Fish Injury from Movements across Hydraulic Structures: A Review
Abstract
:1. Introduction
2. Fish Injuries in Hydraulic Systems
2.1. Fish Injury and Reported Causes
2.2. Common Categorisation of Hydraulic Effects That Cause Fish Injury
2.3. Reported Injury Thresholds
2.3.1. Shear Stress Thresholds
2.3.2. Strain Thresholds
2.3.3. Pressure Change Thresholds
Fish Species | RPC | Comment on Injury | System for Tests | Reference |
---|---|---|---|---|
Sockeye salmon smolts (Oncorhynchus nerka) | 3.06 | 21% mortality | Pressure chamber | [63] * |
Fallfish (Semotilus corporalis), lake trout (Salvelinus namaycush), and Atlantic salmon (Salmo salar) | 0.05 | No mortality | Pressure chamber (Instantaneous compression with 10 min return to atmospheric conditions) | [64] * |
Perch (Percidae) | 3.00 | 70% mortality | Pressure chamber | [65] * |
Largemouth bass (Micropterus salmoides) | 1.89 | 25% mortality (over 5 days) | Pressure chamber | [66] * |
2.77 | 42% mortality | |||
3.65 | 46% mortality (over 1 h) | |||
Chinook salmon (Oncorhynchus tshawytscha) (71–205 mm) | 2.12 | Infrequent injury; low mortality (<10%) | Pressure chamber | [48] |
4.5 | Considerable injury; ~55% mortality | |||
Silver perch (Bidyanus bidyanus)(22 days post hatching) | 2.63 | Onset of injury | Pressure chamber | [28] |
Golden perch (Macquaria ambigua)(12 days post hatching) | 2.12 | Onset of injury | ||
Murray cod (Maccullochella peelii)(25 days post hatching) | 2.38 | Onset of deflated swim bladder | ||
Murray cod juvenile (Maccullochella peelii) (~66 mm) | 1.59 ** | Onset of injury (viscera haemorrhage only) | ||
2.50 | Onset of other pressure related injuries | |||
Silver perch juvenile (Bidyanus bidyanus) (~80 mm) | 1.47 ** | Onset of injury (kidney haemorrhage only) | ||
2.04 | Onset of other pressure related injuries |
2.3.4. Acceleration and Deceleration Thresholds
Fish Species | Acceleration (G) | Comment on Injury | System for Tests | Reference |
---|---|---|---|---|
Chinook salmon (Oncorhynchus tshawytscha) (93–128 mm) | 18.3 | 10% probability of minor injuries | Jet shear flume (fish inserted into submerged jet headfirst) | [37] |
34.7 | 10% probability of major injuries | |||
Chinook salmon (Oncorhynchus tshawytscha) (~114 mm) | 45.1 | 10% probability of minor injuries | Jet shear flume (fish entrained in submerged jet entering still water) | [68] |
68.6 | 10% probability of major injuries |
2.3.5. Thresholds for Other Hydraulic Effects
2.3.6. Summary
3. Fish Injuries during Open-Channel Flow Movement across Hydraulic Structures
3.1. Fish Movement across Weirs
3.2. Fish Conveyance along Spillways
3.3. Fish in Energy Dissipators
3.4. Fishways and Other Diversion Structures
4. Fish Injuries during Closed-Conduit Transport
4.1. Fish in Pump Systems
4.2. Fish Movement through Turbines
4.3. Closed-Conduit-Type Fishways
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belletti, B.; de Leaniz, C.G.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; van de Bund, W.; Aarestrup, K.; Barry, J.; et al. More than one million barriers fragment Europe’s rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef]
- Harris, J.H.; Kingsford, R.T.; Peirson, W.; Baumgartner, L.J. Mitigating the effects of barriers to freshwater fish migrations: The Australian experience. Mar. Freshw. Res. 2017, 68, 614. [Google Scholar] [CrossRef]
- Watson, J.R.; Goodrich, H.; Cramp, R.L.; Gordos, M.A.; Franklin, C. Utilising the boundary layer to help restore the connectivity of fish habitats and populations. Ecol. Eng. 2018, 122, 286–294. [Google Scholar] [CrossRef]
- Santos, J.M.; Silva, A.; Katopodis, C.; Pinheiro, P.; Pinheiro, A.; Bochechas, J.; Ferreira, M.T. Ecohydraulics of pool-type fishways: Getting past the barriers. Ecol. Eng. 2012, 48, 38–50. [Google Scholar] [CrossRef]
- Lugg, A.; Copeland, C. Review of cold water pollution in the Murray-Darling Basin and the impacts on fish communities. Ecol. Manag. Restor. 2014, 15, 71–79. [Google Scholar] [CrossRef]
- Santos, J.M.; Branco, P.; Katopodis, C.; Ferreira, T.; Pinheiro, A. Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: Effect of boulder density and fishway discharge. Ecol. Eng. 2014, 73, 335–344. [Google Scholar] [CrossRef]
- Trumbo, B.A.; Ahmann, M.L.; Renholds, J.F.; Brown, R.S.; Colotelo, A.H.; Deng, Z.D. Improving hydroturbine pressures to enhance salmon passage survival and recovery. Rev. Fish Biol. Fish. 2014, 24, 955–965. [Google Scholar] [CrossRef]
- Cada, G.F.; Coutant, C.C.; Whitney, R.R. Development of Biological Criteria for the Design of Advanced Hydropower Turbines; EERE Publication and Product Library: Washington, DC, USA, 1997. [Google Scholar]
- Schilt, C.R. Developing fish passage and protection at hydropower dams. Appl. Anim. Behav. Sci. 2007, 104, 295–325. [Google Scholar] [CrossRef]
- Mao, X. Review of fishway research in China. Ecol. Eng. 2018, 115, 91–95. [Google Scholar] [CrossRef]
- Silva, A.T.; Lucas, M.C.; Castro-Santos, T.; Katopodis, C.; Baumgartner, L.J.; Thiem, J.D.; Aarestrup, K.; Pompeu, P.S.; O’Brien, G.C.; Braun, D.C.; et al. The future of fish passage science, engineering, and practice. Fish Fish. 2018, 19, 340–362. [Google Scholar] [CrossRef]
- Manning, D.J.; Mann, J.A.; White, S.K.; Chase, S.D.; Benkert, R.C. Steelhead Emigration in a Seasonal Impoundment Created by an Inflatable Rubber Dam. North Am. J. Fish. Manag. 2005, 25, 1239–1255. [Google Scholar] [CrossRef]
- Ohms, H.A.; Chargualaf, D.N.; Brooks, G.; Hamilton, C.; Palkovacs, E.P.; Boughton, D.A. Poor downstream passage at a dam creates an ecological trap for migratory fish. Can. J. Fish. Aquat. Sci. 2022, 79, 2204–2215. [Google Scholar] [CrossRef]
- Walsh, C.; Rodgers, M.; Robinson, W.; Gilligan, D. Evaluation of the Effectiveness of the Tallowa Dam Fishway; NSW Department of Primary Industries: Batemans Bay, Australia, 2014. [Google Scholar]
- Liu, J.; Kattel, G.; Wang, Z.; Xu, M. Artificial fishways and their performances in China’s regulated river systems: A historical synthesis. J. Ecohydraulics 2019, 4, 158–171. [Google Scholar] [CrossRef]
- Harris, J.H.; Peirson, W.L.; Mefford, B.; Kingsford, R.T.; Felder, S. Laboratory testing of an innovative tube fishway concept. J. Ecohydraulics 2020, 5, 84–93. [Google Scholar] [CrossRef]
- Felder, S.; Erpicum, S.; Mulligan, S.; Valero, D.; Zhu, D.; Crookston, B. Hydraulic Structures at a Crossroads Towards the SDGs. IAHR White Paper. 2021. Available online: https://www.iahr.org/library/infor?pid=20505 (accessed on 9 May 2023).
