Lignocellulose-Based Biosorbents for the Removal of Contaminants of Emerging Concern (CECs) from Water: A Review
Abstract
:1. Introduction
2. Biosorption
- Evaluating the potential for using a particular adsorbent for the adsorption of a specific adsorbate;
- Determining the optimum operating conditions under which the use of an adsorbent will be the most effective;
- Insights into the adsorption mechanism, the understanding of which will enable a more efficient application of a particular adsorbent.
3. Lignocellulose-Based Biosorbents: Types and Preparation Methods
Modification of Biosorbents
4. Biosorptive Removal of CECs from Water
Biosorbent | Adsorbant | Adsorption Conditions | Kinetic Model | Mechanism | Isotherms | Qmax (mg/g) | Ref. |
---|---|---|---|---|---|---|---|
Grape stalk | Paracetamol | m = 3.3–33.3 g/L, C = 20 mg/L, pH = 6, T = 298 K | PFO | π-stacking interactions and hydrogen bonding | Langmuir | 2.18 | [92] |
Macro-algae (F.vesiculosus) | Trimethoprim | m = 2 g/L, C = 0.1–400 mg/L, pH = 7 | PSO | Electrostatic interactions | Langmuir | 71.4 | [93] |
Wood chippings | Trimethoprim | m = 2 g/L, C = 0.1–400 mg/L, pH = 7 | PSO | Electrostatic interactions | Freundlich | 8.33 | [93] |
Date palm leaflet AC | Ciprofloxacin | m = 2 g/L, C = 50–300 mg/L, pH = 6, T = 318 K | PSO | - | Langmuir | 133.3 | [94] |
Corn cob AC | Chlortetracycline | m = 10 g/L, C = 200 mg/L, pH = 5, T = 298.15 K | PSO | - | Freundlich | 12.39 | [95] |
Sugarcane bagasse AC | Chlortetracycline | m = 10 g/L, C = 200 mg/L, pH = 4, T = 298.15 K | PSO | - | Freundlich | 16.96 | [95] |
Macadamia nutshell AC | Tetracycline | m = 1 g/L, C = 250–800 mg/L, pH = 3 | Elovich | - | Temkin | 455.33 | [96] |
Alfalfa BC (M. sativa L.) | Tetracycline | m = 0.1 g/L, C = 10–100 mg/L, pH = 5, T = 298.15 K | Elovich | hydrogen bonding, electrostatic and surface complexation interactions | Temkin | 372.31 | [97] |
Tea waste AC | Sulfamethazine | m = 1 g/L, C = 250–800 mg/L, pH = 3, T = 298 K | - | π– π EDA interactions | Langmuir/Freundlich | 33.81 | [98] |
Pomegranate wood AC | Amoxicilin | m = 0.8 g/L, C = 0–50 mg/L, T = 298 K | PSO | Electrostatic interactions | Langmuir | 437 | [99] |
Eucaliptus wood BC | Sulfamethazine | m = 0.08 g/L, C = 0.25–20 mg/L, pH = 4–4.25, T = 298.15 K | PSO | π–π interactions | Langmuir | 20.71 | [100] |
Eucaliptus wood BC | Chloramphenicol | m = 0.08 g/L, C = 0.25–20 mg/L, pH = 4–4.25, T = 298.15 K | PSO | π–π interactions, hydrogen bonds | Freundlich | 21.35 | [100] |
Red pine BC (P.massoniana) | Sulfamethoxazole | m = 0.01–0.015 g/L, pH = 6 | - | π–π EDA interaction π | Freundlich | 1.9 | [101] |
Red pine BC (P.massoniana) | Sulfapyridine | m = 0.01–0.015 g/L, pH = 6 | - | π–π EDA interaction | Freundlich | 1.5 | [101] |
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Parliament; Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; European Union: Luxembourg, 2000. [Google Scholar]
- European Parliament; Council of the European Union. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy Text with EEA Relevance; European Union: Luxembourg, 2013. [Google Scholar]
- Köck-Schulmeyer, M.; Ginebreda, A.; Petrovic, M.; Giulivo, M.; Aznar-Alemany, Ò.; Eljarrat, E.; Valle-Sistac, J.; Molins-Delgado, D.; Silvia Diaz-Cruz, M.; Monllor-Alcaraz, L.S.; et al. Priority and emerging organic microcontaminants in three Mediterranean river basins: Occurrence, spatial distribution, and identification of river basin specific pollutants. Sci. Total Environ. 2021, 754, 142344. [Google Scholar] [CrossRef] [PubMed]
- Farré, M. Remote and in situ devices for the assessment of marine contaminants of emerging concern and plastic debris detection. Curr. Opin. Environ. Sci. Health 2020, 18, 79–94. [Google Scholar] [CrossRef]
- Yadav, D.; Rangabhashiyam, S.; Verma, P.; Singh, P.; Devi, P.; Kumar, P.; Hussain, C.M.; Gaurav, G.K.; Kumar, K.S. Environmental and health impacts of contaminants of emerging concerns: Recent treatment challenges and approaches. Chemosphere 2021, 272, 129492. [Google Scholar] [CrossRef]
- Cristóvão, M.; Bernardo, J.; Bento-Silva, A.; Ressureição, M.; Bronze, M.; Crespo, J.; Pereira, V. Treatment of anticancer drugs in a real wastewater effluent using nanofiltration: A pilot scale study. Sep. Purif. Technol. 2022, 288, 120565. [Google Scholar] [CrossRef]
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Đolić, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Lado Ribeiro, A.R.; et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef] [PubMed]
