Temporal and Spatial Variation Analysis of Lake Area Based on the ESTARFM Model: A Case Study of Qilu Lake in Yunnan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Preprocessing
2.2.1. Data
2.2.2. Preprocessing of Remote Sensing Data
2.3. Methods
2.3.1. ESTARFM Spatiotemporal Data Fusion Algorithm
2.3.2. Extracting Lake Area by Water Body Index Method
2.3.3. A Model for Retrieving Water Level from Lake Area
3. Results
3.1. ESTARFM Spatio-Temporal Fusion Results and Evaluation
3.2. Precision Validation of the Water Extraction Method
3.3. Spatio-Temporal Change of the Lake Area
3.3.1. Area Size Changes
3.3.2. Lake Contour Changes
3.3.3. The Geometric Center of the Lake Changes
3.4. The Relationship between Lake Area and Water Level
3.5. Drivers of Lake Area Change
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yamazaki, D.; Trigg, M.A.; Ikeshima, D. Development of a global ~90 m water body map using multi-temporal Landsat images. Remote Sens. Environ. 2015, 171, 337–351. [Google Scholar] [CrossRef]
- Laba, Z.M.; Deji, Y.Z.; La, B.; Chen, T.; Ci, Z.; Qiu, Y.B.; Pubu, C.R. Remote sensing analysis on the area variations of Tangra Yutso in Tibetan Plateau over the past 40 years. Lake Sci. 2017, 29, 480–489. [Google Scholar]
- Christopher, S. Ask the experts: The IPCC fifth assessment report. Carbon Manag. 2014, 5, 17–25. [Google Scholar]
- Fan, G.; Bing, H.; Zheng, L.; Song, S.; Yi, Z. Analysis of the changes and driving force of the water area in the Ulungur Lake over the past 40 years. J. Water Supply Res. Technol.-Aqua 2020, 69, 500–511. [Google Scholar]
- Li, H.; Zhong, D.; Fan, S.; Zhang, S.; Wang, J. Remote sensing monitoring of the nine plateau lakes’ s surface area in Yunnan in recent thirty years. Resour. Environ. Yangtze Basin 2016, 25, 32–37. [Google Scholar]
- Guo, Y.; Zheng, Y.; Wang, Y.; Liu, Y.; Liang, Q. Evolution of Jianhu Lake and its eco-environmental effects in the northwestern Yunnan Province. Environ. Eng. 2017, 35, 45–50. [Google Scholar]
- Chen, P.; Pan, X. Ecological risk analysis of regional landscape in inland river watershed of arid area: A case study of Sangong River Basin in Fukang. Chin. J. Ecol. 2003, 22, 116–120. [Google Scholar]
- Dong, Q. Studies on Land Use Changes and Ecological Security Assessment of Qilu Lake Basin in Yunnan Plateau; Beijing Forestry University: Beijing, China, 2009. [Google Scholar]
- Wu, P.; Shen, H.; Cai, N.; Zeng, C.; Wu, W.; Wang, B.; Wang, Y. Spatiotemporal analysis of water area annual variations using a Landsat time series: A case study of nine plateau lakes in Yunnan province, China. Int. J. Remote Sens. 2016, 37, 5826–5842. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Chi, T.; Liu, S.; Bi, J. Monitoring lake areas based on mixed pixel decomposition combined with double-edge extraction. Remote Sens. Inf. 2007, 3, 34–38. [Google Scholar]
- Yin, L.; Zhang, M.; Dong, J. Area variation and controlling factors of Lake Hongjiannao, Mu Us desert, China based on remote sensing techniques. Geol. Bull. China 2008, 27, 1151–1156. [Google Scholar]
- Liu, B.; Wei, X.; Feng, S.; Mei, D.; Li, C.; Liu, Y.; Zhang, J. Dynamics of Qinghai Lake area based on environmental mitigation satellite data. Pratacultural Sci. 2013, 30, 95–96. [Google Scholar]
- Zhu, C.; Li, J.; Zhang, X.; Luo, J. Bosten water resource dynamic detection and feature analysis in recent 40 years by remote sensing. J. Nat. Resour. 2015, 30, 106–114. [Google Scholar]
- Zhao, N.; Ma, C.; Yang, Y. Water quality variation of Lake Hongjiannao and its driving force analysis from 1973 to 2013. J. Lake Sci. 2016, 28, 982–993. [Google Scholar]
- Du, Y.; Liu, B.; He, W.; Duan, S.; Hou, F.; Wang, Z. Dynamic change and cause analysis of Salt Lake area in Hoh Xil on Qinghai-Tibet Plateau during 1976-2017. J. Glaciol. Geocryol. 2018, 40, 47–54. [Google Scholar]
- Wu, J. Analysis On the Changing and Reason of the Salt Lake Surface Water Area in the Qaidam Basin Since Recent 20 Years; Qinghai Institute of Salt Lakes, Chinese Academy of Sciences: 2014. Available online: https://xueshu.baidu.com/usercenter/paper/show?paperid=0de2c2dcdab2c6cc1062bf260dfcc23d&site=xueshu_se (accessed on 30 March 2023).