- Koehn, J.D. Key steps to improve the assessment, evaluation and management of fish kills: Lessons from the Murray–Darling River system, Australia. Mar. Freshw. Res. 2022, 73, 269–281. [Google Scholar] [CrossRef]
- Sheldon, F.; Barma, D.; Baumgartner, L.J.; Bond, N.; Mitrovic, S.M.; Vertessy, R. Assessment of the causes and solutions to the significant 2018–2019 fish deaths in the Lower Darling River, New South Wales, Australia. Mar. Freshw. Res. 2022, 73, 147–158. [Google Scholar] [CrossRef]
- Austin, B. The effects of pollution on fish health. J. Appl. Microbiol. 1998, 85, 234S–242S. [Google Scholar] [CrossRef]
- Islam, M.S.; Tanaka, M. Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: A review and synthesis. Mar. Pollut. Bull. 2004, 48, 624–649. [Google Scholar] [CrossRef] [PubMed]
- Algera, D.A.; Rytwinski, T.; Taylor, J.J.; Bennett, J.R.; Smokorowski, K.E.; Harrison, P.M.; Clarke, K.D.; Enders, E.C.; Power, M.; Bevelhimer, M.S.; et al. What are the relative risks of mortality and injury for fish during downstream passage at hydroelectric dams in temperate regions? A systematic review. Environ. Evid. 2020, 9, 3. [Google Scholar] [CrossRef]
- Baumgartner, L.J.; Reynoldson, N.; Gilligan, D.M. Mortality of larval Murray cod (Maccullochella peelii peelii) and golden perch (Macquaria ambigua) associated with passage through two types of low-head weirs. Mar. Freshw. Res. 2006, 57, 187–191. [Google Scholar] [CrossRef]
- Pflugrath, B.D.; Boys, C.A.; Cathers, B.; Deng, Z.D. Over or under? Autonomous sensor fish reveals why overshot weirs may be safer than undershot weirs for fish passage. Ecol. Eng. 2019, 132, 41–48. [Google Scholar] [CrossRef]
- Castro-Santos, T.; Cotel, A.; Webb, P.W. Fishway evaluations for better bioengineering—An integrative approach. In Proceedings of the International Symposium: Challenges for Diadromous Fishes in a Dynamic Global Environment’, Halifax, NS, Canada, 18–21 June 2009; American Fisheries Society: Bethesda, MD, USA, 2009; pp. 557–575. [Google Scholar]
- Pope, S.B. Turbulent Flows; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Ruggles, C.P.; Murray, D.G. A Review of Fish Response to Spillways; Canadian Technical Report of Fisheries and Aquatic Sciences No. 1172; Government of Canada, Fisheries and Oceans: Ottawa, ON, Canada, 1983. [Google Scholar]
- Boys, C.A.; Navarro, A.; Robinson, W.; Fowler, T.; Chilcott, S.; Miller, B.; Pflugrath, B.; Baumgartner, L.J.; Mcpherson, J.; Brown, R.; et al. Downstream Fish Passage Criteria for Hydropower and Irrigation Infrastructure in the Murray–Darling Basin; Fisheries Final Report Series, no. 141; NSW Department of Primary Industries: Sydney, Australia, 2014. [Google Scholar]
- Navarro, A.; Boys, C.A.; Robinson, W.; Baumgartner, L.; Miller, B.; Deng, Z.; Finlayson, C.M. Tolerable ranges of fluid shear for early life-stage fishes: Implications for safe fish passage at hydropower and irrigation infrastructure. Mar. Freshw. Res. 2019, 70, 1503. [Google Scholar] [CrossRef]
- Brown, R.S.; Colotelo, A.H.; Pflugrath, B.D.; Boys, C.A.; Baumgartner, L.; Deng, Z.; Silva, L.G.M.; Brauner, C.J.; Mallen-Cooper, M.; Phonekhampeng, O.; et al. Understanding Barotrauma in Fish Passing Hydro Structures: A Global Strategy for Sustainable Development of Water Resources. Fisheries 2014, 39, 108–122. [Google Scholar] [CrossRef]
- Weitkamp, D.E.; Katz, M. A Review of Dissolved Gas Supersaturation Literature. Trans. Am. Fish. Soc. 1980, 109, 659–702. [Google Scholar] [CrossRef]
- Beck, C. Fish Protection and Fish Guidance at Water Intakes Using Innovative Curved-Bar Rack Bypass Systems. Ph.D. Thesis, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH Zürich, Zürich, Switzerland, 2020. [Google Scholar]
- Montén, E. Fish and Turbines: Fish Injuries during Passage through Power Station Turbines; Norstedts Tryckeri: Stockholm, Sweden, 1985. [Google Scholar]
- Davies, J.K. A review of information relating to fish passage through turbines: Implications to tidal power schemes. J. Fish Biol. 1988, 33, 111–126. [Google Scholar] [CrossRef]
- Neitzel, D.A.; Richmond, M.C.; Dauble, D.D.; Mueller, R.P.; Moursund, R.A.; Abernethy, C.S.; Guensch, G.R. Laboratory Studies on the Effects of Shear on Fish; United States Department of Energy: Idaho Falls, ID, USA, 2000. [Google Scholar]
- Odeh, M.; Noreika, J.F.; Haro, A.; Maynard, A.; Castro-Santos, T.; Cada, G. Evaluation of the Effects of Turbulence on the Behavior of Migratory Fish, 2002 Final Report; Bonneville Power Administration United States Department of Energy: Portland, OR, USA, 2002. [Google Scholar]
- Deng, Z.; Guensch, G.R.; A McKinstry, C.; Mueller, R.P.; Dauble, D.D.; Richmond, M.C. Evaluation of fish-injury mechanisms during exposure to turbulent shear flow. Can. J. Fish. Aquat. Sci. 2005, 62, 1513–1522. [Google Scholar] [CrossRef]
- Xiao, L.; Long, X.; Li, L.; Xu, M.; Wu, N.; Wang, Q. Movement characteristics of fish in a jet fish pump. Ocean Eng. 2015, 108, 480–492. [Google Scholar] [CrossRef]
