Water Balance Trends along Climatic Variations in the Mediterranean Basin over the Past Decades
Abstract
:1. Introduction
2. Materials and Methods
2.1. Budyko Curve Theory
2.2. Land Use Systems in the MB
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Major Class | Minor Class | Area % | P | ET | Q | ΔS |
---|---|---|---|---|---|---|
Bare and Open Grazing systems | bare | 1.00 | 910.75 | 573.36 | 335.57 | 0.27 |
ext. open rangeland | 0.70 | 444.12 | 347.12 | 98.72 | 0.17 | |
ext. arid grazing | 10.20 | 243.65 | 210.90 | 32.38 | 0.34 | |
int. open rangeland | 1.80 | 495.93 | 383.30 | 113.22 | 0.08 | |
int. arid grazing | 8.90 | 340.33 | 281.93 | 58.17 | 0.05 | |
Average | ⅀ 22.6% | 486.96 | 359.32 | 127.61 | 0.18 | |
Cropland Systems | ext. annual | 10.40 | 460.19 | 359.67 | 100.53 | −0.18 |
ext. permanent | 1.30 | 608.68 | 477.60 | 131.23 | −0.22 | |
ext. annual permanent | 2.70 | 548.40 | 442.63 | 105.59 | 0.11 | |
rainfed int. annual | 5.80 | 569.68 | 443.52 | 126.11 | 0.07 | |
rainfed int. permanent | 2.20 | 521.70 | 435.03 | 86.37 | 0.17 | |
rainfed int. ann. -perm. | 1.30 | 543.74 | 436.50 | 107.06 | 0.26 | |
irrigated annual | 8.70 | 569.70 | 430.66 | 139.38 | −0.25 | |
irrigated permanent | 2.20 | 531.43 | 440.53 | 91.00 | −0.09 | |
irri ann. -perm | 3.30 | 511.55 | 400.23 | 110.95 | 0.10 | |
Average | ⅀ 37.9% | 540.56 | 429.60 | 110.91 | 0.00 | |
Forest systems | medium intensity forest | 6.20 | 837.39 | 593.49 | 244.69 | −1.03 |
semi (natural) | 2.60 | 760.82 | 549.04 | 212.35 | −0.22 | |
high intensity | 1.00 | 769.99 | 561.11 | 210.02 | −0.81 | |
planted forests | 0.30 | 166.35 | 150.59 | 16.45 | 0.38 | |
Average | ⅀ 10.1% | 633.63 | 463.56 | 170.88 | −0.42 | |
Agro-silvo pastoral mosaics | cropland/rangeland | 6.50 | 509.44 | 405.95 | 103.49 | −0.16 |
open woodland | 3.20 | 702.44 | 514.28 | 188.24 | −0.28 | |
open wooded rang. | 3.50 | 688.44 | 505.79 | 182.84 | −0.50 | |
cropland/wooded rang. | 6.80 | 656.81 | 501.44 | 155.72 | −0.40 | |
perm. crops/wooded ran. | 1.70 | 479.15 | 386.31 | 92.62 | 0.00 | |
closed wooded ran. | 1.60 | 764.19 | 566.18 | 198.85 | −1.11 | |
Average | ⅀ 23.3% | 633.41 | 479.99 | 153.62 | −0.41 |
References
- Barredo, J.I.; Mauri, A.; Caudullo, G.; Dosio, A. Assessing shifts of Mediterranean and arid climates under RCP4. 5 and RCP8. 5 climate projections in Europe. In Meteorology and Climatology of the Mediterranean and Black Seas; Birkhäuser: Cham, Switzerland, 2019; pp. 235–251. [Google Scholar]
- Zdruli, P. Land resources of the Mediterranean: Status, pressures, trends and impacts on future regional development. Land Degrad. Dev. 2014, 25, 373–384. [Google Scholar] [CrossRef]
- Vogel, J.; Paton, E.; Aich, V.; Bronstert, A. Increasing compound warm spells and droughts in the Mediterranean Basin. Weather Clim. Extrem. 2021, 32, 100312. [Google Scholar] [CrossRef]
- Hoerling, M.; Eischeid, J.; Perlwitz, J.; Quan, X.; Zhang, T.; Pegion, P. On the increased frequency of Mediterranean drought. J. Clim. 2012, 25, 2146–2161. [Google Scholar] [CrossRef]
- Tramblay, Y.; Llasat, M.C.; Randin, C.; Coppola, E. Climate change impacts on water resources in the Mediterranean. Reg. Environ. Chang. 2020, 20, 83. [Google Scholar] [CrossRef]
- Cardell, M.F.; Amengual, A.; Romero, R. Future effects of climate change on the suitability of wine grape production across Europe. Reg. Environ. Chang. 2019, 19, 2299–2310. [Google Scholar] [CrossRef]
- Milano, M.; Ruelland, D.; Fernandez, S.; Dezetter, A.; Fabre, J.; Servat, E. Facing climatic and anthropogenic changes in the Mediterranean basin: What will be the medium-term impact on water stress? C. R. Geosci. 2012, 344, 432–440. [Google Scholar] [CrossRef]