- Salimi, M.; Esrafili, A.; Gholami, M.; Jafari, A.J.; Kalantary, R.R.; Farzadkia, M.; Kermani, M.; Sobhi, H.R. Contaminants of emerging concern: A review of new approach in AOP technologies. Environ. Monit. Assess. 2017, 189, 414. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, K.; Maniakova, G.; Carotenuto, M.; Sacco, O.; Vaiano, V.; Lofrano, G.; Rizzo, L. Removal of carbamazepine, diclofenac and trimethoprim by solar driven advanced oxidation processes in a compound triangular collector based reactor: A comparison between homogeneous and heterogeneous processes. Chemosphere 2020, 238, 124665. [Google Scholar] [CrossRef]
- Sheng, C.; Agwu Nnanna, G.; Liu, Y.; Vargo, J.D. Removal of Trace Pharmaceuticals from Water using coagulation and powdered activated carbon as pretreatment to ultrafiltration membrane system. Sci. Total Environ. 2016, 550, 1075–1083. [Google Scholar] [CrossRef]
- Huang, A.; Yan, M.; Lin, J.; Xu, L.; Gong, H.; Gong, H. A Review of Processes for Removing Antibiotics from Breeding Wastewater. Int. J. Environ. Res. Public Health 2021, 18, 4909. [Google Scholar] [CrossRef]
- de Ilurdoz, M.S.; Jaime Sadhwani, J.; Vaswani Reboso, J. Antibiotic removal processes from water & wastewater for the protection of the aquatic environment—A review. J. Water Process. Eng. 2022, 45, 102474. [Google Scholar] [CrossRef]
- Ullberg, M.; Lavonen, E.; Kohler, S.J.; Golovko, O.; Wiberg, K. Pilot-scale removal of organic micropollutants and natural organic matter from drinking water using ozonation followed by granular activated carbon. Environ. Sci. Water Res. Tech. 2021, 7, 535–548. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, H.; Feng, Y.; Yang, F.; Zhang, J. Removal of trace antibiotics from wastewater: A systematic study of nanofiltration combined with ozone-based advanced oxidation processes. Chem. Eng. J. 2014, 240, 211–220. [Google Scholar] [CrossRef]
- Wang, Z.G.; Chen, H.; Chen, Y.C.; Li, X.Q.; Zeng, W.Y.; Diao, X.W. Removal of antibiotics and hormones by electrolytic oxidation in livestock wasterwater. J. Southwest Univ. 2013, 35, 131–136. [Google Scholar]
- Lang, Z.; Zhou, M.; Zhang, Q.; Yin, X.; Li, Y. Comprehensive treatment of marine aquaculture wastewater by a cost-effective flow-through electro-oxidation process. Sci. Total Environ. 2020, 722, 137812. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, H.; Li, Y.; Wang, B.; Huang, J.; Deng, S.; Yu, G.; Wang, Y. Removal of micropollutants by an electrochemically driven UV/chlorine process for decentralized water treatment. Water Res. 2020, 183, 116115. [Google Scholar] [CrossRef] [PubMed]
- Parlapiano, M.; Akyol, Ç.; Foglia, A.; Pisani, M.; Astolfi, P.; Eusebi, A.L.; Fatone, F. Selective removal of contaminants of emerging concern (CECs) from urban water cycle via Molecularly Imprinted Polymers (MIPs): Potential of upscaling and enabling reclaimed water reuse. J. Environ. Chem. Eng. 2021, 9, 105051. [Google Scholar] [CrossRef]
- Aumeier, B.M.; Georgi, A.; Saeidi, N.; Sigmund, G. Is sorption technology fir for the removal of persistent and mobile organic contaminants from water? Sci. Total Environ. 2023, 880, 163343. [Google Scholar] [CrossRef]
- Jjagwe, J.; Olupot, P.W.; Menya, E.; Kalibbala, H.M. Synthesis and Application of Granular Activated Carbon from Biomass Waste Materials for Water Treatment: A Review. J. Bioresour. Bioprod. 2021, 6, 292–322. [Google Scholar] [CrossRef]
- Jamshaid, M.; Nazir, M.A.; Najam, T.; Shah, S.S.A.; Khan, H.M.; Rehman, A. Facile synthesis of Yb3+-Zn2+ substituted M type hexaferrites: Structural, electric and photocatalytic properties under visible light for methylene blue removal. Chem. Phys. Lett. 2022, 805, 139939. [Google Scholar] [CrossRef]
- Shahzad, K.; Nazir, M.A.; Jamshaid, M.; Kumar, O.P.; Najam, T.; Shah, S.S.A.; Rehman, A.U. Synthesis of nanoadsorbent entailed mesoporous organosilica for decontamination of methylene blue and methyl orange from water. Int. J. Environ. Anal. Chem. 2021. [Google Scholar] [CrossRef]
- Gadd, G.M. Biosorption: Critical review of scientific rationale, environmental importance and significance for pollution treatment. J. Chem. Technol. Biotechnol. 2009, 84, 13–28. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K.; Witek-Krowiak, A. State of the Art for the Biosorption Process—A Review. Appl. Biochem. Biotechnol. 2013, 170, 1389–1416. [Google Scholar] [CrossRef]
- Bailey, S.E.; Olin, T.J.; Bricka, R.; Adrian, D. A review of potentially low-cost sorbents for heavy metals. Water Res. 1999, 33, 2469–2479. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of methylene blue on low-cost adsorbents: A review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef] [PubMed]