- Pracheil, B.M.; DeRolph, C.R.; Schramm, M.P.; Bevelhimer, M.S. A fish-eye view of riverine hydropower systems: The current understanding of the biological response to turbine passage. Rev. Fish Biol. Fish. 2016, 26, 153–167. [Google Scholar] [CrossRef]
- Mueller, M.; Pander, J.; Geist, J. Evaluation of external fish injury caused by hydropower plants based on a novel field-based protocol. Fish. Manag. Ecol. 2017, 24, 240–255. [Google Scholar] [CrossRef]
- Bierschenk, B.M.; Pander, J.; Mueller, M.; Geist, J. Fish injury and mortality at pumping stations: A comparison of conventional and fish-friendly pumps. Mar. Freshw. Res. 2019, 70, 449. [Google Scholar] [CrossRef]
- Long, X.; Xu, M.; Wang, J.; Zou, J.; Ji, B. An experimental study of cavitation damage on tissue of Carassius auratus in a jet fish pump. Ocean Eng. 2019, 174, 43–50. [Google Scholar] [CrossRef]
- Mueller, M.; Sternecker, K.; Milz, S.; Geist, J. Assessing turbine passage effects on internal fish injury and delayed mortality using X-ray imaging. PeerJ 2020, 8, e9977. [Google Scholar] [CrossRef]
- Streeter, V.L.; Wylie, E.B. Fluid Mechanics; McGraw-Hill: New York, NY, USA, 1979. [Google Scholar]
- Turnpenny, A.W.H.; Davis, M.H.; Fleming, J.M.; Davies, J.K. Experimental Studies Relating to the Passage of Fish and Shrimps Through Tidal Power Turbines; National Power, Marine and Freshwater Biology Unit: Southampton/Hampshire, UK, 1992. [Google Scholar]
- Morgan, R.P.; Ulanowicz, R.E.; Rasin, V.J., Jr.; Noe, L.A.; Gray, G.B. Effects of shear on eggs and larvae of striped bass, Morone saxatilis, and white perch, M. americana. Trans. Am. Fish. Soc. 1976, 105, 149–154. [Google Scholar] [CrossRef]
- Neitzel, D.A.; Dauble, D.D.; Čada, G.F.; Richmond, M.C.; Guensch, G.R.; Mueller, R.P.; Abernethy, C.S.; Amidan, B. Survival Estimates for Juvenile Fish Subjected to a Laboratory-Generated Shear Environment. Trans. Am. Fish. Soc. 2004, 133, 447–454. [Google Scholar] [CrossRef]
- Brown, R.S.; Carlson, T.J.; Gingerich, A.J.; Stephenson, J.R.; Pflugrath, B.D.; Welch, A.E.; Langeslay, M.J.; Ahmann, M.L.; Johnson, R.L.; Skalski, J.R.; et al. Quantifying Mortal Injury of Juvenile Chinook Salmon Exposed to Simulated Hydro-Turbine Passage. Trans. Am. Fish. Soc. 2012, 141, 147–157. [Google Scholar] [CrossRef]
- Liao, J.C.; Beal, D.N.; Lauder, G.V.; Triantafyllou, M.S. Fish Exploiting Vortices Decrease Muscle Activity. Science 2003, 302, 1566–1569. [Google Scholar] [CrossRef] [PubMed]
- Enders, E.C.; Boisclair, D.; Roy, A.G. The effect of turbulence on the cost of swimming for juvenile Atlantic salmon (Salmo salar). Can. J. Fish. Aquat. Sci. 2003, 60, 1149–1160. [Google Scholar] [CrossRef]
- Muhawenimana, V.; Wilson, C.A.M.E.; Ouro, P.; Cable, J. Spanwise Cylinder Wake Hydrodynamics and Fish Behavior. Water Resour. Res. 2019, 55, 8569–8582. [Google Scholar] [CrossRef]
- Pleizier, N.K.; Algera, D.; Cooke, S.J.; Brauner, C.J. A meta-analysis of gas bubble trauma in fish. Fish Fish. 2020, 21, 1175–1194. [Google Scholar] [CrossRef]
- Montano, L.; Felder, S. Air-Water Flow Properties in Hydraulic Jumps with Fully and Partially Developed Inflow Conditions. J. Fluids Eng. 2021, 143, 101403. [Google Scholar] [CrossRef]
- Acheson, D.J. Elementary Fluid Dynamics; Clarendon Press: Oxford, UK, 1990. [Google Scholar]
- Thorncraft, G.; Phonekhampheng, O.; Baumgartner, L.; Martin, K.; Pflugrath, B.; Brown, R.; Deng, Z.; Boys, C.; Navarro, A. Optimising Fish-Friendly Criteria for Incorporation into the Design of Mini-Hydro Schemes in the Lower Mekong Basin; National University of Laos: Vientiane, Laos, 2013; 93p. [Google Scholar]
- Colotelo, A.H.; Mueller, R.P.; Harnish, R.A.; Martinez, J.J.; Phommavong, T.; Phommachanh, K.; Thorncraft, G.; Baumgartner, L.; Hubbard, J.M.; Rhode, B.M. Injury and mortality of two Mekong River species exposed to turbulent shear forces. Mar. Freshw. Res. 2018, 69, 1945. [Google Scholar] [CrossRef]
- Doyle, K.E.; Ning, N.; Silva, L.G.M.; Brambilla, E.M.; Boys, C.A.; Deng, Z.D.; Fu, T.; Du Preez, J.A.; Robinson, W.; Baumgartner, L.J. Gambusia holbrooki Survive Shear Stress, Pressurization and Avoid Blade Strike in a Simulated Pumped Hydroelectric Scheme. Front. Environ. Sci. 2020, 8, 563654. [Google Scholar] [CrossRef]
- Wang, Y.; Zhai, Z.; Li, J. Experimental study on effect of fluid shear on juveniles of four major Chinese carp species. Shuili Fadian Xuebao/J. Hydroelectr. Eng. 2020, 39, 10–20. [Google Scholar]
- Doyle, K.E.; Ning, N.; Silva, L.G.M.; Brambilla, E.M.; Deng, Z.D.; Fu, T.; Boys, C.A.; Robinson, W.; Du Preez, J.A.; Baumgartner, L.J. Survival estimates across five life stages of redfin (Perca fluviatilis) exposed to simulated pumped-storage hydropower stressors. Conserv. Physiol. 2022, 10, coac017. [Google Scholar] [CrossRef]
- Deng, Z.; Duncan, J.; Arnold, J.; Fu, T.; Martinez, J.; Lu, J.; Titzler, P.; Zhou, D.; Mueller, R. Evaluation of Boundary Dam spillway using an Autonomous Sensor Fish Device. J. Hydro-Environ. Res. 2017, 14, 85–92. [Google Scholar] [CrossRef]
