Ecological Water Demand Estimations for Desert Terminal Lake Survival under Inland River Water Diversion Regulation
Abstract
:1. Introduction
2. Study Area and Materials
2.1. Study Area
2.2. Data Source
3. Methods
3.1. Lake Evaporation Estimations
3.2. Minimum Water Level Method
3.2.1. Lake Morphology Analysis
3.2.2. Biological Space Minimum Requirement Method
4. Results and Discussion
4.1. Temporal Tendencies in Lake Areas
4.2. Spatial Variations in Lake Boundaries
4.3. EWD Estimation Results
4.3.1. EWD by Lake Evaporation
4.3.2. Minimum Water Level Method Considering the Lake Morphology
4.3.3. Minimum Water Level Method Considering the Biological Space Minimum Demand
4.4. Comparison of Different Methods
4.5. Lake Survival Risk Based on Minimum Lake Water Demand
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ye, X.C.; Xu, C.Y.; Zhang, Q.; Yao, J.; Li, X.H. Quantifying the human induced water level decline of China’s largest freshwater lake from the changing underlying surface in the lake region. Water Resour. Manag. 2018, 32, 1467–1482. [Google Scholar] [CrossRef]
- Pakzad, S.; Keshtkar, A.R.; Keshtkar, H.; Atashi, H.; Afazli, A. Impact of lake surface changes on climate fluctuation within a lake-affected region. Environ. Earth Sci. 2021, 80, 160. [Google Scholar] [CrossRef]
- Zhou, H.; Chen, Y.; Perry, L.; Li, W. Implications of climate change for water management of an arid inland lake in Northwest China. Lake Reserv. Manag. 2015, 31, 202–213. [Google Scholar] [CrossRef]
- Sajedipour, S.; Zarei, H.; Oryan, S. Estimation of environmental water requirements via an ecological approach, a case study of Bakhtegan Lake. Iran. Ecol. Eng. 2017, 100, 246–255. [Google Scholar] [CrossRef]
- Liu, J.L.; Yang, Z.F. Ecological and environmental water demand of the lakes in the Haihe–Luanhe Basin of North China. J. Environ. Sci. 2002, 14, 234. [Google Scholar]
- Liu, D.; Wang, X.; Zhang, Y.L.; Yan, S.J.; Cui, B.S.; Yang, Z.F. A landscape connectivity approach for determining minimum ecological lake level, implications for lake restoration. Water 2019, 11, 2237. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.C.; Leng, J.W.; Zhao, J.Y.; Na, Y.; Zou, Y.P.; Yu, B.J.; Fu, G.S.; Wu, W.Q. Quantitative calculation and optimized applications of ecological flow based on nature–based solutions. J. Hydrol. 2021, 598, 126216. [Google Scholar] [CrossRef]
- Zhang, Z.D.; Zheng, Y.; Han, F.; Xiong, R.; Feng, L. Recovery of an endorheic lake after a decade of conservation efforts, Mediating the water conflict between agriculture and ecosystems. Agric. Water Manag. 2021, 256, 107107. [Google Scholar] [CrossRef]
- Jia, H.F.; Ma, H.T.; Wei, M.J. Calculation of the minimum ecological water requirement of an urban river system and its deployment, a case study in Beijing central region. Ecol. Model. 2011, 222, 3271–3276. [Google Scholar] [CrossRef]
- Cui, Y.; Zhang, Q.; Chen, X.H.; Jiang, T. Research progress on theories and methods of ecological water demand. J. Lake Sci. 2010, 22, 465–480. [Google Scholar]
- Cui, B.S.; Zhao, X.; Yang, Z.F. Calculation of the minimum ecological water demand of lakes based on the principle of ecohydrology. Acta Ecol. Sin. 2005, 7, 1788–1795. [Google Scholar]
- Cao, T.G.; Yi, Y.J.; Liu, H.X.; Yang, Z.F. Integrated ecosystem services–based calculation of ecological water demand for a macrophyte–dominated shallow lake. Glob. Ecol. Conserv. 2020, 21, 2351–9894. [Google Scholar] [CrossRef]
- Petriki, O.; Zervas, D.; Doulgeris, C.; Bobori, D. Assessing the ecological water level, the case of four Mediterranean Lakes. Water 2020, 12, 2977. [Google Scholar] [CrossRef]