- Huang, H.; Zhao, P.; Chen, Z.; Guo, W. Research on the method of extracting water body information from ASTER remote sensing image. Remote Sens. Technol. Appl. 2008, 23, 525–528+485. [Google Scholar]
- Zhang, B.; Jia, R.; Zhang, Q.; Cheng, G. The water body area changes of Dalainur lake based satellite images of remote sensing. Res. Soil Water Conserv. 2011, 18, 196–199. [Google Scholar]
- Hu, W.; Meng, L.; Zhang, D.; Fan, Z.; Cheng, J. Methods of water extraction from ZY-1 02C satellite imagery. Remote Sens. Nat. Resour. 2014, 26, 43–47. [Google Scholar]
- Hanse, M.C.; Egorov, A.; Potapov, P.V.; Stehman, S.V.; Bents, T. Monitoring conterminous United States (CONUS) land cover change with Web-Enabled Landsat Data (WELD). Remote Sens. Environ. 2014, 140, 466–484. [Google Scholar] [CrossRef]
- Lv, G.; Li, Y.; Bai, J.; Bai, J. A tentative discussion on the geographical condition monitoring method based of long time series Landsat data. Remote Sens. Nat. Resour. 2015, 27, 126–132. [Google Scholar]
- Wang, T.; Wu, C.; Liu, J.; Lu, X. Dynamic evolution and landscape ecological risks assessment of Qilu Lake in Yunnan Plateau. J. Zhejiang AF Univ. 2020, 37, 9–17. [Google Scholar]
- Wu, X.; Wu, P.; Liu, Z.; Zeng, C.; Wang, J. A spatio-temporal analysis of water body area annual changes in Qilu Lake based on time series Lansat data. Remote Sens. Inf. 2016, 31, 89–94. [Google Scholar]
- Hao, G.; Wu, B.; Zhang, L.; Fu, D.; Li, Y. Temporal and spatial variation analysis of the area of Siling Co lake in Tibet based on ESTARFM (1976-2014). J. Geo-Inf. Sci. 2016, 18, 833–846. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. A study on information extraction of water body with the modified normalized difference water index (MNDWI). Natl. Remote Sens. Bull. 2005, 9, 589–595. [Google Scholar]
- Ma, Y.; Lin, H.; Sun, H.; Mo, D. Research on water information extraction based on CIWI model. Soil Water Conserv. China 2009, 5, 41–43. [Google Scholar]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–25. [Google Scholar] [CrossRef]
- Wang, W.; Huang, D.; Liu, J.; Liu, H.; Wang, H. Patterns and causes of changes in water level and volume in Tangra Yumco from 1988 to 2018 based on Landsat images and Sentinel-3A synthetic aperture radar. J. Lake Sci. 2020, 32, 1552–1563. [Google Scholar]
- Chen, J.; Chen, S.; Ma, F.; Chen, J. Analysis of water balance of Hulun Lake based on digital remote sensing images. Water Resour. Prot. 2020, 36, 73–79. [Google Scholar]
- Sun, J.; Zhang, Q.; Xu, M.; Chen, S. Environmental impact and prediction of Gushing water of Tonghai tunnel engineering, Yunnan province, China. Res. Soil Water Conserv. 2011, 18, 69–73. [Google Scholar]
- Zhou, Y.; Zhang, H.; Chang, F.; Duan, L.; Li, H.; Wen, X.; Bi, R.; Wu, H.; Zhu, M. Seasonal variations of water quality parameters in Lake Qilu. Adv. Geosci. 2017, 7, 487–499. [Google Scholar] [CrossRef]
- Kang, X.; Wang, Y.; Zhang, H. An analysis of bad environmental effects of clogging of the discharging underground river of the Qilu Lake. Hydrogeol. Eng. Geol. 2008, 35, 121–124. [Google Scholar]
- Dong, Y.; Zhang, J.; Chen, Y.; Yu, Y.; Zhao, L. Succession of nine plateau lakes and regulation of ecological safety in Yunnan Province. Ecol. Econ. 2014, 1, 42–54. [Google Scholar]
- Dong, Y.; Liu, Y.; Li, Y.; Zhang, R. Analysis on factors of ecological vulnerability of Qilu Lake in Yunnan Province. Environ. Sci. Surv. 2011, 30, 24–29. [Google Scholar]