- Bell, M.C.; Delacy, A.C. A Compendium on the Survival of Fish Passing through Spillways and Conduits; Fisheries Engineering Research Program U.S. Army Corps of Engineers, North Pacific Division: Portland, OR, USA, 1972. [Google Scholar]
- Cook, T.; Hecker, G.; Faulkner, H.; Jansen, W. Development of a More Fish-Tolerant Turbine Runner, Advanced Hydropower Turbine Project; Worcester Polytechnic Inst.: Holden, MA, USA; Alden Research Lab.: Everett, WA, USA; Northern Research and Engineering Corp.: Woburn, MA, USA, 1997. [Google Scholar]
- Harvey, H.H. Pressure in the Early Life History of Sockeye Salmon. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 1963. [Google Scholar]
- Foye, R.E.; Scott, M. Effects of pressure on survival of six species of fish. Trans. Am. Fish. Soc. 1965, 94, 88–91. [Google Scholar] [CrossRef]
- Tsvetkov, V.I.; Pavlov, D.S.; Nezdoliy, Y.K. Changes in hydrostatic pressure lethal to the young of some freshwater fish. J. lchthyol. 1972, 12, 307–318. [Google Scholar]
- Feathers, M.G.; Knable, A.E. Effects of depressurization upon largemouth bass. N. Am. J. Fish. Manag. 1983, 3, 86–90. [Google Scholar] [CrossRef]
- Deng, Z.; Carlson, T.J.; Duncan, J.P.; Richmond, M.C. Six-Degree-of-Freedom Sensor Fish Design and Instrumentation. Sensors 2007, 7, 3399–3415. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.; Mueller, R.P.; Richmond, M.C.; Johnson, G.E. Injury and Mortality of Juvenile Salmon Entrained in a Submerged Jet Entering Still Water. North Am. J. Fish. Manag. 2010, 30, 623–628. [Google Scholar] [CrossRef]
- Kovac, A.; Pleizier, N.K.; Brauner, C.J. The effect of total dissolved gas supersaturation on gas bubble trauma in juvenile rainbow trout (Oncorhynchus mykiss), juvenile kokanee (Oncorhynchus nerka) and two age classes of white sturgeon (Acipenser transmontanus). Can. J. Fish. Aquat. Sci. 2021, 79, 249–256. [Google Scholar] [CrossRef]
- Algera, D.A.; Kamal, R.; Ward, T.D.; Pleizier, N.K.; Brauner, C.J.; Crossman, J.A.; Leake, A.; Zhu, D.Z.; Power, M.; Cooke, S.J. Exposure Risk of Fish Downstream of a Hydropower Facility to Supersaturated Total Dissolved Gas. Water Resour. Res. 2022, 58, e2021WR031887. [Google Scholar] [CrossRef]
- Timmons, M.B.; Ebeling, J.M.; Wheaton, F.W.; Summerfelt, S.; Vinci, B.J. Recirculating Aquaculture Systems; Cayuga Aqua Ventures: Ithaca, NY, USA, 2002. [Google Scholar]
- Bevelhimer, M.S.; Pracheil, B.M.; Fortner, A.M.; Saylor, R.; Deck, K.L. Mortality and injury assessment for three species of fish exposed to simulated turbine blade strike. Can. J. Fish. Aquat. Sci. 2019, 76, 2350–2363. [Google Scholar] [CrossRef]
- Chow, V.T. Open-Channel Hydraulics; McGraw-Hill: New York, NY, USA, 1959. [Google Scholar]
- Henderson, F.M. Open Channel Flow; MacMillan Company: New York, NY, USA, 1966. [Google Scholar]
- Khatsuria, R.M. Hydraulics of Spillways and Energy Dissipators; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Novák, P.; Moffat, A.; Nalluri, C.; Narayanan, R. Hydraulic Structures; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Hager, W.H.; Schleiss, A.J.; Boes, R.M.; Pfister, M. Hydraulic Engineering of Dams; CRC Press: London, UK, 2020. [Google Scholar]
- O’Connor, J.P.; O’Mahony, D.J.; O’Mahony, J.M.; Glenane, T.J. Some impacts of low and medium head weirs on downstream fish movement in the Murray-Darling Basin in southeastern Australia. Ecol. Freshw. Fish 2006, 15, 419–427. [Google Scholar] [CrossRef]
- Havn, T.B.; Thorstad, E.B.; Borcherding, J.; Heermann, L.; Teichert, M.a.K.; Ingendahl, D.; Tambets, M.; Sæther, S.A.; Økland, F. Impacts of a weir and power station on downstream migrating Atlantic salmon smolts in a German river. River Res. Appl. 2020, 36, 784–796. [Google Scholar] [CrossRef]
- Marttin, F.; De Graaf, G.J. The effect of a sluice gate and its mode of operation on mortality of drifting fish larvae in Bangladesh. Fish. Manag. Ecol. 2002, 9, 123–125. [Google Scholar] [CrossRef]
- Hoss, D.; Blaxter, J. The effect of rapid changes of hydrostatic pressure on the Atlantic herring Clupea harengus L. I. Larval survival and behaviour. J. Exp. Mar. Biol. Ecol. 1979, 41, 75–85. [Google Scholar] [CrossRef]
- Boys, C.; Baumgartner, L.; Miller, B.; Deng, Z.; Brown, R.; Pflugrath, B. Protecting Downstream Migrating Fish at Mini Hydropower and Other River Infrastructure; Fisheries Final Report Series, no. 137; NSW Department of Primary Industries: Sydney, Australia, 2013. [Google Scholar]
- Bestgen, K.R.; Mefford, B.; Compton, R.I. Mortality and injury rates for small fish passing over three diversion dam spillway models. Ecol. Eng. 2018, 123, 141–150. [Google Scholar] [CrossRef]
- Muir, W.D.; Smith, S.G.; Williams, J.G.; Sandford, B.P. Survival of Juvenile Salmonids Passing through Bypass Systems, Turbines, and Spillways with and without Flow Deflectors at Snake River Dams. N. Am. J. Fish. Manag. 2001, 21, 135–146. [Google Scholar] [CrossRef]
