High Spatiotemporal Model-Based Tracking and Environmental Risk-Exposure of Wastewater-Derived Pharmaceuticals across River Networks in Saxony, Germany
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selected Pharmaceuticals (PhC)
2.3. Data Collection and Preparation
2.3.1. River Discharge Interpolation
2.3.2. Daily PhC Input Loads at WWTP
2.3.3. Daily PhC Input Loads at Upstream WQMST
2.4. Graph-Theory-Based Model Setup
2.5. Model Multisite Calibration
2.6. Uncertainty Analysis
2.7. Ecotoxicity and Environmental Risk Assessment (ERA)
- PEC ≥ 1.0∙(PNEC|EQS): critical pollution at MQ 2014|MLQ conditions;
- 0.5∙(PNEC|EQS) ≤ PEC < 1.0∙(PNEC|EQS): moderate pollution at MQ 2014|MLQ;
- PEC < 0.5∙(PNEC|EQS): low pollution at MQ 2014|MLQ conditions;
- PEC ~ 0 ng L−1: river point sites located upstream from both WWTP and identified WQMST with background PhC input are considered as not risk-exposed to pollution.
2.8. Software Used
3. Results and Discussion
3.1. Model Multisite Calibration of PhC Loads
3.2. Model-Based Time Series of PhC Concentrations at Specific Point Sites
3.3. Environmental Risk Assessment (ERA)
3.4. Methodological Limitations and Future Research
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Häder, D.P.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A.; Helbling, E.W. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef]
- Grill, G.; Khan, U.; Lehner, B.; Nicell, J.; Ariwi, J. Risk assessment of down-the-drain chemicals at large spatial scales: Model development and application to contaminants originating from urban areas in the Saint Lawrence River Basin. Sci. Total Environ. 2016, 541, 825–838. [Google Scholar] [CrossRef]
- Schwarzenbach, R.P.; Escher, B.I.; Fenner, K.; Hofstetter, T.B.; Johnson, C.A.; von Gunten, U.; Wehrli, B. The Challenge of Micropollutants in Aquatic Systems. Science 2006, 313, 1072–1077. [Google Scholar] [CrossRef] [PubMed]
- Sangion, A.; Gramatica, P. PBT assessment and prioritization of contaminants of emerging concern: Pharmaceuticals. Environ. Res. 2016, 147, 297–306. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D.; Senac, T. Human pharmaceutical products in the environment–the “problem” in perspective. Chemosphere 2014, 115, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Grundy, E.M.; Murphy, M. Population ageing in Europe. In Oxford Textbook of Geriatric Medicine, 1st ed.; Michel, J.P., Beattie, B.L., Eds.; Oxford University Press: Oxford, UK, 2017; pp. 11–17. [Google Scholar]
- Abraham, J. Pharmaceuticalization of society in context: Theoretical, empirical and health dimensions. Sociology 2010, 44, 603–622. [Google Scholar] [CrossRef]
- Thomaidis, N.S.; Gago-Ferrero, P.; Ort, C.; Maragou, N.C.; Alygizakis, N.A.; Borova, V.L.; Dasenaki, M.E. Reflection of Socioeconomic Changes in Wastewater: Licit and Illicit Drug Patterns. Environ. Sci. Technol. 2016, 50, 10065–10072. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment—A review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef]
- Jelić, A.; Gros, M.; Petrović, M.; Ginebreda, A.; Barceló, D. Occurrence and elimination of pharmaceuticals during conventional wastewater treatment. In Emerging and Priority Pollutants in Rivers: Bringing Science into River Management Plans, 1st ed.; Guasch, H., Ginebreda, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1–23. [Google Scholar]
- Diamantini, E.; Mallucci, S.; Bellin, A. A parsimonious transport model of emerging contaminants at the river network scale. Hydrol. Earth Syst. Sci. 2019, 23, 573–593. [Google Scholar] [CrossRef]