- Maihemuti, B.; Aishan, T.; Simayi, Z.; Alifujiang, Y.; Yang, S.T. Temporal scaling of water level fluctuations in shallow lakes and its impacts on the lake eco–environments. Sustainability 2020, 12, 3541. [Google Scholar] [CrossRef]
- Khan, S.U.; Khan, I.; Zhao, M.; Chien, H.P.; Fahad, S. Spatial heterogeneity of ecosystem services, a distance decay approach to quantify willingness to pay for improvements in Heihe River Basin ecosystems. Environ. Sci. Pollut. Res. 2019, 26, 25247–25261. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Li, H.; Bao, H.J. Performance comparisons of land institution and land regulation systems on water area decrease. Habitat. Int. 2018, 77, 12–20. [Google Scholar] [CrossRef]
- Qin, S.; Gao, G.Y.; Lv, Y.H.; Wang, S.; Jiang, X.H.; Fu, B.J. River flow is critical for vegetation dynamics, Lessons from multi–scale analysis in a hyper–arid endorheic basin. Sci. Total Environ. 2017, 603–604, 290–298. [Google Scholar]
- Xiao, S.C.; Peng, X.M.; Tian, Q.Y. Climatic and human drivers of recent lake–level change in East Juyan Lake, China. Reg. Environ. Chang. 2016, 16, 1063–1073. [Google Scholar] [CrossRef]
- Yu, T.F.; Si, J.H.; Qi, F.; Xi, H.Y.; Chu, Y.W.; Kai, L. Simulation of pan evaporation and application to estimate the evaporation of Juyan Lake.; Northwest China under a hyper–arid climate. Water. 2017, 9, 952. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Ma, R.; Sun, Z.Y.; Ge, M.Y.; Zeng, L.L.; Huang, F.; Bu, J.W.; Wang, Z. Determination of the optimal ecological water conveyance volume for vegetation restoration in an arid inland river basin.; Northwestern China. Sci. Total Environ. 2021, 788, 147775. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Jiang, E.; Yin, H.; Wu, K.; Dong, G. Ultrashort-term responses of riparian vegetation restoration to adjacent cycles of ecological water conveyance scheduling in a hyperarid endorheic river basin. J. Environ. Manag. 2022, 320, 115803. [Google Scholar] [CrossRef]
- Xiao, S.C.; Xiao, H.L. Radial growth of Tamarix ramosissima responds to changes in the water regime in an extremely arid region of northwestern China. Environ. Geol. 2007, 54, 543–551. [Google Scholar] [CrossRef]
- Zhang, C.H.; Lv, A.F.; Zhu, W.B.; Yao, G.B.; Qi, S.S. Using multisource satellite data to investigate lake area.; water level.; and water storage changes of terminal lakes in ungauged regions. Remote Sens. 2021, 13, 3221. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Chang, J.; Xu, C.Y.; Zhou, Y.; Wu, Y.H.; Chen, X.; Jiang, S.S.; Duan, Z. The response of lake area and vegetation cover variations to climate change over the Qinghai–Tibetan Plateau during the past 30 years. Sci. Total Environ. 2018, 635, 443–451. [Google Scholar] [CrossRef]
- Yang, Q.; Xiao, H.L.; Zhao, L.J.; Yang, Y.G.; Li, C.Z.; Zhao, L.A.; Yin, L. 2011 Hydrological and isotopic characterization of river water.; groundwater.; and groundwater recharge in the Heihe River basin.; northwestern China. Hydrol. Process. 2011, 25, 1271–1283. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, L.; Zhao, C.Y. Ecological water requirement estimation of the rump lake in an extreme arid region of East Juyanhai. Acta Ecol. Sin. 2014, 34, 2102–2108. [Google Scholar]
- Li, Z.; Li, Z.; Xu, Z.; Zhou, X. Temporal variations of reference evapotranspiration in Heihe River Basin of China. Hydrol. Res. 2013, 44, 904–916. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Yu, J.; Wang, P.; Zhang, Y.C.; Du, C.Y. Lake Evaporation in a Hyper-Arid Environment, Northwest of China—Measurement and Estimation. Water 2016, 8, 527. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.X.; Chen, S.F.; Zhang, Q.F.; Liu, Y.C.; Zhou, H.H. Ecological water demand of Taitema Lake in the lower reaches of the Tarim River and the Cherchen River. Remote Sens. 2022, 14, 832. [Google Scholar] [CrossRef]