- Milano, M.; Ruelland, D.; Fernandez, S.; Dezetter, A.; Fabre, J.; Servat, E.; Fritsch, J.M.; Ardoin-Bardin, S.; Thivet, G. Current state of Mediterranean water resources and future trends under climatic and anthropogenic changes. Hydrol. Sci. J. 2013, 58, 498–518. [Google Scholar] [CrossRef]
- Avanzi, F.; Rungee, J.; Maurer, T.; Bales, R.; Ma, Q.; Glaser, S.; Conklin, M. Climate elasticity of evapotranspiration shifts the water balance of Mediterranean climates during multi-year droughts. Hydrol. Earth Syst. Sci. 2020, 24, 4317–4337. [Google Scholar] [CrossRef]
- Ajjur, S.B.; Al-Ghamdi, S.G. Evapotranspiration and water availability response to climate change in the Middle East and North Africa. Clim. Chang. 2021, 166, 1–28. [Google Scholar] [CrossRef]
- Raymond, F.; Ullmann, A.; Tramblay, Y.; Drobinski, P.; Camberlin, P. Evolution of Mediterranean extreme dry spells during the wet season under climate change. Reg. Environ. Chang. 2019, 19, 2339–2351. [Google Scholar] [CrossRef]
- Abdelwares, M.; Lelieveld, J.; Hadjinicolaou, P.; Zittis, G.; Wagdy, A.; Haggag, M. Evaluation of a regional climate model for the Eastern Nile Basin: Terrestrial and atmospheric water balance. Atmosphere 2019, 10, 736. [Google Scholar] [CrossRef]
- Bargaoui, Z.; Foughali, A.; Tramblay, Y.; Houcine, A. Evaluation of two bias-corrected regional climate models for water budget simulations in a Mediterranean basin. IAHS-AISH Publ. 2013, 359, 73–79. [Google Scholar]
- Santini, M.; Collalti, A.; Valentini, R. Climate change impacts on vegetation and water cycle in the Euro-Mediterranean region, studied by a likelihood approach. Reg. Environ. Chang. 2014, 14, 1405–1418. [Google Scholar] [CrossRef]
- Oroud, I.M. Water budget assessment within a typical semiarid watershed in the eastern Mediterranean. Environ. Process. 2015, 2, 395–409. [Google Scholar] [CrossRef]
- Falalakis, G.; Gemitzi, A. A simple method for water balance estimation based on the empirical method and remotely sensed evapotranspiration estimates. J. Hydroinformatics 2020, 22, 440–451. [Google Scholar] [CrossRef]
- Wong, J.S.; Zhang, X.; Gharari, S.; Shrestha, R.R.; Wheater, H.S.; Famiglietti, J.S. Assessing water balance closure using multiple data assimilation–and remote sensing–based datasets for canada. J. Hydrometeorol. 2021, 22, 1569–1589. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, M.; Sheffield, J.; Siemann, A.L.; Fisher, C.K.; Liang, M.; Beck, H.E.; Wanders, N.; MacCracken, R.F.; Houser, P.R.; et al. A Climate Data Record (CDR) for the global terrestrial water budget: 1984–2010. Hydrol. Earth Syst. Sci. 2018, 22, 241–263. [Google Scholar] [CrossRef]
- Sanchez-Gomez, E.; Somot, S.; Mariotti, A. Future changes in the Mediterranean water budget projected by an ensemble of regional climate models. Geophys. Res. Lett. 2009, 36, L21401. [Google Scholar] [CrossRef]
- Sheffield, J.; Ferguson, C.R.; Troy, T.J.; Wood, E.F.; McCabe, M.F. Closing the terrestrial water budget from satellite remote sensing. Geophys. Res. Lett. 2009, 36, 07403. [Google Scholar] [CrossRef]
- Zeng, N.; Yoon, J.H.; Mariotti, A.; Swenson, S. Variability of basin-scale terrestrial water storage from a PER water budget method: The Amazon and the Mississippi. J. Clim. 2008, 21, 248–265. [Google Scholar] [CrossRef]
- Zhao, Y.; Lu, Z.; Wei, Y. An assessment of global precipitation and evapotranspiration products for regional applications. Remote Sens. 2019, 11, 1077. [Google Scholar] [CrossRef]