- aus der Beek, T.; Weber, F.-A.; Bergmann, A.; Hickmann, S.; Ebert, I.; Hein, A.; Küster, A. Pharmaceuticals in the environment-Global occurrences and perspectives. Environ. Toxicol. Chem. 2016, 35, 823–835. [Google Scholar] [CrossRef]
- Kolar, B.; Arnuš, L.; Jeretin, B.; Gutmaher, A.; Drobne, D.; Durjava, M.K. The toxic effect of oxytetracycline and trimethoprim in the aquatic environment. Chemosphere 2014, 115, 75–80. [Google Scholar] [CrossRef]
- Ebert, I.; Bachmann, J.; Kühnen, U.; Küster, A.; Kussatz, C.; Maletzki, D.; Schlüter, C. Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ. Toxicol. Chem. 2011, 30, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Hoeger, B.; Köllner, B.; Dietrich, D.R.; Hitzfeld, B. Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario). Aquat. Toxicol. 2005, 75, 53–64. [Google Scholar] [CrossRef]
- Rostkowski, P.; Horwood, J.; Shears, J.A.; Lange, A.; Oladapo, F.O.; Besselink, H.T.; Tyler, C.R.; Hill, E.M. Bioassay-directed identification of novel antiandrogenic compounds in bile of fish exposed to wastewater effluents. Environ. Sci. Technol. 2011, 45, 10660–10667. [Google Scholar] [CrossRef]
- Gross-Sorokin, M.Y.; Roast, S.D.; Brighty, G.C. Assessment of feminization of male fish in English rivers by the Environment Agency of England and Wales. Environ. Health Perspect. 2006, 114 (Suppl. 1), 147–151. [Google Scholar] [CrossRef]
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Bürgmann, H.; Sorum, H.; Norström, M.; Pons, M.N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- European Union, Directive 2008/105/EC. Environmental Quality Standards in the Field of Water Policy, Amending and Subsequently Repealing Council Directives 82/176/EEC, 83/513/EEC, 84/156/EEC, 84/491/EEC, 86/280/EEC and Amending Directive 2000/60/EC of the European Parliament and the Council of the European Union. Off. J. Eur. Union 2008, L 348/84. Available online: https://eur-lex.europa.eu/eli/dir/2008/105/oj (accessed on 30 January 2023).
- European Union, Directive 2013/39/EU. Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Off. J. Eur. Union 2008, L 226/1. Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32013L0039 (accessed on 30 January 2023).
- European Union, European Commision. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Off. J. Eur. Union 2000, L 327. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32000L0060 (accessed on 30 January 2023).
- Carvalho, L.; Mackay, E.B.; Cardoso, A.C.; Baattrup-Pedersen, A.; Birk, S.; Blackstock, K.L.; Borics, G.; Borja, A.; Feld, C.K.; Ferreira, M.T.; et al. Protecting and restoring Europe’s waters: An analysis of the future development needs of the Water Framework Directive. Sci. Total Environ. 2019, 658, 1228–1238. [Google Scholar] [CrossRef]
- European Union, European Commission. Technical Guidance Document on Risk Assessment in Support of Commission Directive 93/67/EEC on Risk Assessment for New Notified Substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for Existing Substances, and Directive 98/8/EC of the European Parliament and of the Council Concerning the Placing of Biocidal Products on the Market (20418 EN); European Commision (ECB): Luxembourg, 2003; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC23785 (accessed on 30 January 2023).
- European Medicines Agency (EMA). Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. Doc. Ref. EMEA/CHMP/SWP/4447/00 corr 2*; EMA: London, UK, 2006; Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-environmental-risk-assessment-medicinal-products-human-use-first-version_en.pdf (accessed on 30 January 2023).
