clean Technology and Environmental Policy, University of Twente: Enschede, The Netherlands, 2006. [Google Scholar]
- Capodaglio, A.G.; Bolognesi, S.; Cecconet, D. Sustainable, decentralized sanitation and reuse with hybrid nature-based systems. Water 2021, 13, 1583. [Google Scholar] [CrossRef]
- Lakatos, G.; Kiss, M.K.; Kiss, M.; Juhász, P. Application of constructed wetlands for wastewater treatment in Hungary. Water Sci. Technol. 1997, 35, 331–336. [Google Scholar] [CrossRef]
- Arceivala, S.J.; Asolekar, S.R. Wastewater Treatment for Pollution Control and Reuse; Tata McGraw-Hill Education: New York, NY, USA, 2006. [Google Scholar]
- Qadir, M.; Wichelns, D.; Raschid-Sally, L.; McCornick, P.G.; Drechsel, P.; Bahri, A.; Minhas, P.S. The challenges of wastewater irrigation in developing countries. Agric. Water Manag. 2010, 97, 561–568. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.K.R. Natural Treatment Systems in UWM. 2006. Available online: http://www.switchurbanwater.eu/outputs/pdfs/W32_53_GEN_PAP_Natural_Treatment_Systems_in_UWM.pdf (accessed on 19 March 2020).
- De, I.; Hasan, R.; Iqbal, M. Natural Treatment Systems and Importance of Social Cost Benefit Analysis in Developing Countries: A Critical Review. Sustainability 2022, 14, 3913. [Google Scholar] [CrossRef]
- Crites, R.W.; Middlebrooks, E.J.; Bastian, R.K. Natural Wastewater Treatment Systems; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Boguniewicz-Zablocka, J.; Klosok-Bazan, I.; Capodaglio, A.G.; Ploskonka, J. Planning the optimal solution for wastewater management in rural areas-case study. In Proceedings of the MATEC Web of Conferences, Phuket, Thailand, 4–7 July 2018; p. 01035. [Google Scholar]
- Sharma, S.K.; Amy, G. Natural Treatment Systems. In Water Quality and Treatment: Handbook of Community Water Supply, 6th ed.; Edzwald, J., Ed.; American Water Works Association: Denver, CO, USA; McGraw Hill Inc.: New York, NY, USA, 2010; Chapter 15. [Google Scholar]
- Gikas, P.; Tchobanoglous, G. The role of satellite and decentralized strategies in water resources management. J. Environ. Manag. 2009, 90, 144–152. [Google Scholar] [CrossRef]
- Konig, M.; Jacob, J.; Kaddoura, T.; Farid, A.M. The role of resource efficient decentralized wastewater treatment in smart cities. In Proceedings of the IEEE First International Smart Cities Conference (ISC2), Guadalajara, Mexico, 25–28 October 2015. [Google Scholar]
- Kalbar, P.P.; Karmakar, S.; Asolekar, S.S. Selection of an appropriate wastewater treatment technology: A scenario-based multiple-attribute decision-making approach. J. Environ. Manag. 2012, 113, 158–169. [Google Scholar] [CrossRef]
- Rousseau, D.P.L.; Lesage, E. Constructed wetlands for polishing secondary wastewater. In Water Reuse System Management Manual AQUAREC; Bixio, D., Wintgens, T., Eds.; Office for Official Publications of the European Communities: Luxemburg, 2006; Chapter 16; pp. 397–422. ISBN 92-79-01934-1. [Google Scholar]
- Hammer, D.A. Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Kaseva, M.E. Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater—A tropical case study. Water Res. 2004, 38, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Mbuligwe, S.E. Comparative effectiveness of engineered wetland systems in the treatment of anaerobically pre-treated domestic wastewater. Ecol. Eng. 2004, 23, 269–284. [Google Scholar] [CrossRef]
- Masi, F.; Caffaz, S.; Ghrabi, A. Multi-stage constructed wetland systems for municipal wastewater treatment. Water Sci. Technol. 2013, 67, 1590–1598. [Google Scholar] [CrossRef] [PubMed]
- Chase, E.S. Trickling Filters: Past, Present, and Future. Sewage Work. J. 1945, 17, 929–939. [Google Scholar]