- Susanti, I.; Sipayung, S.B.; Siswanto, B.; Maryadi, E.; Latifah, H.; Nurlatifah, A.; Supriatin, L.S.; Witono, A.; Suhermat, M. Implications of extreme events on the water balance in Java. AIP Conf. Proc 2021, 2331, 030008. [Google Scholar] [CrossRef]
- Gunkel, A.; Lange, J. Water scarcity, data scarcity and the Budyko curve—An application in the Lower Jordan River Basin. J. Hydrol. Reg. Stud. 2017, 12, 136–149. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, Y.; Yang, D.; Zhang, S. Quantifying the impact of vegetation changes on global terrestrial runoff using the Budyko framework. J. Hydrol. 2020, 590, 125389. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C.; Fisher, J.B.; Niu, J. Improving Budyko curve-based estimates of long-term water partitioning using hydrologic signatures from GRACE. Water Resour. Res. 2016, 52, 5537–5554. [Google Scholar] [CrossRef]
- Singh, R.; Kumar, R. Vulnerability of water availability in India due to climate change: A bottom-up probabilistic Budyko analysis. Geophys. Res. Lett. 2015, 42, 9799–9807. [Google Scholar] [CrossRef]
- Abera, W.; Formetta, G.; Borga, M.; Rigon, R. Estimating the water budget components and their variability in a pre-alpine basin with JGrass-NewAGE. Adv. Water Resour. 2017, 104, 37–54. [Google Scholar] [CrossRef]
- Fernandez, R.; Sayama, T. Comparison of future runoff projections using Budyko framework and global hydrologic model: Conceptual simplicity vs process complexity. Hydrol. Res. Lett. 2015, 9, 75–83. [Google Scholar] [CrossRef]
- Li, Z.; Quiring, S.M. Identifying the dominant drivers of hydrological change in the contiguous United States. Water Resour. Res. 2021, 57, e2021WR029738. [Google Scholar] [CrossRef]
- Wang, D.; Hejazi, M. Quantifying the relative contribution of the climate and direct human impacts on mean annual streamflow in the contiguous United States. Water Resour. Res. 2011, 47, W00J08. [Google Scholar] [CrossRef]
- Xu, L. The land surface water and energy budgets over the Tibetan Plateau. Nat. Preced. 2011, 1. [Google Scholar] [CrossRef]
- Harris, I.P.D.J.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations–the CRU TS3. 10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef]
- Wang-Erlandsson, L.; Bastiaanssen, W.G.; Gao, H.; Jägermeyr, J.; Senay, G.B.; Van Dijk, A.I.; Guerschman, J.P.; Keys, P.W.; Gordon, L.J.; Savenije, H.H. Global root zone storage capacity from satellite-based evaporation. Hydrol. Earth Syst. Sci. 2016, 20, 1459–1481. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 1–12. [Google Scholar] [CrossRef]
- Malek, Ž.; Verburg, P. Mediterranean land systems: Representing diversity and intensity of complex land systems in a dynamic region. Landsc. Urban Plan. 2017, 165, 102–116. [Google Scholar] [CrossRef]
- Budyko, M.I. Climate and Life; Academic Press: Orlando, FL, USA, 1974. [Google Scholar]
- Yu, Y.; Zhou, Y.; Xiao, W.; Ruan, B.; Lu, F.; Hou, B.; Wang, Y.; Cui, H. Impacts of climate and vegetation on actual evapotranspiration in typical arid mountainous regions using a Budyko-based framework. Hydrol. Res. 2021, 52, 212–228. [Google Scholar] [CrossRef]
- Adam, J.C.; Clark, E.A.; Lettenmaier, D.P.; Wood, E.F. Correction of global precipitation products for orographic effects. J. Clim. 2006, 19, 15–38. [Google Scholar] [CrossRef]
- Liakos, C.; Labropoulou, E.; Woodyatt, A. Greece Faces ‘Disaster of Unprecedented Proportions’ as Wildfires Ravage the Country. CNN. Available online: https://edition.cnn.com/2021/08/09/europe/greece-wildfire-warning-climate-intl/index.html (accessed on 10 August 2021).