- Gogoi, A.; Mazumder, P.; Tyagi, V.K.; Chaminda, G.T.; An, A.K.; Kumar, M. Occurrence and fate of emerging contaminants in water environment: A review. Groundw. Sustain. Dev. 2018, 6, 169–180. [Google Scholar] [CrossRef]
- Arlos, M.J.; Bragg, L.M.; Servos, M.R.; Parker, W.J. Simulation of the fate of selected pharmaceuticals and personal care products in a highly impacted reach of a Canadian watershed. Sci. Total Environ. 2014, 485, 193–204. [Google Scholar] [CrossRef]
- Boxall, A.B.A.; Keller, V.D.J.; Straub, J.O.; Monteiro, S.C.; Fussell, R.; Williams, R.J. Exploiting monitoring data in environmental exposure modelling and risk assessment of pharmaceuticals. Environ. Int. 2014, 73, 176–185. [Google Scholar] [CrossRef]
- Kapo, K.E.; DeLeo, P.C.; Vamshi, R.; Holmes, C.M.; Ferrer, D.; Dyer, S.D.; Wang, X.; White-Hull, C. iSTREEM ®: An approach for broad-scale in-stream exposure assessment of “down-the-drain” chemicals. Integr. Environ. Assess. Manag. 2016, 12, 782–792. [Google Scholar] [CrossRef]
- Lämmchen, V.; Klasmeier, J.; Hernandez-Leal, L.; Berlekamp, J. Spatial Modelling of Micro-pollutants in a Strongly Regulated Cross-border Lowland Catchment. Environ. Process. 2021, 8, 973–992. [Google Scholar] [CrossRef]
- Vermeire, T.G.; Jager, D.T.; Bussian, B.; Devillers, J.; Den Haan, K.; Hansen, B.; Lundberg, I.; Niessen, H.; Robertson, S.; Tyle, H.; et al. European union system for the evaluation of substances (EUSES). Principles and structure. Chemosphere 1997, 34, 1823–1836. [Google Scholar] [CrossRef]
- Keller, V. Risk assessment of “down-the-drain” chemicals: Search for a suitable model. Sci. Total Environ. 2006, 360, 305–318. [Google Scholar] [CrossRef]
- Feijtel, T.; Boeije, G.; Matthies, M.; Young, A.; Morris, G.; Gandolfi, C.; Hansen, B.; Fox, K.; Holt, M.; Koch, V.; et al. Development of a geography-referenced regional exposure assessment tool for European rivers-GREAT-ER contribution to GREAT-ER# 1. Chemosphere 1997, 34, 2351–2373. [Google Scholar]
- Wang, X.; White-Hull, C.; Dyer, S.; Yang, Y. GIS-ROUT: A river model for watershed planning. Environ. Plan. B Plan. Des. 2000, 27, 231–246. [Google Scholar] [CrossRef]
- Anderson, P.D.; D’Aco, V.J.; Shanahan, P.; Chapra, S.C.; Buzby, M.E.; Cunningham, V.L.; DuPlessie, B.M.; Hayes, E.P.; Mastrocco, F.J.; Parke, N.J.; et al. Screening analysis of human pharmaceutical compounds in US surface waters. Environ. Sci. Technol. 2004, 38, 838–849. [Google Scholar] [CrossRef]
- Johnson, A.C.; Dumont, E.; Williams, R.J.; Oldenkamp, R.; Cisowska, I.; Sumpter, J.P. Do Concentrations of Ethinylestradiol, Estradiol, and Diclofenac in European Rivers Exceed Proposed EU Environmental Quality Standards? Environ. Sci. Technol. 2013, 47, 12297–12304. [Google Scholar] [CrossRef] [PubMed]
- Teran-Velasquez, G.; Helm, B.; Krebs, P. Longitudinal River Monitoring and Modelling Substantiate the Impact of Weirs on Nitrogen Dynamics. Water 2022, 14, 189. [Google Scholar] [CrossRef]
- Johnson, A.C.; Ternes, T.; Williams, R.J.; Sumpter, J.P. Assessing the Concentrations of Polar Organic Microcontaminants from Point Sources in the Aquatic Environment: Measure or Model? Environ. Sci. Technol. 2008, 42, 5390–5399. [Google Scholar] [CrossRef] [PubMed]
- Ort, C.; Hollender, J.; Schaerer, M.; Siegrist, H. Model-Based Evaluation of Reduction Strategies for Micropollutants from Wastewater Treatment Plants in Complex River Networks. Environ. Sci. Technol. 2009, 43, 3214–3220. [Google Scholar] [CrossRef]