- Okoro, H.K.; Pandey, S.; Ogunkunle, C.O.; Ngila, C.J.; Zvinowanda, C.; Jimoh, I.; Lawal, I.A.; Orosun, M.M.; Adeniyi, A.G. Nanomaterial-based biosorbents: Adsorbent for efficient removal of selected organic pollutants from industrial wastewater. Emerg. Contam. 2022, 8, 46–58. [Google Scholar] [CrossRef]
- Soto, M.L.; Moure, A.; Domínguez, H.; Parajó, J.C. Recovery, concentration and purification of phenolic compounds by adsorption: A review. J. Food Eng. 2011, 105, 1–27. [Google Scholar] [CrossRef]
- Jaria, G.; Calisto, V.; Gil, M.V.; Otero, M.; Esteves, V.I. Removal of fluoxetine from water by adsorbent materials produced from paper mill sludge. J. Colloid Interface Sci. 2015, 448, 32–40. [Google Scholar] [CrossRef]
- Guleria, A.; Kumari, G.; Lima, E.C.; Ashish, D.K.; Thakur, V.; Singh, K. Removal of inorganic toxic contaminants from wastewater using sustainable biomass: A review. Sci. Total Environ. 2022, 823, 153689. [Google Scholar] [CrossRef] [PubMed]
- Karić, N.; Maia, A.S.; Teodorović, A.; Atanasova, N.; Langergraber, G.; Crini, G.; Ribeiro, A.R.; Đolić, M. Bio-waste valorisation: Agricultural wastes as biosorbents for removal of (in)organic pollutants in wastewater treatment. CEJ Adv. 2022, 9, 100239. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, X.; Jin, W.; Fan, J.; Clark, J.H.; Zhang, S. Optimized synthesis of granular fuel and granular activated carbon from sawdust hydrochar without binder. J. Clean. Prod. 2020, 276, 122711. [Google Scholar] [CrossRef]
- Mustafa, R.; Asmatulu, E. Preparation of activated carbon using fruit, paper and clothing wastes for wastewater treatment. J. Water Process. Eng. 2020, 35, 101239. [Google Scholar] [CrossRef]
- Kukić, D.V.; Vasić, V.M.; Panić, S.N.; Radosavljević, M.S.; Šćiban, M.B.; Prodanović, J.M.; Blagojev, N.T.; Pejin, J.D. Adsorption kinetics of Cr(VI) ions onto biochar from brewer’s spent grain. APTEFF 2019, 50, 1–352. [Google Scholar]
- Evtuguin, D.V.; Neto, C.P.; Silva, A.M.S.; Domingues, P.M.; Amado, F.M.L.; Robert, D.; Faix, O. Comprehensive Study on the Chemical Structure of Dioxane Lignin from Plantation Eucalyptus globulus Wood. J. Agric. Food Chem. 2001, 49, 4252–4261. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.J.; Latif, N.H.A.; Trache, D.; Brosse, N.; Hazwan Hussin, M. Current advancement on the isolation, characterization and application of lignin. Int. J. Biol. Macromol. 2020, 162, 985–1024. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Sun, Y.-C.; Sun, R.-C. Fractionational and structural characterization of lignin and its modification as biosorbents for efficient removal of chromium from wastewater: A review. J. Leather Sci. Eng. 2019, 1, 5. [Google Scholar] [CrossRef]
- Abegunde, S.M.; Idowu, K.S.; Adejuwon, O.M.; Adeyemi-Adejolu, T. A review on the influence of chemical modification on the performance of adsorbents. Resour. Environ. Sustain. 2020, 1, 100001. [Google Scholar] [CrossRef]
- Akhtar, M.; Bhanger, M.; Iqbal, S.; Hasany, S.M. Sorption potential of rice husk for the removal of 2,4-dichlorophenol from aqueous solutions: Kinetic and thermodynamic investigations. J. Hazard. Mater. 2006, 128, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, S.G. Biosorption of Pesticide onto a Low Cost Carbon Produced from Apricot Stone (Prunus armeniaca): Equilibrium, Kinetic and Thermodynamic Studies. J. Appl. Sci. Res. 2013, 9, 6459–6469. [Google Scholar]
- Tran, V.S.; Ngo, H.H.; Guo, W.; Zhang, J.; Liang, S.; Ton-That, C.; Zhang, X. Typical low cost biosorbents for adsorptive removal of specific organic pollutants from water. Bioresour. Technol. 2015, 182, 353–363. [Google Scholar] [CrossRef]
- Adewuyi, A. Chemically Modified Biosorbents and Their Role in the Removal of Emerging Pharmaceutical Waste in the Water System. Water 2020, 12, 1551. [Google Scholar] [CrossRef]
- Abdolali, A.; Guo, W.; Ngo, H.; Chen, S.; Nguyen, N.; Tung, K. Typical lignocellulosic wastes and by-products for biosorption process in water and wastewater treatment: A critical review. Bioresour. Technol. 2014, 160, 57–66. [Google Scholar] [CrossRef]
- Spagnuolo, M.; Crecchio, C.; Pizzigallo, M.; Ruggiero, P. Synergistic effects of cellulolytic and pectinolytic enzymes in degrading sugar beet pulp. Bioresour. Technol. 1997, 60, 215–222. [Google Scholar] [CrossRef]
- Mussato, S.I.; Dragone, G.; Roberto, I.C. Brewers spent grain: Generation, characteristics and potential applications. J. Cereal. Sci. 2006, 43, 1–14. [Google Scholar] [CrossRef]
- Sánchez Orozco, R.; Balderas Hernández, P.; Roa Morales, G.; Ureña Núñez, F.; Orozco Villafuerte, J.; Lugo Lugo, V.; Flores Ramírez, N.; Barrera Díaz, C.D.; Cajero Vázquez, P. Characterization of Lignocellulosic Fruit Waste as an Alternative Feedstock for Bioethanol Production. Bioresources 2014, 9, 1873–1885. [Google Scholar] [CrossRef]