- Markantonatos, G. Treatment and disposal of wastewater. In Sewage, Industrial Waste, Animal Waste, 2nd ed.; Lecture Notes; NTUA: Athens, Greece, 1990. (In Greek) [Google Scholar]
- Harremoes, P.; Capodaglio, A.G.; Hellstrom, B.G.; Henze, M.; Jensen, K.N.; Lynggaard-Jensen, A.; Otterpohl, R.; Soeberg, H. Wastewater treatment plants under transient loading- Performance, modelling and control. Water Sci. Technol. 1993, 27, 71–115. [Google Scholar] [CrossRef] [Green Version]
- Hassard, F.; Biddle, J.; Cartmell, E.; Jefferson, B.; Tyrrel, S.; Stephenson, T. Rotating biological contactors for wastewater treatment—A review. Proc. Safety Environ. Protect. 2015, 94, 285–306. [Google Scholar] [CrossRef] [Green Version]
- Di Biase, A.; Kowalski, M.S.; Devlin, T.R.; Oleszkiewicz, J.A. Moving bed biofilm reactor technology in municipal wastewater treatment: A review. J. Environ. Manag. 2019, 247, 849–866. [Google Scholar] [CrossRef]
- Bahgat, M.; Dewedar, A.; Zayed, A. Sand-filters used for wastewater treatment: Buildup and distribution of microorganisms. Water Res. 1999, 33, 1949–1955. [Google Scholar] [CrossRef]
- ICE. London’s Water Supply and the Introduction of Sand Filtration. Institution of Civil Engineers, London, UK. Available online: https://www.ice.org.uk/what-is-civil-engineering/what-do-civil-engineers-do/london-s-water-supply-and-the-introduction-of-sand-filtration/ (accessed on 12 November 2022).
- Jeppsen, B.K. Pumice Products and LEED Certification. 2014. Available online: https://www.slideshare.net/HessPumice/leed-certification-and-pumice-products (accessed on 23 July 2022).
- Koutoulakis, D.; Kosmadaki, M.; Dialynas, E. Comparison of Textile-Based Packed Bed Filters with Other Innovative Technologies. WWPR. 2012. Available online: http://www.dialynas.com/newsite/wp-content/uploads/2016/09/Dialynas-AX-WWPR2012.pdf (accessed on 23 July 2022).
- Angelakis, A.N.; Valipour, M.; Choo, K.-H.; Ahmed, A.T.; Baba, A.; Kumar, R.; Toor, G.S.; Wang, Z. Desalination: From Ancient to Present and Future. Water 2021, 13, 2222. [Google Scholar] [CrossRef]
- Fane, A.G.; Fane, S.A. The role of membrane technology in sustainable centralised wastewater systems. Water Sci. Technol. 2005, 51, 317–325. [Google Scholar] [CrossRef]
- Cecconet, D.; Callegari, A.; Hlavínek, P.; Capodaglio, A.G. Membrane bioreactors for sustainable, fit-for-purpose greywater treatment: A critical review. Clean Technol. Environ. Pol. 2019, 21, 745–762. [Google Scholar] [CrossRef]
- Obotey Ezugbe, E.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Le-Clech, P.; Chen, V.; Fane, T.A.G. Fouling in membrane bioreactors used in wastewater treatment. J. Membr. Sci. 2006, 284, 17–53. [Google Scholar] [CrossRef]
- Blstakova, A.; Bodík, I.; Dancova, L.; Jakubcova, Z. Domestic wastewater treatment with membrane filtration—Two years experience. Desalination 2009, 240, 160–169. [Google Scholar] [CrossRef]
- Chong, M.N.; Ho, A.N.M.; Gardner, T.; Sharma, A.K.; Hood, B. Assessing decentralised wastewater treatment technologies: Correlating technology selection to system robustness, energy consumption and GHG emission. J. Water Clim. Change 2013, 4, 338–347. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Domestic wastewater treatment with a decentralized, simple technology biomass concentrator reactor. J. Water Sanit. Hyg. Devel. 2016, 6, 507–510. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Callegari, A. Onsite management of tanker ships’ rinse water by means of a compact bioreactor. Water Pract. Technol. 2015, 10, 681–687. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Suidan, M.; Venosa, A.D.; Callegari, A. Efficient degradation of MtBE and other gasoline-originated compounds by means of a biological reactor of novel conception: Two case studies in Italy and the USA. Water Sci. Technol. 2010, 61, 807–812. [Google Scholar] [CrossRef]