- Doulgeris, C.; Koukouli, P.; Georgiou, P.; Dalampakis, P.; Karpouzos, D. Assessment of minimum water level in lakes and reservoirs based on their morphological and hydrological features. Hydrology 2020, 7, 83. [Google Scholar] [CrossRef]
- Xu, Z.X.; Wang, H.; Dong, Z.C.; Tang, K. Research on the minimum ecological water demand in the Nansi Lake area. J. Hydraul. Eng. 2006, 7, 784–788. [Google Scholar]
- Xu, Z.X.; Chen, M.J.; Dong, Z.C. Calculation method for the minimum ecological water level of lakes. Acta Ecol. Sin. 2004, 10, 2324–2328. [Google Scholar]
- Tao, J.; Li, X.; Zuo, Q. Comparison of calculation methods for ecological water demand of lakes and application of examples. South North Water Transf. Water Conserv. Sci. Technol. 2022, 20, 365–374. [Google Scholar]
- Shang, S.P.; Shang, S.H. Simplified Lake surface area method for the minimum ecological water level of lakes and wetlands. Water 2018, 10, 1056. [Google Scholar] [CrossRef] [Green Version]
- Healey, N.C.; Rover, J.A. Analyzing the effects of land cover change on the water balance for case study watersheds in different forested ecosystems in the USA. Land 2022, 11, 316. [Google Scholar] [CrossRef]
- Zhang, M.M.; Wang, S.; Gao, G.Y.; Fu, B.J.; Ye, Z.X.; Shen, Q. Exploring responses of lake area to river regulation and implications for lake restoration in arid region. Ecol. Eng. 2019, 128, 18–26. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Y.C.; Wang, P.; Du, C.Y.; Yu, J.J. Estimating dynamics of terminal lakes in the second largest endorheic river basin of northwestern China from 2000 to 2017 with Landsat imagery. Remote Sens. 2019, 11, 1164. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.Y.; Han, L.; Liu, Z.H.; Li, L.Z. Monitoring and driving force analysis of spatial and temporal change of water area of Hongjiannao lake from 1973 to 2019. Ecol. Inform. 2021, 61, 101230. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P. Probability distribution type of Canadian annual minimum streamflow. Hydrol. Sci. J. 2005, 50, 438. [Google Scholar] [CrossRef]
System | Launch Time | Sensor | Cycle | Resolution | Number of Bands |
---|---|---|---|---|---|
5 | 1984 | MSS/TM | 16 days | 80/30 | 7 |
7 | 1999 | ETM+ | 16 days | Panchromatic 15/Multispectral 30 | 8 |
8 | 2013 | OLI | 16 days | Panchromatic 15/Multispectral 30 | 9 |
Percentile (%) | Lake Area (km2) | EWD by Lake Evaporation (106 m3) | ||
---|---|---|---|---|
(1) | (2) | (3) | ||
Based on Empirical Formula | Based on E601 Pan Evaporation | Based on Penman–Monteith Formula | ||
50 | 47.88 | 77 | 75 | 78 |
75 | 44.40 | 71 | 69 | 72 |
95 | 34.60 | 54 | 54 | 56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Li, L.; Jiang, E.; Gan, R.; Liu, C.; Deng, Y. Ecological Water Demand Estimations for Desert Terminal Lake Survival under Inland River Water Diversion Regulation. Water 2023, 15, 66. https://doi.org/10.3390/w15010066
Lu J, Li L, Jiang E, Gan R, Liu C, Deng Y. Ecological Water Demand Estimations for Desert Terminal Lake Survival under Inland River Water Diversion Regulation. Water. 2023; 15(1):66. https://doi.org/10.3390/w15010066
Chicago/Turabian StyleLu, Jinqiang, Lingqi Li, Enhui Jiang, Rong Gan, Chang Liu, and Ya Deng. 2023. "Ecological Water Demand Estimations for Desert Terminal Lake Survival under Inland River Water Diversion Regulation" Water 15, no. 1: 66. https://doi.org/10.3390/w15010066
APA StyleLu, J., Li, L., Jiang, E., Gan, R., Liu, C., & Deng, Y. (2023). Ecological Water Demand Estimations for Desert Terminal Lake Survival under Inland River Water Diversion Regulation. Water, 15(1), 66. https://doi.org/10.3390/w15010066