- Smith, P. Greek Wildfires Are the ‘Harsh Reality of Climate Change,’ Experts Warn. NBCNews. Available online: https://www.nbcnews.com/news/world/greek-wildfires-are-harsh-reality-climate-change-experts-warn-n1276311 (accessed on 9 August 2021).
- Pascual, D.; Pla, E.; Lopez-Bustins, J.A.; Retana, J.; Terradas, J. Impacts of climate change on water resources in the Mediterranean Basin: A case study in Catalonia, Spain. Hydrol. Sci. J. 2015, 60, 2132–2147. [Google Scholar] [CrossRef]
- Rouholahnejad Freund, E.; Kirchner, J.W. A Budyko framework for estimating how spatial heterogeneity and lateral moisture redistribution affect average evapotranspiration rates as seen from the atmosphere. Hydrol. Earth Syst. Sci. 2017, 21, 217–233. [Google Scholar] [CrossRef]
- Davraz, A.; Sener, E.; Sener, Ş.; Varol, S. Water Balance of the Eğirdir Lake and the Influence of Budget Components, Isparta, Turkey. Süleyman Demirel Üniversitesi Fen Bilim. Enstitüsü Derg. 2014, 18, 27–36. [Google Scholar]
- Ajjur, S.B.; Baalousha, H.M. A review on implementing managed aquifer recharge in the Middle East and North Africa region: Methods, progress and challenges. Water Int. 2021, 46, 578–604. [Google Scholar] [CrossRef]
- Dezsi, Ş.; Mîndrescu, M.; Petrea, D.; Rai, P.K.; Hamann, A.; Nistor, M.M. High-resolution projections of evapotranspiration and water availability for Europe under climate change. Int. J. Climatol. 2018, 38, 3832–3841. [Google Scholar] [CrossRef]
- Nangombe, S.; Zhou, T.; Zhang, W.; Wu, B.; Hu, S.; Zou, L.; Li, D. Record-breaking climate extremes in Africa under stabilized 1.5 C and 2 C global warming scenarios. Nat. Clim. Chang. 2018, 8, 375–380. [Google Scholar] [CrossRef]
- Mariotti, A.; Struglia, M.V.; Zeng, N.; Lau, K.M. The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J. Clim. 2002, 15, 1674–1690. [Google Scholar] [CrossRef]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R.; Alpert, P.; Artale, V.; Li, L.; Luterbacher, J.; May, W.; Trigo, R.; Tsimplis, M.; et al. The Mediterranean climate: An overview of the main characteristics and issues. Dev. Earth Environ. Sci. 2006, 4, 1–26. [Google Scholar]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Chang. 2012, 114, 667–687. [Google Scholar] [CrossRef]
- Moutahir, H.; Casady, G.; Manrique-Alba, A.; Ruiz-Yanetti, S.; Maturano, A.; Zeramdini, A.; Bellot Abad, J. Can we better understand land surface phenology changes using hydrological variables instead of climate variables. In Proceedings of the XIV MEDECOS & XIII AEET Meeting, Seville, Spain, 31 January–4 February 2017; Volume 31. [Google Scholar]
- Llorens, P.; Latron, J.; Gallart, F. Dinámica espacio-temporal de la humedad del suelo en un área de montaña mediterránea. Cuencas experimentales de Vallcebre (Alto Llobregat). Estud. Zona No Saturada Suelo 2003, 6, 71–76. [Google Scholar]
- Ungar, E.D.; Rotenberg, E.; Raz-Yaseef, N.; Cohen, S.; Yakir, D.; Schiller, G. Transpiration and annual water balance of Aleppo pine in a semiarid region: Implications for forest management. For. Ecol. Manag. 2013, 298, 39–51. [Google Scholar] [CrossRef]