- Bani-Melhem, K.; Elektorowicz, M. Development of a novel submerged membrane electro-bioreactor (SMEBR): Performance for fouling reduction. Environ. Sci. Technol. 2010, 44, 3298–3304. [Google Scholar] [CrossRef]
- Cecconet, D.; Callegari, A.; Capodaglio, A.G. Long-term operation of a novel electrically-enhanced biomass concentrator reactor for wastewater treatment. Water Sci. Technol. 2018, 77, 2036–2044. [Google Scholar] [CrossRef]
- Zeeman, G.; Kujawa, K.; De Mes, T.; Hernandez, L.; De Graaff, M.; Abu-Ghunmi, L.; Mels, A.; Meulman, B.; Temmink, H.; Buisman, C. Anaerobic treatment as a core technology for energy, nutrients and water recovery from source-separated domestic waste (water). Water Sci. Technol. 2008, 57, 1207–1212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cecconet, D.; Callegari, A.; Capodaglio, A.G. UASB Performance and Perspectives in Urban Wastewater Treatment at Sub-Mesophilic Operating Temperature. Water 2022, 14, 115. [Google Scholar] [CrossRef]
- Cecconet, D.; Mainardis, M.; Callegari, A.; Capodaglio, A.G. Psychrophilic treatment of municipal wastewater with a combined UASB/ASD system, and perspectives for improving urban WWTP sustainability. Chemosphere 2022, 297, 134228. [Google Scholar] [CrossRef] [PubMed]
- Alagha, O.; Allazem, A.; Bukhari, A.A.; Anil, I.; Mu’azu, N.D. Suitability of SBR for wastewater treatment and reuse: Pilot-Scale reactor operated in different anoxic conditions. Int. J. Environ. Res. Public Health 2020, 17, 1617. [Google Scholar] [CrossRef] [PubMed]
- De Bruin, L.; De Kreuk, M.; Van Der Roest, H.; Uijterlinde, C.; van Loosdrecht, M. Aerobic granular sludge technology: An alternative to activated sludge? Water Sci. Technol. 2004, 49, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Ahmad, M.; Giesen, A. NEREDA®: An emerging technology for sewage treatment. Water Pract. Technol. 2015, 10, 799–805. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Hlavínek, P.; Raboni, M. Advances in wastewater nitrogen removal by biological processes: State of the art review. Revista Amb. Agua 2016, 11, 250–267. [Google Scholar] [CrossRef] [Green Version]
- Capodaglio, A.G. High-energy oxidation process: An efficient alternative for wastewater organic contaminants removal. Clean Technol. Environ. Pol. 2017, 19, 1995–2006. [Google Scholar] [CrossRef]
- Shi, H.; Cheng, X.; Wu, Q.; Mu, R.; Ma, Y. Assessment and removal of emerging water contaminants. J. Environ. Anal. Toxicol. 2012, S2, 003. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Shi, H.; Adams, C.D.; Timmons, T.; Ma, Y. Oxidative removal of selected endocrine-disruptors and pharmaceuticals in drinking water treatment systems, and identification of degradation products of triclosan. Sci. Total. Environ. 2012, 439, 18–25. [Google Scholar] [CrossRef]
- Capodaglio, A.G.; Bojanowska-Czajka, A.; Trojanowicz, M. Comparison of different advanced degradation processes for the removal of the pharmaceutical compounds diclofenac and carbamazepine from liquid solutions. Environ. Sci. Pollut. Res. 2018, 25, 27704–27723. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.E. The History and Future Directions of Biosolids Disinfection. Proc. Water Environ. Feder. 2009, 1, 31–48. [Google Scholar] [CrossRef]
- Degleris, P. The Study Emediteka «Constructions and Environmental Protection». 2008. Available online: https://degleris.gr/arthra-meletes-eishghseis/31-emediteka-08 (accessed on 26 September 2008). (In Greek).