- Keller, V.D.J.; Williams, R.J.; Lofthouse, C.; Johnson, A.C. Worldwide estimation of river concentrations of any chemical originating from sewage-treatment plants using dilution factors. Environ. Toxicol. Chem. 2014, 33, 447–452. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Iturbe, I.; Rinaldo, A. Fractal River Basins: Chance and Self-Organization; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2001. [Google Scholar]
- Kuroda, K.; Itten, R.; Kovalova, L.; Ort, C.; Weissbrodt, D.G.; McArdell, C.S. Hospital-Use Pharmaceuticals in Swiss Waters Modeled at High Spatial Resolution. Environ. Sci. Technol. 2016, 50, 4742–4751. [Google Scholar] [CrossRef]
- Tejedor, A.; Longjas, A.; Zaliapin, I.; Foufoula-Georgiou, E. Delta channel networks: Metrics of topologic and dynamic complexity for delta comparison, physical inference, and vulnerability assessment. Water Resour. Res. 2015, 51, 4019–4045. [Google Scholar] [CrossRef]
- Schmidt, C.; Kumar, R.; Yang, S.; Büttner, O. Microplastic particle emission from wastewater treatment plant effluents into river networks in Germany: Loads, spatial patterns of concentrations and potential toxicity. Sci. Total Environ. 2020, 737, 139544. [Google Scholar] [CrossRef]
- Gómez-Canela, C.; Pueyo, V.; Barata, C.; Lacorte, S.; Marcé, R.M. Development of predicted environmental concentrations to prioritize the occurrence of pharmaceuticals in rivers from Catalonia. Sci. Total Environ. 2019, 666, 57–67. [Google Scholar] [CrossRef]
- Statistisches Landesamt des Freistaates Sachsen. Bevölkerungsstand, Einwohnerzahlen, Eckdaten für Sachsen. Available online: https://www.statistik.sachsen.de/html/bevoelkerungsstand-einwohner.html (accessed on 30 January 2023).
- Spänhoff, B.; Dimmer, R.; Friese, H.; Harnapp, S.; Herbst, F.; Jenemann, K.; Mickel, A.; Rohde, S.; Schönherr, M.; Ziegler, K.; et al. Ecological status of rivers and streams in Saxony (Germany) according to the water framework directive and prospects of improvement. Water 2012, 4, 887–904. [Google Scholar] [CrossRef]
- Statistisches Landesamt des Freistaates Sachsen. Geodatendownload des Fachbereichs Wasser. Available online: https://www.wasser.sachsen.de/geodatendownload-12834.html (accessed on 30 January 2023).
- European Union, European Commision. Common Implementation Strategy for the Water Framework Directive (2000/60/EC), Guidance Document No. 2, Identification of Water Bodies; Office for Official Publications of the European Communities: Kirchberg, Luxembourg, 2003; Available online: https://ec.europa.eu/environment/water/water-framework/facts_figures/guidance_docs_en.htm (accessed on 30 January 2023).
- Nguyen, T.H.; Helm, B.; Hettiarachchi, H.; Caucci, S.; Krebs, P. Quantifying the information content of a water quality monitoring network using principal component analysis: A case study of the freiberger mulde river basin, Germany. Water 2020, 12, 420. [Google Scholar] [CrossRef]
- Internationale Kommission zum Schutz der Elbe (IKSE). Internationales Messprogramm Elbe 2015. Available online: https://www.ikse-mkol.org/fileadmin/media/user_upload/D/04_Themen/02_Gewasserguete/Dokumente_IMPE/IMPE/IKSE-Messprogramm_2015.pdf (accessed on 30 January 2023).
- Ahnert, M.; Arndt, M.; Barth, M.; Beil, S.; Braeckevelt, M.; Fauler, J.; Fritsche, G.; Günther, E.; Helm, B.; Jaeckel, L.; et al. MikroModell: Entwicklung eines Stoffflussmodells und Leitfadens zur Emissionsminderung von Mikroschadstoffen im Hinblick auf die Wasserqualität Schlußbericht. Available online: https://doi.org/10.25368/2021.68 (accessed on 30 January 2023).