- Mollema, P.; Antonellini, M.; Gabbianelli, G.; Laghi, M.; Marconi, V.; Minchio, A. Climate and water budget change of a Mediterranean coastal watershed, Ravenna, Italy. Environ. Earth Sci. 2012, 65, 257–276. [Google Scholar] [CrossRef]
- Delle Rose, M.; Martano, P. Datasets of Groundwater Level and Surface Water Budget in a Central Mediterranean Site (21 June 2017–1 October 2022). Data 2023, 8, 38. [Google Scholar] [CrossRef]
- Scarascia-Mugnozza, G.; Callegari, G.; Veltri, A.; Matteucci, G. Water balance and forest productivity in mediterranean mountain environments. Ital. J. Agron. 2010, 5, 217–222. [Google Scholar] [CrossRef]
Dataset | Variable | Spatial Resolution | Source |
---|---|---|---|
Terraclimate, University of Idaho | Precipitation Potential Evapotranspiration (ASCE Penman-Montieth) Actual Evapotranspiration Runoff | 4.6 km resampled 1 km | Abatzoglou et al. 2018 [35] |
Mediterranean land systems | 26 land cover types | 2 km resampled 1 km | Malek and Verburg, 2017 [36] |
Major Class | Area % | P (mm yr−1) | AET (mm yr−1) | Q (mm yr−1) | ΔS (mm yr−1) |
---|---|---|---|---|---|
Bare and Open Grazing systems | 22.6% | 486.96 ± 110 | 359.32 ± 58 | 127.61 ± 69 | 0.18 ± 28 |
Cropland Systems | 37.9% | 540.56 ± 111 | 429.60 ± 63 | 110.91 ± 65 | 0.00 ± 36 |
Forest systems | 10.1% | 633.63 ± 125 | 463.56 ± 62 | 170.88 ± 80 | −0.42 ± 36 |
Agro-silvo pastoral mosaics | 23.3% | 633.41 ± 133 | 479.99 ± 68 | 153.62 ± 86 | −0.41 ± 41 |
Sub-Region | P | AET | Q | ΔS | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Trend | S Statistic | Z | p-Value | Trend | S Statistic | Z | p-Value | Trend | S Statistic | Z | p-Value | Trend | S Statistic | Z | p-Value | |
North Africa | no trend | −6 | −1.22 | 0.22 | no trend | −6 | −1.22 | 0.22 | no trend | −6 | −1.22 | 0.22 | no trend | 4 | 0.73 | 0.46 |
Southern Europe | no trend | 2 | 0.24 | 0.8 | decreasing | −10 | −2.2 | 0.02 | no trend | 4 | 0.73 | 0.46 | no trend | 6 | 1.22 | 0.22 |
Turkey & Balkans | no trend | 0 | 0 | 1 | no trend | 4 | 0.73 | 0.46 | no trend | 8 | 1.714 | 0.086 | no trend | −2 | −0.24 | 0.8 |
Middle East | no trend | −4 | −0.73 | 0.46 | no trend | 0 | 0 | 1 | no trend | −6 | −1.22 | 0.22 | no trend | −4 | −0.73 | 0.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unnisa, Z.; Govind, A.; Lasserre, B.; Marchetti, M. Water Balance Trends along Climatic Variations in the Mediterranean Basin over the Past Decades. Water 2023, 15, 1889. https://doi.org/10.3390/w15101889
Unnisa Z, Govind A, Lasserre B, Marchetti M. Water Balance Trends along Climatic Variations in the Mediterranean Basin over the Past Decades. Water. 2023; 15(10):1889. https://doi.org/10.3390/w15101889
Chicago/Turabian StyleUnnisa, Zaib, Ajit Govind, Bruno Lasserre, and Marco Marchetti. 2023. "Water Balance Trends along Climatic Variations in the Mediterranean Basin over the Past Decades" Water 15, no. 10: 1889. https://doi.org/10.3390/w15101889
APA StyleUnnisa, Z., Govind, A., Lasserre, B., & Marchetti, M. (2023). Water Balance Trends along Climatic Variations in the Mediterranean Basin over the Past Decades. Water, 15(10), 1889. https://doi.org/10.3390/w15101889