- Pyke, C.; Warren, M.P.; Johnson, T.; LaGro, J.; Scharfenberg, J.; Groth, P.; Freed, R.; Schroeer, W.; Main, E. Assessment of low impact development for managing stormwater with changing precipitation due to climate change. Landsc. Urb. Plann. 2011, 103, 166–173. [Google Scholar] [CrossRef]
- Peng, Y.; Reilly, K. Using Nature to Reshape Cities and Live with Water: An Overview of the Chinese Sponge City Programme and Its Implementation in Wuhan. Report for the EU Project GROWGREEN—Green Cities for Climate and Water Resilience, Sustainable Economic Growth, Healthy Citizens and Environments (Grant Agreement No 730283). 2021. Available online: https://growgreenproject.eu/wp-content/uploads/2021/01/Sponge-City-Programme-in-Wuhan-China.pdf (accessed on 25 July 2022).
- Timashev, S.A. Black-Swan Type Catastrophes and Antifragility/Supra-resilience of Urban Socio-Technical Infrastructures. IOP Conf. Ser. Mater. Sci. Eng. 2020, 972, 012001. [Google Scholar] [CrossRef]
- Estévez, S.; Feijoo, G.; Moreira, M.T. Environmental synergies in decentralized wastewater treatment at a hotel resort. J. Environ. Manag. 2022, 317, 115392. [Google Scholar] [CrossRef]
- Cecconet, D.; Bolognesi, S.; Piacentini, L.; Callegari, A.; Capodaglio, A.G. Bioelectrochemical greywater treatment for non-potable reuse and energy recovery. Water 2021, 13, 295. [Google Scholar] [CrossRef]
- Mohr, M.; Beckett, M.; Schließmann, U.; Erlbeck, R.; Trosse, R. Vacuum sewerage systems—A solution for fast growing cities in developing countries? Water Pract. Technol. 2018, 13, 157–163. [Google Scholar] [CrossRef]
- Rose, J.; Angelakis, A. The Evolution of Sanitation and Wastewater Management Throughout the Centuries: Past, Present, and Future. In Evolution of Sanitation and Wastewater Management through the Centuries; Angelakis, A., Rose, J., Eds.; IWA Publishing: London, UK, 2014; Chapter 27; pp. 507–528. [Google Scholar]
Location | Date Started | Type of Land-Based System | Area (1000 ha) | Flow (m3/d) |
---|---|---|---|---|
Europe | ||||
Bunzlau (modern Boleslawiec), Poland | 1531 | Sewage farm | ||
Edinburgh, UK | 1650 | Sewage farm | ||
Croydon-Beddington, UK | 1860 | Sewage farm | 0.25 | 17.4 |
Paris, France | 1869 | Irrigation | 0.64 | 30.3 |
Leamington, UK | 1870 | Sewage farm | 0.16 | 3.4 |
Berlin, Germany | 1874 | Sewage farm | 2.7 | N/A |
Augusta, ME, USA | 1876 | Irrigation | ||
Milan, Italy | 1881 | Irrigation | 3.5 | |
Wroclaw, Poland | 1882 | Sewage farm | 0.80 | 10.6 |
Braunschweig, Germany | 1896 | Sewage farm | 4.4 | 60.0 |
USA | ||||
Calumet City, MI | 1888 | Irrigation | 0.005 | |
South Framingham, MA | 1889 | Irrigation | ||
Woodland, CA | 1889 | Irrigation | 0.07 | 15.5 |
Boulder, CO | 1890 | Irrigation | ||
Fresno, CA | 1891 | Irrigation | 1.60 | 10.6 |
San Antonio, TX | 1895 | Irrigation | 1.60 | 75.7 |
Vineland, NJ | 1901 | Rapid infiltration system | 0.0026 | 3405.9 |
Ely, NV | 1908 | Irrigation | 0.16 | 6.1 |
Lubbock, TX | 1915 | Irrigation | ||
Others | ||||
Tula (Mezquital) Valley a, Mexico | 1896 | Irrigation | 90.00 | |
Melbourne, Australia | 1897 | Irrigation | 4.16 | 189.3 |