- National Library of Medicine. LiveTox Database. Available online: https://www.ncbi.nlm.nih.gov/books/NBK547852/ (accessed on 30 January 2023).
- National Center for Biotechnology Information. Hazardous Substances Data Bank (HSDB). Available online: https://pubchem.ncbi.nlm.nih.gov/source/hsdb (accessed on 30 January 2023).
- Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie. iDA—Interdisziplinäre Daten und Auswertungen. Available online: https://www.umwelt.sachsen.de/umwelt/infosysteme/ida/index.xhtml (accessed on 30 January 2023).
- Goswami, A.; Jiang, J.Q. Simultaneous quantification of gabapentin, sulfamethoxazole, terbutryn, terbuthylazine and diuron by uv-vis spectrophotometer. Biointerface Res. Appl. Chem. 2018, 8, 3111–3117. [Google Scholar]
- Acuña, V.; von Schiller, D.; García-Galán, M.J.; Rodríguez-Mozaz, S.; Corominas, L.; Petrovic, M.; Poch, M.; Barcelo, D.; Sabater, S. Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers. Sci. Total Environ. 2015, 503, 133–141. [Google Scholar] [CrossRef]
- Suárez, S.; Carballa, M.; Omil, F.; Lema, J.M. How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? Rev. Environ. Sci. Biotechnol. 2008, 7, 125–138. [Google Scholar] [CrossRef]
- Le-Minh, N.; Khan, S.J.; Drewes, J.E.; Stuetz, R.M. Fate of antibiotics during municipal water recycling treatment processes. Water Res. 2010, 44, 4295–4323. [Google Scholar] [CrossRef]
- Sallwey, J.; Jurado, A.; Barquero, F.; Fahl, J. Enhanced Removal of Contaminants of Emerging Concern through Hydraulic Adjustments in Soil Aquifer Treatment. Water 2020, 12, 2627. [Google Scholar] [CrossRef]
- Zour, E.; Lodhi, S.A.; Nesbitt, R.U. Stability Studies of Gabapentin in Aqueous Solutions. Pharm. Res. 1992, 9, 595–600. [Google Scholar] [CrossRef]
- Strenn, B.; Clara, M.; Gans, O.; Kreuzinger, N. Carbamazepine, diclofenac, ibuprofen and bezafibrate-investigations on the behaviour of selected pharmaceuticals during wastewater treatment. Water Sci. Technol. 2004, 50, 269–276. [Google Scholar] [CrossRef]
- Bahlmann, A.; Brack, W.; Schneider, R.J.; Krauss, M. Carbamazepine and its metabolites in wastewater: Analytical pitfalls and occurrence in Germany and Portugal. Water Res. 2014, 57, 104–114. [Google Scholar] [CrossRef]
- Vollmer, K.O.; Von Hodenberg, A.; Kölle, E.U. Pharmacokinetics and metabolism of gabapentin in rat, dog and man. Arzneim.-Forschung. 1986, 36, 830–839. [Google Scholar]
- Johnson, A.C.; Keller, V.; Dumont, E.; Sumpter, J.P. Assessing concentrations and risks of toxicity from the antibiotics ciprofloxacin, sulfamethoxazole, trimethoprim and erythromycin in European rivers. Sci. Total Environ. 2015, 511, 747–755. [Google Scholar] [CrossRef]
- Kasprzyk-Hordern, B.; Dinsdale, R.M.; Guwy, A.J. The removal of pharmaceuticals, personal care products, endocrine disruptors and illicit drugs during wastewater treatment and its impact on the quality of receiving waters. Water Res. 2009, 43, 363–380. [Google Scholar] [CrossRef] [PubMed]
- Githinji, L.J.; Musey, M.K.; Ankumah, R.O. Evaluation of the fate of ciprofloxacin and amoxicillin in domestic wastewater. Water Air Soil Poll. 2011, 219, 191–201. [Google Scholar] [CrossRef]
- Kruopienė, J.; Dvarionienė, J. Management of environmental risks in the life cycle of human pharmaceuticals in Lithuania. Environ. Res. Eng. Manag. 2010, 52, 41–47. [Google Scholar]
- Landesamt für Natur, Umwelt und Verbraucherschutz Nordhein-Westfalen. Eintrag von Arzneinmittel und deren Verhalten und Verbleib in der Umwelt—Literaturstudie. Ministerium für Umwelt und Naturschutz; Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen: Düsseldorf, Germany, 2007; Available online: https://www.lanuv.nrw.de/fileadmin/lanuvpubl/3_fachberichte/30002.pdf (accessed on 30 January 2023).