- Schoeneman, D.E.; Pressey, R.T.; Junge, C.O., Jr. Mortalities of Downstream Migrant Salmon at McNary Dam. Trans. Am. Fish. Soc. 1961, 90, 58–72. [Google Scholar] [CrossRef]
- Duncan, J.; Deng, Z.; Arnold, J.; Fu, T.; Trumbo, B.; Carlson, T.; Zhou, D. Physical and ecological evaluation of a fish-friendly surface spillway. Ecol. Eng. 2018, 110, 107–116. [Google Scholar] [CrossRef]
- Felder, S.; Geuzaine, M.; Dewals, B.; Erpicum, S. Nappe flows on a stepped chute with prototype-scale steps height: Observa-tions of flow patterns, air-water flow properties, energy dissipation and dissolved oxygen. J. Hydro-Environ. Res. 2019, 27, 1–19. [Google Scholar] [CrossRef]
- Department of Primary Industries and Fisheries. Paradise Dam Downstream Fishway Monitoring Program; Fisheries Queensland Final Report; DEEDI Fisheries Queensland: Brisbane, Australia, 2012. [Google Scholar]
- Backman, T.W.H.; Evans, A.F. Gas Bubble Trauma Incidence in Adult Salmonids in the Columbia River Basin. North Am. J. Fish. Manag. 2002, 22, 579–584. [Google Scholar] [CrossRef]
- White, F.M. Fluid Mechanics; McGraw Hill: New York, NY, USA, 2011. [Google Scholar]
- Chanson, H. Stepped spillway flows and air entrainment. Can. J. Civ. Eng. 1993, 20, 422–435. [Google Scholar] [CrossRef]
- Backman, T.W.H.; Evans, A.F.; Robertson, M.S.; Hawbecker, M.A. Gas Bubble Trauma Incidence in Juvenile Salmonids in the Lower Columbia and Snake Rivers. North Am. J. Fish. Manag. 2002, 22, 965–972. [Google Scholar] [CrossRef]
- Larinier, M. Fishways—General considerations. Bull. Fr. Peche Piscic. 2002, 364, 21–27. [Google Scholar] [CrossRef]
- Schwevers, U.; Adam, B. Fish Protection Technologies and Fish Ways for Downstream Migration; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Mallen-Cooper, M. Swimming ability of juvenile Australian bass, Macquaria novemaculeata (Steindachner), and juvenile barramundi, LAtes calcarifer (Bloch), in an experimental vertical-slot fishway. Mar. Freshw. Res. 1992, 43, 823–833. [Google Scholar] [CrossRef]
- NMFS. NOAA Fisheries West Coast Region Anadromous Salmonid Passage Design Manual; NMFS: Portland, OR, USA, 2022. [Google Scholar]
- Larinier, M.; Travade, F. Downstream migration: Problems and facilities. Bull. Français Pêche Piscic. 2002, 364, 181–207. [Google Scholar] [CrossRef]
- Meister, J. Fish Protection and Guidance at Water Intakes with Horizontal Bar Rack Bypass Systems. Ph.D. Thesis, Versuchsanstalt für Wasserbau Hydrologie und Glaziologie (VAW), ETH Zürich, Zürich, Switzerland, 2020. [Google Scholar]
- Larinier, M.; Travade, F. Small-scale hydropower schemes and migratory fish passage. Houille Blanche 1998, 84, 46–51. [Google Scholar] [CrossRef]
- Albayrak, I.; Boes, R.M.; Kriewitz-Byun, C.R.; Peter, A.; Tullis, B.P. Fish guidance structures: Hydraulic performance and fish guidance efficiencies. J. Ecohydraulics 2020, 5, 113–131. [Google Scholar] [CrossRef]
- Meister, J.; Selz, O.M.; Beck, C.; Peter, A.; Albayrak, I.; Boes, R.M. Protection and guidance of downstream moving fish with horizontal bar rack bypass systems. Ecol. Eng. 2022, 178, 106584. [Google Scholar] [CrossRef]
- DWA. Fish Protection Technologies and Downstream Fishways—Dimensioning, Design, Effectiveness Inspection; German Association for Water, Wastewater and Waste: Hennef, Germany, 2005. [Google Scholar]
- Meister, J.; Moldenhauer-Roth, A.; Beck, C.; Selz, O.M.; Peter, A.; Albayrak, I.; Boes, R.M. Protection and Guidance of Down-stream Moving Fish with Electrified Horizontal Bar Rack Bypass Systems. Water 2021, 13, 2786. [Google Scholar] [CrossRef]
- Boys, C.A.; Baumgartner, L.J.; Lowry, M. Entrainment and impingement of juvenile silver perch, Bidyanus bidyanus, and golden perch, Macquaria ambigua, at a fish screen: Effect of velocity and light. Fish. Manag. Ecol. 2013, 20, 362–373. [Google Scholar] [CrossRef]
- Boys, C.A.; Rayner, T.S.; Baumgartner, L.J.; Doyle, K.E. Native fish losses due to water extraction in Australian rivers: Evidence, impacts and a solution in modern fish- and farm-friendly screens. Ecol. Manag. Restor. 2021, 22, 134–144. [Google Scholar] [CrossRef]
- Baumgartner, L.J.; Reynoldson, N.K.; Cameron, L.; Stanger, J.G. Effects of irrigation pumps on riverine fish. Fish. Manag. Ecol. 2009, 16, 429–437. [Google Scholar] [CrossRef]
- Stocks, J.R.; Walsh, C.T.; Rodgers, M.P.; Boys, C.A. Approach velocity and impingement duration influences the mortality of juvenile Golden Perch (Macquaria ambigua) at a fish exclusion screen. Ecol. Manag. Restor. 2019, 20, 136–141. [Google Scholar] [CrossRef]
- Buysse, D.; Mouton, A.M.; Stevens, M.; Neucker, T.V.D.; Coeck, J. Mortality of European eel after downstream migration through two types of pumping stations. Fish. Manag. Ecol. 2014, 21, 13–21. [Google Scholar] [CrossRef]
- Westbrook, G.; Huon Valley, Tasmania, Australia. Huon Aquaculture. Personal communication, 2021. [Google Scholar]
- Thompson, A.M.; Glasgow, J.; Buehrens, T.; Drucker, E.G. Mortality in juvenile salmonids passed through an agricultural Hidrostal pump. Fish. Manag. Ecol. 2011, 18, 333–338. [Google Scholar] [CrossRef]