Technology | Centralized Systems | Decentralized Systems | ||
---|---|---|---|---|
Pros | Cons | Pros | Cons | |
Earth/Soil | High areal footprint. Hygiene and groundwater contamination issues. | Low infrastructure impact. Suitable for remote, low populated areas. | High areal footprint. Hygiene and groundwater contamination issues. | |
Natural Systems | High areal footprint. Disinfection required. | Low infrastructure and energy impact. Suitable where land cost is not an issue. Easy to operate. Robust and resilient. | Low resources recovery (possible with algal harvesting). High water loss in hot climates. Public acceptance. | |
Biological systems (aerobic) | Very efficient mainstream technology. Low areal footprint. Opportunity of recovery of nutrients and energy from sludge. | Require post-treatment and disinfection. High investment and O&M costs (energy, sludge management). MBBR systems may have more complex operation. Filtration systems may have fouling issues. | Same as centralized, can be operated remotely with automated control. | Same as centralized. Energy issues may be more critical in remote areas. |
Biological membrane systems (aerobic) | Very efficient technology. Very low areal footprint. Robust against flow transients. Opportunity of recovery of nutrients and energy from sludge. Disinfection may not be needed. | Higher investment and O&M costs thanks to nonmembrane systems (energy and maintenance). Complex operation and fouling issues. Periodic media substitution needed. Lower sludge management impact. | Same as centralized, can be operated remotely with automated control. Easy to implement in “packaged” facilities. | Same as centralized. Energy and maintenance issues may be more critical in remote areas. |
Biological anaerobic | Efficient technology. Low areal footprint with UASB and related technology. Energy savings and recovery. Low capital and O&M costs. Opportunity of recovery of nutrients. | Lower pollutant removal efficiency than aerobic systems, especially with dilute streams. May require post-treatment. Possible nuisance from odors. | Same as centralized, can be operated remotely with automated control. Easy to implement in “packaged” facilities. Local energy recovery in form of biogas (methane) | Same as centralized. |
Advanced Oxidation processes | Highly efficient against emerging pollutants. | High investment and energy costs. Requires expert operators. | Same as centralized. | Same as centralized. Operating and control issues may be critical. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelakis, A.N.; Capodaglio, A.G.; Dialynas, E.G. Wastewater Management: From Ancient Greece to Modern Times and Future. Water 2023, 15, 43. https://doi.org/10.3390/w15010043
Angelakis AN, Capodaglio AG, Dialynas EG. Wastewater Management: From Ancient Greece to Modern Times and Future. Water. 2023; 15(1):43. https://doi.org/10.3390/w15010043
Chicago/Turabian StyleAngelakis, Andreas N., Andrea G. Capodaglio, and Emmanuel G. Dialynas. 2023. "Wastewater Management: From Ancient Greece to Modern Times and Future" Water 15, no. 1: 43. https://doi.org/10.3390/w15010043