- Gomez-Ceballos, V.; Lara-Martín, P.; Zapata-Benabithe, Z.; Velasquez-Jimenez, J.; Quintana-Marin, G. Enhanced efficiency of a chemically modified hyperbranched Kraft lignin in the removal of pharmaceuticals from water at low microgram per liter levels. J. Environ. Chem. Eng. 2021, 9, 106244. [Google Scholar] [CrossRef]
- Iqbal, H.M.N.; Kyazze, G.; Keshavarz, T. Advances in the Valorization of Lignocellulosic Materials by Biotechnology: An Overview. Bioresources 2013, 8, 3157–3176. [Google Scholar] [CrossRef]
- Boerjan, W.; Ralph, J.; Baucher, M. Lignin biosynthesis. Annu. Rev. Plant. Biol. 2003, 54, 519–546. [Google Scholar] [CrossRef]
- Vanholme, R.; Demedts, B.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin Biosynthesis and Structure. Plant Physiol. 2010, 153, 895–905. [Google Scholar] [CrossRef]
- Correa, C.R.; Otto, T.; Kruse, A. Influence of the biomass components on the pore formation of activated carbon. Biomass-Bioenergy 2017, 97, 53–64. [Google Scholar] [CrossRef]
- Wang, T.; Jiang, M.; Yu, X.; Niu, N.; Chen, L. Application of lignin adsorbent in wastewater Treatment: A review. Sep. Purif. Technol. 2022, 302, 122116. [Google Scholar] [CrossRef]
- Han, W.; Luo, L.; Zhang, S. Adsorption of bisphenol A on lignin: Effects of solution chemistry. Int. J. Environ. Sci. Technol. 2012, 9, 543–548. [Google Scholar] [CrossRef]
- Ngah, W.W.; Hanafiah, M.A.K.M. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresour. Technol. 2008, 99, 3935–3948. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Preparation, modification and environmental application of biochar: A review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Tony, M.A. Low-cost adsorbents for environmental pollution control: A concise systematic review from the prospective of principles, mechanism and their applications. J. Dispers. Sci. Technol. 2022, 43, 1612–1633. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Cheng, Z. Removal of organic pollutants from aqueous solution using agricultural wastes: A review. J. Mol. Liq. 2015, 212, 739–762. [Google Scholar] [CrossRef]
- Valili, S.; Siavalas, G.; Karapanagioti, H.K.; Manariotis, I.D.; Christanis, K. Phenanthrene removal from aqueous solutions using well-characterized, raw, chemically treated, and charred malt spent rootlets, a food industry by-product. J. Environ. Manag. 2013, 128, 252–258. [Google Scholar] [CrossRef]
- Chong, Z.T.; Soh, L.S.; Yong, W.F. Valorization of agriculture wastes as biosorbents for adsorption of emerging pollutants: Modification, remediation and industry application. RINENG 2023, 17, 100960. [Google Scholar] [CrossRef]
- Sakhiya, A.K.; Baghel, P.; Anand, A.; Vijay, V.K.; Kaushal, P. A comparative study of physical and chemical activation of rice straw derived biochar to enhance Zn+2 adsorption. Bioresour. Technol. Rep. 2021, 15, 100774. [Google Scholar] [CrossRef]
- Finn, M.; Giampietro, G.; Mazyck, D.; Rodriguez, R. Activated Carbon for Pharmaceutical Removal at Point-of-Entry. Processes 2021, 9, 1091. [Google Scholar] [CrossRef]
- Zhang, B.; Yanga, D.; Qiua, X.; Qiana, Y.; Yana, M.; Lia, Q. Influences of aggregation behavior of lignin on the microstructure and adsorptive properties of lignin-derived porous carbons by potassium compound activation. J. Ind. Eng. Chem. 2020, 82, 220–227. [Google Scholar] [CrossRef]
- Coldebella, P.F.; Fagundes-Klen, M.R.; Nishi, L.; Valverde, K.C.; Cavalcanti, E.B.; Andreo dos Santos, O.A.; Bergamasco, R. Potential effect of chemical and thermal treatment on the kinetics, equilibrium, and thermodynamic studies for atrazine biosorption by the Moringa oleifera pods. Can. J. Chem. Eng. 2017, 95, 961–973. [Google Scholar] [CrossRef]
- Portinho, R.; Zanella, O.; Féris, L.A. Grape stalk application for caffeine removal through adsorption. J. Environ. Manag. 2017, 202, 178–187. [Google Scholar] [CrossRef] [PubMed]
- Makgabutlane, B.; Nthunya, L.N.; Maubane-Nkadimeng, M.S.; Mhlanga, S.D. Green synthesis of carbon nanotubes to address the water-energyfood nexus: A critical review. J. Environ. Chem. Eng. 2021, 9, 104736. [Google Scholar] [CrossRef]
- Ashour, E.A.; Tony, M.A. Eco-friendly removal of hexavalent chromium from aqueous solution using natural clay mineral: Activation and modification effects. SN Appl. Sci. 2020, 2, 2042. [Google Scholar] [CrossRef]
- Obey, G.; Adelaide, M.; Ramaraj, R. Biochar derived from non-customized matamba fruit shell as an adsorbent for wastewater treatment. J. Bioresour. Bioprod. 2022, 7, 109–115. [Google Scholar] [CrossRef]