- Long, X.; Xu, M.; Lyu, Q.; Zou, J. Impact of the internal flow in a jet fish pump on the fish. Ocean Eng. 2016, 126, 313–320. [Google Scholar] [CrossRef]
- Xu, M.; Ji, B.; Zou, J.; Long, X. Experimental investigation on the transport of different fish species in a jet fish pump. Aquac. Eng. 2017, 79, 42–48. [Google Scholar] [CrossRef]
- Summerfelt, S.T.; Davidson, J.; Wilson, G.; Waldrop, T. Advances in fish harvest technologies for circular tanks. Aquac. Eng. 2009, 40, 62–71. [Google Scholar] [CrossRef]
- Haro, A.; Watten, B.; Noreika, J.; Haro, A. Passage of downstream migrant American eels through an airlift-assisted deep bypass. Ecol. Eng. 2016, 91, 545–552. [Google Scholar] [CrossRef]
- Radinger, J.; van Treeck, R.; Wolter, C. Evident but context-dependent mortality of fish passing hydroelectric turbines. Conserv. Biol. 2022, 36, e13870. [Google Scholar] [CrossRef]
- Coutant, C.C.; Whitney, R.R. Fish Behavior in Relation to Passage through Hydropower Turbines: A Review. Trans. Am. Fish. Soc. 2000, 129, 351–380. [Google Scholar] [CrossRef]
- Cada, G.; Loar, J.; Garrison, L.; Fisher Jr, R.; Neitzel, D. Efforts to Reduce Mortality to Hydroelectric Turbine-Passed Fish: Locating and Quantifying Damaging Shear Stresses. Environ. Manag. 2006, 37, 898–906. [Google Scholar] [CrossRef]
- Pflugrath, B.D.; Dowell, F.E.; Brown, R.S. Using transparent fish to observe barotrauma associated with downstream passage through hydropower turbines. River Res. Appl. 2020, 36, 1612–1617. [Google Scholar] [CrossRef]
- Vikström, L.; Leonardsson, K.; Leander, J.; Shry, S.; Calles, O.; Hellström, G. Validation of Francis-Kaplan turbine blade strike models for adult and Juvenile Atlantic Salmon (Salmo salar L.) and Anadromous Brown Trout (Salmo trutta L.) passing high head turbines. Sustainability 2020, 12, 6384. [Google Scholar] [CrossRef]
- Hecker, G.E.; Cook, T.C. Development and Evaluation of a New Helical Fish-Friendly Hydroturbine. J. Hydraul. Eng. 2005, 131, 835–844. [Google Scholar] [CrossRef]
- Čada, G.F. The Development of Advanced Hydroelectric Turbines to Improve Fish Passage Survival. Fisheries 2001, 26, 14–23. [Google Scholar] [CrossRef]
- Calles, O.; Greenberg, L. Connectivity is a two-way street--the need for a holistic approach to fish passage problems in reg-ulated rivers. River Res. Appl. 2009, 25, 1268–1286. [Google Scholar] [CrossRef]
- Vowles, A.S.; Karlsson, S.P.; Uzunova, E.P.; Kemp, P.S. The importance of behaviour in predicting the impact of a novel small-scale hydropower device on the survival of downstream moving fish. Ecol. Eng. 2014, 69, 151–159. [Google Scholar] [CrossRef]
- Nyqvist, D.; McCormick, S.D.; Greenberg, L.; Ardren, W.R.; Bergman, E.; Calles, O.; Castro-Santos, T. Downstream Migration and Multiple Dam Passage by Atlantic Salmon Smolts. N. Am. J. Fish. Manag. 2017, 37, 816–828. [Google Scholar] [CrossRef]
- Östergren, J.; Rivinoja, P. Overwintering and downstream migration of sea trout (Salmo trutta L.) kelts under regulated flows—Northern Sweden. River Res. Appl. 2008, 24, 551–563. [Google Scholar] [CrossRef]
- Fu, T.; Deng, Z.D.; Duncan, J.P.; Zhou, D.; Carlson, T.J.; Johnson, G.E.; Hou, H. Assessing hydraulic conditions through Francis turbines using an autonomous sensor device. Renew. Energy 2016, 99, 1244–1252. [Google Scholar] [CrossRef]
- Mueller, M.; Knott, J.; Pander, J.; Geist, J. Experimental comparison of fish mortality and injuries at innovative and conventional small hydropower plants. J. Appl. Ecol. 2022, 59, 2360–2372. [Google Scholar] [CrossRef]
- Schneider, J.; Hübner, D.; Korte, E. Funktionskontrolle der Fischaufstiegs- und Fischabstiegshilfen sowie Erfassung der Mortalität bei Turbinendurchgang an der Wasserkraftanlage Kostheim am Main—Endbericht; WKW Staustufe Kostheim/Main GmbH & Co. KG: Frankfurt, Germany, 2012. [Google Scholar]
- Schneider, J.; Hübner, D. Function Control of Fish Migration Facilities at the Hydropower Plant Kostheim at River Main. Wasserwirtschaft 2014, 104, 54–59. [Google Scholar] [CrossRef]
- Martinez, J.; Deng, Z.; Titzler, P.; Duncan, J.; Lu, J.; Mueller, R.; Tian, C.; Trumbo, B.; Ahmann, M.; Renholds, J. Hydraulic and biological characterization of a large Kaplan turbine. Renew. Energy 2019, 131, 240–249. [Google Scholar] [CrossRef]
- Turnpenny, A.W.H.; Clough, S.; Hanson, K.P.; Ramsay, R.; Mcewan, D. Risk Assessment for Fish Passage through Small, Low-Head Turbines; Fawley Aquatic, Energy Technology Support Unit: Harwell, UK, 2000. [Google Scholar]
- Richmond, M.C.; Serkowski, J.A.; Ebner, L.L.; Sick, M.; Brown, R.S.; Carlson, T.J. Quantifying barotrauma risk to juvenile fish during hydro-turbine passage. Fish. Res. 2014, 154, 152–164. [Google Scholar] [CrossRef]
- Calles, O.; Elghagen, J.; Nyqvist, D.; Harbicht, A.; Nilsson, P.A. Efficient and timely downstream passage solutions for Eu-ropean silver eels at hydropower dams. Ecol. Eng. 2021, 170, 106350. [Google Scholar] [CrossRef]