- Yang, H.; Yang, S.; Liu, Y.; Liu, X. Seasonal Succession of Plankton Community and Driving Factors in Hypereutrophic Qilu Lake (Yunnan-Guizhou Plateau). Res. Environ. Sci. 2020, 33, 876–884. [Google Scholar]
- Chen, Q.; An, Y.; Xi, S. Applicability analysis of Spatio-temporal fusion model of multi-source remote sensing data in Karst Plateau. Sci. Technol. Eng. 2020, 20, 6538–6546. [Google Scholar]
- Wu, M.; Niu, Z.; Wang, C. Assessing the accuracy of spatial and temporal image fusion model of complex area in South China. J. Geo-Inf. Sci. 2014, 16, 776–783. [Google Scholar]
- Zhu, X.; Chen, J.; Gao, F.; Chen, X.; Masek, J. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sens. Environ. 2010, 114, 2610–2623. [Google Scholar] [CrossRef]
- Qi, G.; Ma, X.; He, S.; Wu, P. Long-term spatiotemporal variation analysis and probability prediction of algal blooms in Lake Chaohu (2009–2018) based on multi-source remote sensing data. J. Lake Sci. 2021, 33, 414–427. [Google Scholar]
- Wei, Y.; Zhu, L.; Cao, X.; Wang, W.; Gong, J. A downscaling study of evapotranspiration in Nanjing based on the ESTARFM model. Acta Ecol. Sin. 2022, 42, 1–11. [Google Scholar]
- Bai, L.; Cai, J.; Liu, Y.; Chen, H.; Zhang, B. Spatial downscaling of evapotranspiration in large irrigation area based on data fusion. Trans. Chin. Soc. Agric. Mach. 2017, 48, 215–223. [Google Scholar]
- Bai, L.; Cai, J.; Liu, Y.; Chen, H.; Zhang, B.; Huang, L. Responses of field evapotranspiration to the changes of cropping pattern and groundwater depth in large irrigation district of Yellow River basin. Agric. Water Manag. 2017, 188, 1–11. [Google Scholar] [CrossRef]
- Wang, L.; Xie, H.; Wen, G.; Yang, Y. A study on water information extraction method of cyanobacteria lake based on Landsat8. Remote Sens. Nat. Resour. 2020, 32, 130–136. [Google Scholar]
- Cheng, X.; Hong, Y.; Chen, J.; Ye, B. A study of the long-term remote sensing dynamic monitoring of inland based on ESTARFM. Remote Sens. Land Resour. 2020, 32, 183–190. [Google Scholar]
- Fan, H. Lake Dynamic Monitoring and Regional Climate Response Analysis in the Source Region of Three Rivers Based on Time Series; China University of Geosciences: Beijing, China, 2021. [Google Scholar]
- Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [Google Scholar] [CrossRef]
- Li, F. Study on Landscape Pattern Change and Driving Force of Longwan Lake Wetland in Eastern Jilin; Changchun Normal University: Changchun, China, 2022. [Google Scholar]
- Li, Y. Grey Correlation Analysis of Industrial Structure and Economic Growth in Gansu Province. Enterp. Econ. 2011, 30, 20–23. [Google Scholar]
- Gao, J.; Wu, F.; He, G.; Yang, W. Phytoplankton community characteristics and environmental driving factors of urban lakes in cold regions. Environ. Sci. Technol. 2021, 44, 1–10. [Google Scholar]
- Cheng, J.; Xu, L.; Wang, Q.; Yan, B.; Wan, R. Temporal and spatial variations of water level and its driving forces in Lake Dongting over the last three decades. J. Lake Sci. 2017, 29, 974–983. [Google Scholar]
- Lu, L.; Hong, L. Study on surface water area variations of nine plateau lakes in Yunnan Province. Yangtze River 2021, 52, 128–134. [Google Scholar]