- Wang, L.; Ok, Y.S.; Tsang, D.C.W.; Alessi, D.S.; Rinklebe, J.; Wang, H.; Mašek, O.; Hou, R.; O’Connor, D.; Hou, D. New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use Manag. 2020, 36, 358–386. [Google Scholar] [CrossRef]
- Gęca, M.; Wiśniewska, M.; Nowicki, P. Biochars and activated carbons as adsorbents of inorganic and organic compounds from multicomponent systems—A review. Adv. Colloid Interface Sci. 2022, 305, 102687. [Google Scholar] [CrossRef]
- Tan, X.F.; Liu, S.-B.; Liu, Y.-G.; Gu, Y.-L.; Zeng, G.-M.; Hu, X.-J.; Wang, X.; Liu, S.-H.; Jiang, L.-H. Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage. Bioresour. Technol. 2017, 227, 359–372. [Google Scholar] [CrossRef]
- Li, L.; Zou, D.; Xiao, Z.; Zeng, X.; Zhang, L.; Jiang, L.; Wang, A.; Ge, D.; Zhang, G.; Liu, F. Biochar as a sorbent for emerging contaminants enables improvements in waste management and sustainable resource use. J. Clean. Prod. 2019, 210, 1324–1342. [Google Scholar] [CrossRef]
- Gupta, V.K.; Jain, C.K.; Ali, I.; Chandra, S.; Agarwal, S. Removal of lindane and malathion from wastewater using bagasse fly ashFa sugar industry waste. Water Res. 2002, 36, 2483–2490. [Google Scholar] [CrossRef]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process. Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Boudesocque, S.; Guillon, E.; Aplincourt, M.; Martel, F.; Noël, S. Use of a Low-Cost Biosorbent to Remove Pesticides from Wastewater. J. Environ. Qual. 2008, 3, 631–638. [Google Scholar] [CrossRef]
- Tofan, L.; Suteu, D. Renewable Resource Biosorbents for Pollutant Removal from Aqueous Effluents in Column Mode. Separations 2023, 10, 143. [Google Scholar] [CrossRef]
- Delgado, N.; Marino, D.; Capparelli, A.; Casas-Zapata, J.C.; Navarro, A. Pharmaceutical compound removal using down-flow fixed bed filters with powder activated carbon: A novel configuration. J. Environ. Chem. Eng. 2022, 10, 107706. [Google Scholar] [CrossRef]
- Sophia, A.C.; Lima, E.C. Removal of emerging contaminants from the environment by adsorption. Ecotoxicol. Environ. Saf. 2018, 150, 1–17. [Google Scholar] [CrossRef]
- García-Mateos, F.; Ruiz-Rosas, R.; Marqués, M.; Cotoruelo, L.; Rodríguez-Mirasol, J.; Cordero, T. Removal of paracetamol on biomass-derived activated carbon: Modeling the fixed bed breakthrough curves using batch adsorption experiments. Chem. Eng. J. 2015, 279, 18–30. [Google Scholar] [CrossRef]
- Mandal, A.; Singh, N.; Purakayastha, T. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal. Sci. Total Environ. 2017, 577, 376–385. [Google Scholar] [CrossRef]
- Bautista-Toledo, M.I.; Rivera-Utrilla, J.; Ocampo-Pérez, R.; Carrasco-Marín, F.; Sánchez-Polo, M. Cooperative adsorption of bisphenol-A and chromium(III) ions from water on activated carbons prepared from olive-mill waste. Carbon N. Y. 2014, 73, 338–350. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, C.; Wu, J.; Luo, Y. Adsorptive Removal of Bisphenol A Using N-Doped Biochar Made of Ulva prolifera. Water Air Soil Pollut. 2017, 228, 327. [Google Scholar] [CrossRef]
- Rodrigues, L.A.; da Silva, M.L.C.P.; Alvarez-Mendes, M.O.; Coutinho, A.D.R.; Thim, G.P. Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem. Eng. J. 2011, 174, 49–57. [Google Scholar] [CrossRef]
- Hosseini, S.; Malekbala, M.R.; Hosseini, S. Biosorption of azoimide on almond integument: Kinetics, isotherm and thermodynamics studies. J. Environ. Chem. Eng. 2013, 1, 696–702. [Google Scholar] [CrossRef]
- Okasha, A.Y.; Ibrahim, H.G. Phenol removal from aqueous systems by sorption of using some local waste materials. Electron. J. Environ. Agric. Food Chem. 2010, 9, 796–807. [Google Scholar]
- Achaka, M.; Hafidib, A.; Ouazzania, N.; Sayadic, S.; Mandia, L. Low cost biosorbent “banana peel” for the removal of phenolic compoundsfrom olive mill wastewater: Kinetic and equilibrium studies. J. Hazard. Mat. 2009, 166, 117–125. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Kermani, M.; Gholami, M.; Farzadkia, M. Kinetic and isotherm studies of adsorption and biosorption processes in the removal of phenolic compounds from aqueous solutions: Comparative study. J. Environ. Health Sci. Eng. 2013, 11, 29. [Google Scholar] [CrossRef]
- Al Bsoul, A.; Hailat, M.; Abdelhay, A.; Tawalbeh, M.; Al-Othman, A.; Al-Kharabsheh, I.N.; Al-Taani, A.A. Efficient removal of phenol compounds from water environment using Ziziphus leaves adsorbent. Sci. Total Environ. 2021, 761, 143229. [Google Scholar] [CrossRef] [PubMed]
- Dordio, A.V.; Gonçalves, P.; Texeira, D.; Candeias, A.J.; Castanheiro, J.E.; Pinto, A.P.; Carvalho, A.P. Pharmaceuticals sorption behaviour in granulated cork for the selection of a support matrix for a constructed wetlands system. Int. J. Environ. Anal. Chem. 2011, 91, 615–631. [Google Scholar] [CrossRef]