- Knott, J.; Mueller, M.; Pander, J.; Geist, J. Downstream fish passage at small-scale hydropower plants: Turbine or bypass? Front. Environ. Sci. 2023, 11, 400. [Google Scholar] [CrossRef]
- Knott, J.; Mueller, M.; Pander, J.; Geist, J. Bigger than expected: Species- and size-specific passage of fish through hydropower screens. Ecol. Eng. 2023, 188, 106883. [Google Scholar] [CrossRef]
- Slatick, E. Passage of Adult Salmon and Trout through an Inclined Pipe. Trans. Am. Fish. Soc. 1971, 100, 448–455. [Google Scholar] [CrossRef]
- Geist, D.R.; Colotelo, A.H.; Linley, T.J.; Wagner, K.A.; Miracle, A.L. Effects of a Novel Fish Transport System on the Health of Adult Fall Chinook Salmon. J. Fish Wildl. Manag. 2016, 7, 347–358. [Google Scholar] [CrossRef]
- Peirson, W.L.; Harris, J.H.; Kingsford, R.T.; Mao, X.; Felder, S. Piping fish over dams. J. Hydro-Environ. Res. 2021, 39, 71–80. [Google Scholar] [CrossRef]
- Sohlberg, M. A hydraulic Fishheart fishway. Wasserwirtschaft 2023, 113, 54–56. [Google Scholar] [CrossRef]
- Garavelli, L.; Linley, T.J.; Bellgraph, B.J.; Rhode, B.M.; Janak, J.M.; Colotelo, A.H. Evaluation of passage and sorting of adult Pacific salmonids through a novel fish passage technology. Fish. Res. 2019, 212, 40–47. [Google Scholar] [CrossRef]
- Geist, D. All Viewers and Participants of the PNNL Webinar—Evaluation of the Whooshh Fish Transport System (WFTS); PNNL: Richland, WA, USA, 2015. [Google Scholar]
- Mesa, M.G.; Gee, L.P.; Weiland, L.K.; Christiansen, H.E. Physiological Responses of Adult Rainbow Trout Experimentally Released through a Unique Fish Conveyance Device. N. Am. J. Fish. Manag. 2013, 33, 1179–1183. [Google Scholar] [CrossRef]
- Fast, D.; Johnson, M.; Bosch, B.; Bryan, J. Whooshh Transport Survival Efficacy is Reproducible Across a Three Year Viability Assessment Study; Yakama Nation Fisheries and Whooshh Innovations: Seattle, WA, USA, 2016. [Google Scholar]
- Peirson, W.L.; Harris, J.H.; Suthers, I.M.; Farzadkhoo, M.; Kingsford, R.T.; Felder, S. Impacts on fish transported in tube fishways. J. Hydro-Environ. Res. 2022, 42, 1–11. [Google Scholar] [CrossRef]
- Foldvik, A.; TSilva, A.; Albayrak, I.; Schwarzwälder, K.; Boes, R.; Rüther, N. Combining Fish Passage and Sediment Bypassing: A Conceptual Solution for Increased Sustainability of Dams and Reservoirs. Water 2022, 14, 1977. [Google Scholar] [CrossRef]
- Geist, J. Editorial: Green or red: Challenges for fish and freshwater biodiversity conservation related to hydropower. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 1551–1558. [Google Scholar] [CrossRef]
- Ferguson, J.W.; Absolon, R.F.; Carlson, T.J.; Sandford, B.P. Evidence of Delayed Mortality on Juvenile Pacific Salmon Passing through Turbines at Columbia River Dams. Trans. Am. Fish. Soc. 2006, 135, 139–150. [Google Scholar] [CrossRef]
- Holder, P.E.; Wood, C.M.; Lawrence, M.J.; Clark, T.D.; Suski, C.D.; Weber, J.-M.; Danylchuk, A.J.; Cooke, S.J. Are we any closer to understanding why fish can die after severe exercise? Fish Fish. 2022, 23, 1400–1417. [Google Scholar] [CrossRef]
- Larinier, M. Fish passage experience at small-scale hydro-electric power plants in France. Hydrobiologia 2008, 609, 97–108. [Google Scholar] [CrossRef]
- Havn, T.B.; Sæther, S.A.; Thorstad, E.B.; Teichert, M.a.K.; Heermann, L.; Diserud, O.H.; Borcherding, J.; Tambets, M.; Økland, F. Downstream migration of Atlantic salmon smolts past a low head hydropower station equipped with Archimedes screw and Francis turbines. Ecol. Eng. 2017, 105, 262–275. [Google Scholar] [CrossRef]
Injury | Shear Stress | Pressure Changes | Acceleration | Turbulence | Aeration | Collision | Strike | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amputation | |||||||||||||||||||||
Bruising | |||||||||||||||||||||
Change in pigmentation | |||||||||||||||||||||
Corneal rupture | |||||||||||||||||||||
Decapitation | |||||||||||||||||||||
Deformation | |||||||||||||||||||||
Descaling | |||||||||||||||||||||
Disorientation | |||||||||||||||||||||
Egg loss | |||||||||||||||||||||
Embolism | |||||||||||||||||||||
Epithelium loss | |||||||||||||||||||||
Exophthalmia | |||||||||||||||||||||
Eye loss | |||||||||||||||||||||
Fin damage | |||||||||||||||||||||
Gas bubble disease | |||||||||||||||||||||
Gill damage | |||||||||||||||||||||
Haemorrhaging | |||||||||||||||||||||
Increased predation | |||||||||||||||||||||
Laceration | |||||||||||||||||||||
Mucus loss | |||||||||||||||||||||
Operculum damage | |||||||||||||||||||||
Rotation | |||||||||||||||||||||
Spinal injury | |||||||||||||||||||||
Stomach eversion | |||||||||||||||||||||
Swim bladder rupture | |||||||||||||||||||||
Torsion |
Fish Species | τ (Pa) | Injury/Mortality | System for Tests | Reference |
---|---|---|---|---|
White perch larvae (Morone americana) | 35 (τo) * | Mortality 38%—1 min exposure, 52%—2 min exposure, 75%—4 min exposure. | Concentric rotating cylinders | [46] |