- Wang, D.; Wang, S.; Huang, C. Comparison of Sentinel-2 imagery with Landsat8 imagery for surface water extraction using four common water indexes. Remote Sens. Land Resour. 2019, 31, 157–165. [Google Scholar]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove forest map of China in2015: Analysis of time series Landsat 7/8 and Sentinel-1A imageryin Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Clinton, N.; Koh, L. Mapping major land cover dynamics in Beijing using all Landsat images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Lee, J.; Wich, S.; Widayati, A.; Koh, L. Detecting industrial oil palm plantations on Landsat images with Google Earth Engine. Remote Sens. Appl. Soc. Environ. 2016, 4, 219–224. [Google Scholar] [CrossRef]
- Feng, F.; Mao, D.; Wang, Z.; Pu, H.; Du, J. Spatial and temperal characteristics of water bodies occupied by global urban land expansion from 1986 to 2015 based on GEE and remote sensing big data. Sci. Geogr. Sinica. 2022, 42, 143–151. [Google Scholar]
- Pang, X.; Liu, H.; Liu, X.; Yu, X.; Kou, X. Analysis of lake area and water level dynamic and its drving forces of Daihai Lake in recent 30 years. J. Inn. Mong. Univ. (Nat. Sci. Ed.) 2021, 52, 311–321. [Google Scholar]
- Ma, C.; Yan, X. Spatio-temporal Change Analysis and Map Visualization of Qilu Lake Morphology. J. Geomat. 2022, 47, 86–90. [Google Scholar]
Year | Imaging Date | Satellite Sensors | Spatial Resolution | Cloudiness |
---|---|---|---|---|
2000 | 12/2 | Landsat 4–5 TM | 30 m | 0.02 |
2005 | 25/2 | Landsat 4–5 TM | 30 m | 0 |
2010 | 7/2 | Landsat 4–5 TM | 30 m | 0.02 |
2015 | 21/2 | Landsat 8 OLI_TIRS | 30 m | 0.04 |
2020 | 18/1 | Landsat 8–9 OLI_TIRS | 30 m | 0.03 |
9/5 | Landsat 8–9 OLI_TIRS | 30 m | 5.9 | |
13/2 | MYD09GA | 500 m |
Year | Lake Area/km2 | Rate of Change/% |
---|---|---|
2000 | 36.85 | / |
2005 | 35.48 | −3.73% |
2010 | 36.14 | 1.86% |
2015 | 21.67 | −40.04% |
2020 | 34.47 | 59.07% |
Direction | 2000–2005 | 2005–2010 | 2010–2015 | 2015–2020 | 2000–2020 |
---|---|---|---|---|---|
North | −0.02 | −0.02 | −0.42 | 0.17 | −0.29 |
Northeast | −0.20 | 0.12 | −0.86 | 0.77 | −0.17 |
East | −0.06 | 0.03 | −0.57 | 0.49 | −0.11 |
Southeast | −0.03 | 0.01 | −0.61 | 0.52 | −0.11 |
South | −0.05 | 0 | −1.28 | 1.11 | −0.22 |
Southwest | −0.19 | 0.29 | −7.36 | 6.82 | −0.44 |
West | −0.18 | 0.09 | −3.20 | 2.80 | −0.49 |
Northwest | 0 | −0.01 | −0.20 | 0.12 | −0.09 |
Natural Factors | Grey Correlation Degree | Socio economic Factors | Grey Correlation Degree |
---|---|---|---|
Annual average temperature | 0.9729 | population | 0.9593 |
Annual precipitation | 0.9578 | GDP | 0.6817 |
Annual average sunshine hours | 0.9710 | Total industrial output value | 0.7206 |
Annual average evaporation | 0.9416 | Total agricultural output value | 0.6297 |
Crop sown area | 0.8660 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liu, X.; Li, W.; He, S.; Zheng, T. Temporal and Spatial Variation Analysis of Lake Area Based on the ESTARFM Model: A Case Study of Qilu Lake in Yunnan Province, China. Water 2023, 15, 1800. https://doi.org/10.3390/w15101800
Wang Z, Liu X, Li W, He S, Zheng T. Temporal and Spatial Variation Analysis of Lake Area Based on the ESTARFM Model: A Case Study of Qilu Lake in Yunnan Province, China. Water. 2023; 15(10):1800. https://doi.org/10.3390/w15101800
Chicago/Turabian StyleWang, Ziyuan, Xingyue Liu, Wei Li, Shuqiang He, and Tingdan Zheng. 2023. "Temporal and Spatial Variation Analysis of Lake Area Based on the ESTARFM Model: A Case Study of Qilu Lake in Yunnan Province, China" Water 15, no. 10: 1800. https://doi.org/10.3390/w15101800
APA StyleWang, Z., Liu, X., Li, W., He, S., & Zheng, T. (2023). Temporal and Spatial Variation Analysis of Lake Area Based on the ESTARFM Model: A Case Study of Qilu Lake in Yunnan Province, China. Water, 15(10), 1800. https://doi.org/10.3390/w15101800