- Crespo-Alonso, M.; Nurchi, V.M.; Biesuz, R.; Alberti, G.; Spano, N.; Pilo, M.I.; Sanna, G. Biomass against emerging pollution in wastewater: Ability of cork for the removal of ofloxacin from aqueous solutions at different pH. J. Environ. Chem. Eng. 2013, 1, 1199–1204. [Google Scholar] [CrossRef]
- Mallek, M.; Chtourou, M.; Portillo, M.; Monclús, H.; Walha, K.; Salah, A.B.; Salvadó, V. Granulated cork as biosorbent for the removal of phenol derivatives and emerging contaminants. J. Environ. Manag. 2018, 223, 576–585. [Google Scholar] [CrossRef]
- Pintor, A.M.A.; Ferreira, C.I.A.; Pereira, J.C.; Correia, P.; Silva, S.P.; Vilar, V.J.P.; Botelho, C.M.S.; Boaventura, R.A.R. Use of cork powder and granules for the adsorption of pollutants: A review. Water Res. 2012, 46, 3152–3166. [Google Scholar] [CrossRef]
- Villaescusa, I.; Fiol, N.; Poch, J.; Bianchi, A.; Bazzicalupi, C. Mechanism of paracetamol removal by vegetable wastes: The contribution of π–π interactions, hydrogen bonding and hydrophobic effect. Desalination 2011, 270, 135–142. [Google Scholar] [CrossRef]
- Li, Y.; Taggart, M.A.; McKenzie, C.; Zhang, Z.; Lu, Y.; Pap, S.; Gibb, S. Utilizing low-cost natural waste for the removal of pharmaceuticals from water: Mechanisms, isotherms and kinetics at low concentrations. J. Clean. Prod. 2019, 227, 88–97. [Google Scholar] [CrossRef]
- El-Shafey, E.-S.I.; Al-Lawati, H.; Al-Sumri, A.S. Ciprofloxacin adsorption from aqueous solution onto chemically prepared carbon from date palm leaflets. J. Environ. Sci. 2012, 24, 1579–1586. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Tong, L.; Zhu, P.; Huang, P.; Tan, Z.; Qin, F.; Shi, W.; Wang, M.; Nie, H.; Yan, G.; et al. Adsorption of chlortetracycline onto biochar derived from corn cob and sugarcane bagasse. Water Sci. Technol. 2018, 78, 1336–1347. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.C.; Pezoti, O.; Cazetta, A.L.; Bedin, K.C.; Yamazaki, D.A.S.; Bandoch, G.F.G.; Asefa, T.; Visentainer, J.V.; Almeida, V.C. Removal of tetracycline by NaOH-activated carbon produced from macadamia nut shells: Kinetic and equilibrium studies. Chem. Eng. J. 2015, 260, 291–299. [Google Scholar] [CrossRef]
- Jang, H.M.; Kan, E. A novel hay-derived biochar for removal of tetracyclines in water. Bioresour. Technol. 2019, 274, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Rajapaksha, A.U.; Vithanage, M.; Zhang, M.; Ahmad, M.; Mohan, D.; Chang, S.X.; Ok, Y.S. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresour. Technol. 2014, 166, 303–308. [Google Scholar] [CrossRef]
- Moussavi, G.; Alahabadi, A.; Yaghmaeian, K.; Eskandari, M. Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chem. Eng. J. 2013, 217, 119–128. [Google Scholar] [CrossRef]
- Boshir Ahmed, M.; Zhou, J.L.; Ngo, H.H.; Guo, W.; Abu Hasan Johir, M.; Belhaj, D. Competitive sorption affinity of sulfonamides and chloramphenicol antibiotics toward functionalized biochar for water and wastewater treatment. Bioresour. Technol. 2017, 238, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Chen, W.; Xu, Z.; Zheng, S.; Zhu, D. Adsorption of sulfonamides to demineralized pine wood biochars prepared under different thermochemical conditions. Environ. Pollut. 2014, 186, 187–194. [Google Scholar] [CrossRef]
- Malesic-Eleftheriadou, N.; Liakos, E.V.; Evgenidou, E.; Kyzas, G.Z.; Bikiaris, D.N.; Lambropoulou, D.A. Low-cost agricultural wastes (orange peels) for the synthesis and characterization of activated carbon biosorbents in the removal of pharmaceuticals in multi-component mixtures from aqueous matrices. J. Mol. Liq. 2022, 368, 120795. [Google Scholar] [CrossRef]
- Paunovic, O.; Pap, S.; Maletic, S.; Taggart, M.A.; Boskovic, N.; Turk Sekulic, M. Ionisable emerging pharmaceutical adsorption onto microwave functionalised biochar derived from novel lignocellulosic waste biomass. J. Colloid Interface Sci. 2019, 547, 350–360. [Google Scholar] [CrossRef]
- Belloa, O.S.; Alaoa, O.C.; Alagbada, T.C.; Olatunde, A.M. Biosorption of ibuprofen using functionalized bean husks. Sustain. Chem. Pharm. 2019, 13, 100151. [Google Scholar] [CrossRef]
- Reza, R.A.; Ahmaruzzaman, M.; Sil, A.K.; Gupta, V.K. Comparative Adsorption Behavior of Ibuprofen and Clofibric Acid onto Microwave Assisted Activated Bamboo Waste. Ind. Eng. Chem. Res. 2014, 53, 9331–9339. [Google Scholar] [CrossRef]
- Kozyatnyk, I.; Oesterle, P.; Wurzer, C.; Mašek, O.; Jansson, S. Removal of contaminants of emerging concern from multicomponent systems using carbon dioxide activated biochar from lignocellulosic feedstocks. Bioresour. Technol. 2021, 340, 125561. [Google Scholar] [CrossRef] [PubMed]