Striped bass larvae (Morone saxatilis) | Mortality 9%—1 min exposure, 30%—2 min exposure, 68%—4 min exposure. | |||
Atlantic herring (Clupea harengus) | 206 | Complete mortality at 7 days. Loss of mucus coating | Jet shear flume (fish inserted into submerged jet) | [45] |
Salmonoids (Salmonidae) | 774 | Minor scale loss, no other injuries or mortality, 7 days | ||
Atlantic salmon (Salmo salar) | 3410 | 12% mortality, 32% eye injury; 5% scale loss per fish. | ||
Brown trout (Salmo trutta) | 10% mortality, 10% eye injury, 10% gill damage, 5% scale loss per fish. | |||
European eel (Anguilla anguilla) | No injury or mortality | |||
Twaite shad (Alosa fallax) | Complete mortality; 90% scale loss per fish | |||
Juvenile salmon (Salmonidae) | 1920 | 10% injury and mortality | Jet shear flume (fish inserted into submerged jet) | [8] |
Atlantic salmon (Salmo salar) (~174 mm), hybrid bass (Morone saxatilis×M. chrysops) (~172 mm), rainbow trout (Onchorhynchus mykiss) (~191 mm) | 50 (Reynolds shear stress) | Minor injury and disorientation at 10 min exposure; no mortality 48 h after tests | Turbulence tank | [36] |
Fish Species | e (1/s) | dy (mm) | Comment on Injury | System for Tests | Reference |
---|---|---|---|---|---|
Salmon (Salmonidae) | 600 * | 18 | Minor scale loss, no other injuries or mortality | Jet shear flume (fish inserted into submerged jet) | [45] |
American shad (Alosa sapidissima) (85–115 mm) | 517 | 18 | Onset for death and injuries | Jet shear flume (fish inserted into submerged jet headfirst) | [35] |
Chinook salmon (Oncorhynchus tshawytscha) (135–154 mm),steelhead (Oncorhynchus mykiss) (175–232 mm) | 517 | 18 | Onset of minor injury | ||
Rainbow trout (Onchorhynchus mykiss) (147–173 mm) | 688 | 18 | Onset of minor injury | ||
Chinook salmon (Oncorhynchus tshawytscha) (135–154 mm) | 852 | 18 | Onset of minor injury | Jet shear flume (fish inserted into submerged jet tail first) | |
Chinook salmon (Oncorhynchus tshawytscha) (135–154 mm),rainbow trout (Onchorhynchus mykiss) (147–173 mm), steelhead (Oncorhynchus mykiss) (175–232 mm) | 1008 | 18 | No significant major injury or deaths | ||
Salmonids (Oncorhynchus) | 495 | 18 | Threshold for estimated 10% minor injury in juvenile salmonids. | Jet shear flume (fish inserted into submerged jet headfirst) | [47] |
Chinook salmon (Oncorhynchus tshawytscha) (93–128 mm) | 677 | 18 | Onset of minor injuries | Jet shear flume (fish inserted into submerged jet headfirst) | [37] |
761 | 18 | Onset of major injuries | |||
933 | 18 | Onset of fatal injuries | |||
Silver shark (Balantiocheilos melanopterus) (~65 mm) | 880 | 18 | Onset of mortality | Jet shear flume (fish inserted into submerged jet) | [55] |
Silver perch juveniles (Bidyanus bidyanus)(~20 mm) | 2002 ** | 5 | 10% mortality | Jet shear flume (fish inserted into submerged jet tail first) | [28] |
Golden perch juveniles (Macquaria ambigua)(~20 mm)Murray cod juveniles (Maccullochella peelii)(~20 mm) | 2002 ** | 5 | No mortality | ||
Blue gourami (Trichopodus trichopterus) (~58 mm) | 852 | 18 | 27% immediate mortality | Jet shear flume (fish inserted into submerged jet) | [56] |
Iridescent shark (Pangasianodon hypophthalmus) (~60 mm) | 1185 | 18 | 40% immediate mortality | ||
Silver perch (Bidyanus bidyanus)(~21 mm) (27 days post hatching) | 2002 | 5 | 10% mortality. | Jet shear flume (fish inserted into submerged jet tail first) | [29] |
Golden perch (Macquaria ambigua)(~20 mm) (26 days post hatching) | 2023 | 5 | 10% mortality. | ||
Murray cod (Maccullochella peelii)(~11 mm) (29 days post hatching) | 890 | 5 | 10% mortality. | ||
Gambusia (Gambusia holbrooki) (~24 mm) | 1853 | 10 | Estimated 80% survival | Jet shear flume (fish inserted into submerged jet) | [57] |
Black carp (Mylopharyngodon piceus), grass carp (Ctenopharyngodon idella), silver carp (Hypophthalmichthys molitrix), bighead carp (Hypophthalmichthys nobilis) (~70 mm) | 2179 | 8 | Behaviour changes and onset of minor injuries returning to normal within 10 min. No mortality | Unsteady pipe surge (headfirst) | [58] |
Bighead carp (Hypophthalmichthys nobilis) (~70 mm) | 1780 | 8 | Behaviour changes and onset of minor injuries returning to normal within 10 min. No mortality | Unsteady pipe surge (tail first) | |
Redfin juveniles (Perca fluviatilis) (~116 mm) | 1687 | 10 | No mortality | Jet shear flume (fish inserted into submerged jet headfirst) | [59] |
1853 | 10 | 70% survival |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cox, R.X.; Kingsford, R.T.; Suthers, I.; Felder, S. Fish Injury from Movements across Hydraulic Structures: A Review. Water 2023, 15, 1888. https://doi.org/10.3390/w15101888
Cox RX, Kingsford RT, Suthers I, Felder S. Fish Injury from Movements across Hydraulic Structures: A Review. Water. 2023; 15(10):1888. https://doi.org/10.3390/w15101888
Chicago/Turabian StyleCox, Reilly X., Richard T. Kingsford, Iain Suthers, and Stefan Felder. 2023. "Fish Injury from Movements across Hydraulic Structures: A Review" Water 15, no. 10: 1888. https://doi.org/10.3390/w15101888