- Rojas, R.; Vanderlinden, E.; Morillo, J.; Usero, J.; El Bakouri, H. Characterization of sorption processes for the development of low-cost pesticide decontamination techniques. Sci. Total Environ. 2014, 488–489, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Mohammad, S. Egyptian apricote stone (Prunus armeniaca) as a low cost and eco-friendly biosorbent for oxamyl removal from aqueous solutions. Am. J. Exp. Agric. 2014, 4, 302–321. [Google Scholar]
- Zolgharnein, J.; Shahmoradi, A.; Ghasemi, J. Pesticides Removal Using Conventional and Low-Cost Adsorbents: A Review. CLEAN-Soil Air Water 2011, 39, 1105–1119. [Google Scholar] [CrossRef]
- Okumus, V.; Serdar Çelik, K.; Özdemira, S.; Dündar, A.; Kilinç, E. Biosorption of chlorophenoxy acid herbicides from aqueous solution by using low-cost agricultural wastes. Desalin. Water. Treat. 2015, 56, 1898–1907. [Google Scholar] [CrossRef]
- Al-Zaben, M.I.; Mekhamer, W.K. Removal of 4-chloro-2-methyl phenoxy acetic acid pesticide using coffe wastes from aqueous solution. Arab. J. Chem. 2017, 10, S1523–S1529. [Google Scholar] [CrossRef]
- Ahmad, T.; Rafatullah, M.; Ghazali, A.; Sulaiman, O.; Hashim, R.; Ahmad, A. Removal of Pesticides from Water and Wastewater by Different Adsorbents: A Review. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2010, 28, 231–271. [Google Scholar] [CrossRef]
- Theruvinthalakkal Aswani, M.; Yadav, M.; Kumar, A.V.; Tiwari, S.; Kumar, T.; Pavan Kumar, M.V. Ultrasound–acid modified Merremia vitifolia biomass for the biosorption of herbicide 2,4-D from aqueous solution. Water Sci. Technol. 2020, 82, 468–480. [Google Scholar] [PubMed]
- Moreno, F.J.R.; Cardenete López, M.J.; Marín Galvín, R.; Martínez Cordón, M.J.; Rodríguez Mellado, J.M. On the removal of s-triazine herbicides from waters using commercial low-cost granular carbons. J. Serb. Chem. Soc. 2010, 75, 405–412. [Google Scholar] [CrossRef]
- Deyris, P.-A.; Pelissier, F.; Grison, C.M.; Hesemann, P.; Petit, E.; Grison, C. Efficient removal of persistent and emerging organic pollutants by biosorption using abundant biomass wastes. Chemosphere 2023, 313, 137307. [Google Scholar] [CrossRef]
- Smith, K.; Fowler, G.; Pullket, S.; Graham, N. Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Res. 2009, 43, 2569–2594. [Google Scholar] [CrossRef]
- Regkouzas, P.; Diamadopoulos, E. Adsorption of selected organic micro-pollutants on sewage sludge biochar. Chemosphere 2019, 224, 840–851. [Google Scholar] [CrossRef] [PubMed]
- Krasucka, P.; Rombel, A.; Yang, X.J.; Rakowska, M.; Xing, B.; Oleszczuk, P. Adsorption and desorption of antiviral drugs (ritonavir and lopinavir) on sewage sludges as a potential environmental risk. J. Hazard. Mater. 2021, 425, 127901. [Google Scholar] [CrossRef] [PubMed]
- Fagnani, E.; Montemurro, N.; Pérez, S. Multilayered solid phase extraction and ultra performance liquid chromatographic method for suspect screening of halogenated pharmaceuticals and photo-transformation products in freshwater-comparison between data-dependent and data-independent acquisition mass spectrometry. J. Chromatogr. A 2022, 1663, 462760. [Google Scholar] [CrossRef] [PubMed]
- Blagojev, N.; Šćiban, M.; Vasić, V.; Kukić, D.; Pavličević, J.; Lubura, J.; Bera, O. Use of exhausted biosorbent ash as eco-friendly filler in natural rubber. Polym. Int. 2022, 71, 1267–1277. [Google Scholar] [CrossRef]
- Omorogie, M.O.; Babalola, J.O.; Unuabonah, E.I. Regeneration strategies for spent solid matrices used in adsorption of organic pollutants from surface water: A critical review. Desalination Water Treat. 2014, 57, 518–544. [Google Scholar] [CrossRef]
- Amalina, F.; Razak, A.S.A.; Krishnan, S.; Zularisam, A.W.; Nasrullah, M. A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability—A review. Clean. Mater. 2022, 3, 100045. [Google Scholar] [CrossRef]
- Ramrakhiani, L.; Ghosh, S.; Majumdar, S. Surface Modification of Naturally Available Biomass for Enhancement of Heavy Metal Removal Efficiency, Upscaling Prospects, and Management Aspects of Spent Biosorbents: A Review. Appl. Biochem. Biotechnol. 2016, 180, 41–78. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Petriciolet, A.; Mendoza-Castillo, D.I.; Reynel, H.Á. Adsorption Processes for Water Treatment and Purification, 1st ed.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Reddy, D.H.K.; Vijayaraghavan, K.; Kim, J.A.; Yun, Y.-S. Valorisation of post-sorption materials: Opportunities, strategies, and challenges. Adv. Colloid Interface 2017, 242, 35–58. [Google Scholar] [CrossRef] [PubMed]
- Lata, S.; Singh, P.K.; Samadder, S.R. Regeneration of adsorbents and recovery of heavy metals: A review. Int. J. Environ. Sci. Technol. 2015, 12, 1461–1478. [Google Scholar] [CrossRef]
- Peterson, S.C. Utilization of low-ash biochar to partially replace carbon black in styrene–butadiene rubber composites. J. Elastomers Plast. 2012, 45, 487–497. [Google Scholar] [CrossRef]
- Peterson, S.C.; Chandrasekaran, S.R.; Sharma, B.K. Birchwood biochar as partial carbon black replacement in styrene–butadiene rubber composites. J. Elastomers Plast. 2015, 48, 305–316. [Google Scholar] [CrossRef]
- Chao, L.; Zhang, C.; Zhang, L.; Gholizadeh, M.; Hu, X. Catalytic pyrolysis of tire waste: Impacts of biochar catalyst on product evolution. Waste Manag. 2020, 116, 9–21. [Google Scholar] [CrossRef]
- Đurišić-Mladenović, N.; Škrbić, B.D.; Zabaniotou, A. Chemometric interpretation of different biomass gasification processes based on the syngas quality: Assessment of crude glycerol co-gasification with lignocellulosic biomass. Renew. Sustain. Energy Rev. 2016, 59, 649–661. [Google Scholar] [CrossRef]
- Sørmo, E.; Castro, G.; Hubert, M.; Licul-Kucera, V.; Quintanilla, M.; Asimakopoulos, A.G.; Cornelissen, G.; Arp, H.P.H. The decomposition and emission factors of a wide range of PFAS in diverse, contaminated organic waste fractions undergoing dry pyrolysis. J. Hazard. Mater. 2023, 454, 131447. [Google Scholar] [CrossRef]
Lignocellulosic Material | Component (%) | |||
---|---|---|---|---|
Cellulose | Lignin | Hemicellulose | Reference | |
Rice straw | 25–35 | 10–15 | 20–30 | [43] |
Barley straw | 30–35 | 14–15 | 24–29 | [43] |
Sugarcane bagasse | 32–44 | 19–24 | 25–35 | [43] |
Sugarbeet bagasse | 22–30 | 3–4 | 24–32 | [44] |
Brewers’ spent grain | 20 | 28 | 28–30 | [45] |
Bamboo | 26–43 | 21–31 | 15–26 | [45] |
Orange peel | 12 | 2 | 15 | [46] |
Banana peel | 12 | 10 | 26 | [46] |
Corncob | 35–45 | 5–15 | 35–45 | [43] |
Hardwood | 40–55 | 20–25 | 25–40 | [43] |
Softwood | 40–50 | 25–35 | 25–35 | [43] |
Nut shell and stone | 25–35 | 30–40 | 25–30 | [43] |
Chemical composition | Cellulose 7–73%, hemicellulose 6–33%, lignin 2–33%, ash 1–17% |
Functional groups | Hydroxyl, carbonyl, silanol, alkyne, aromatic rings, keto and aldehyde groups, lactones |
Surface area | Raw form: 3.14 to 25.97 m2/g Modified form: 566 m2/g |
Adsorbent | Process Variables | Qmax (mg/g) | ||||
---|---|---|---|---|---|---|
m (g/L) | C (mg/L) | t (min) | pH | T(K) | ||
Cork AC | 0.67 | 20–120 | 240 | 2 | 303 | 378.10 |
Siris seed pod AC | 0.67 | 20–120 | 240 | 2–4 | 303 | 378.10 |
Olive waste cake AC | 0.33–1.43 | 10.04 | 1560 | 4.1 | 298 | 12.60 |
Adsorbate | Adsorbent | Qmax(mg/g) | Kinetic Model | Isotherm | Reference |
---|---|---|---|---|---|
Oxamyl | AC from apricot stone | 147.05 | PSO | Langmuir | [108] |
Dieldrin | Olive stone (acid treated) | 23.74 | PSO | Langmuir | [109] |
Endrin | Olive stone (acid treated) | 43.71 | PSO | Langmuir | [109] |
2,4-Dichlorophenoxy propanoic acid (2,4-DP) | Apple shell | 40.08 | - | Langmuir | [110] |
4-Chloro-2-methyl phenoxy acetic acid | Coffee wastes | 340 | PSO | Langmuir | [111] |
Methyl parathion | Rice bran Rice husk | 113.59 ± 2.62 101.94 ± 2.33 | Lagergren Morris-Weber | Freundlich | [112] |
2,4-Dichlorophenoxyacetic acid | Merremia vitifolia | 66.93 | PFO, PSO | Langmuir | [113] |
Isoproturon | Lignocellulosic substrate | 61.8 | PSO | Freundlich | [74] |
Propazine | Vegetable AC Mineral AC Coconut AC | 25.62 25.05 27.15 | - | Frumkin | [114] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasić, V.; Kukić, D.; Šćiban, M.; Đurišić-Mladenović, N.; Velić, N.; Pajin, B.; Crespo, J.; Farre, M.; Šereš, Z. Lignocellulose-Based Biosorbents for the Removal of Contaminants of Emerging Concern (CECs) from Water: A Review. Water 2023, 15, 1853. https://doi.org/10.3390/w15101853
Vasić V, Kukić D, Šćiban M, Đurišić-Mladenović N, Velić N, Pajin B, Crespo J, Farre M, Šereš Z. Lignocellulose-Based Biosorbents for the Removal of Contaminants of Emerging Concern (CECs) from Water: A Review. Water. 2023; 15(10):1853. https://doi.org/10.3390/w15101853
Chicago/Turabian StyleVasić, Vesna, Dragana Kukić, Marina Šćiban, Nataša Đurišić-Mladenović, Natalija Velić, Biljana Pajin, João Crespo, Marinella Farre, and Zita Šereš. 2023. "Lignocellulose-Based Biosorbents for the Removal of Contaminants of Emerging Concern (CECs) from Water: A Review" Water 15, no. 10: 1853. https://doi.org/10.3390/w15101853
APA StyleVasić, V., Kukić, D., Šćiban, M., Đurišić-Mladenović, N., Velić, N., Pajin, B., Crespo, J., Farre, M., & Šereš, Z. (2023). Lignocellulose-Based Biosorbents for the Removal of Contaminants of Emerging Concern (CECs) from Water: A Review. Water, 15(10), 1853. https://doi.org/10.3390/w15101853