- Kümmerer, K.; Schuster, A.; Längin, A.; Happel, O.; Thoma, A.; Schneider, K.; Hassauer, M.; Gartiser, S.; Hafner, C. Identifizierung und Bewertung ausgewählter Arzneimittel und ihrer Metaboliten (Ab-und Umbauprodukte) im Wasserkreislauf; Umweltbundesamt: Dessau-Roßlau, Germany, 2011; Available online: https://www.umweltbundesamt.de/sites/default/files/medien/461/publikationen/4149.pdf (accessed on 30 January 2023).
- Zhang, Y.; Geißen, S.-U. Prediction of carbamazepine in sewage treatment plant effluents and its implications for control strategies of pharmaceutical aquatic contamination. Chemosphere 2010, 80, 1345–1352. [Google Scholar] [CrossRef]
- Margot, J.; Kienle, C.; Magnet, A.; Weil, M.; Rossi, L.; de Alencastro, L.F.; Abegglen, C.; Thonney, D.; Chèvre, N.; Schärer, M.; et al. Treatment of micropollutants in municipal wastewater: Ozone or powdered activated carbon? Sci. Total Environ. 2013, 461–462, 480–498. [Google Scholar] [CrossRef]
- Gurke, R.; Rößler, M.; Marx, C.; Diamond, S.; Schubert, S.; Oertel, R.; Fauler, J. Occurrence and removal of frequently prescribed pharmaceuticals and corresponding metabolites in wastewater of a sewage treatment plant. Sci. Total Environ. 2015, 532, 762–770. [Google Scholar] [CrossRef]
- Landesanstalt für Umwelt, Messungen und Naturschutz Baden-Württemberg. Spurenstoffinventar der Fließgewässer in Baden-Württemberg. Available online: https://pudi.lubw.de/detailseite/-/publication/29560 (accessed on 30 January 2023).
- Hendricks, R.; Pool, E.J. The effectiveness of sewage treatment processes to remove faecal pathogens and antibiotic residues. J. Environ. Sci. Health A 2012, 47, 289–297. [Google Scholar] [CrossRef]
- Castiglioni, S.; Bagnati, R.; Fanelli, R.; Pomati, F.; Calamari, D.; Zuccato, E. Removal of Pharmaceuticals in Sewage Treatment Plants in Italy. Environ. Sci. Technol. 2006, 40, 357–363. [Google Scholar] [CrossRef]
- Gollwitzer, S.; Kostev, K.; Hagge, M.; Lang, J.; Graf, W.; Hamer, H.M. Nonadherence to antiepileptic drugs in Germany: A retrospective, population-based study. Neurology 2016, 87, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Bautista, R.E.D.; Rundle-Gonzalez, V. Effects of antiepileptic drug characteristics on medication adherence. Epilepsy Behav. 2012, 23, 437–441. [Google Scholar] [CrossRef]
- Sabaté, E. Adherence to Long-Term Therapies: Evidence for Action; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Llor, C.; Hernández, S.; Bayona, C.; Moragas, A.; Sierra, N.; Hernández, M.; Miravitlles, M. A study of adherence to antibiotic treatment in ambulatory respiratory infections. Int. J. Infect. Dis. 2013, 17, e168–e172. [Google Scholar] [CrossRef] [PubMed]
- Umweltbundesamt, Fachgebiet IV 2.4. ETOX-Datenbank: Informationssystem Ökotoxikologie und Umweltqualitätsziele. Available online: https://webetox.uba.de/webETOX/index.do (accessed on 30 January 2023).
- Cunningham, V.L. Special characteristics of pharmaceuticals related to environmental fate. In Pharmaceuticals in the Environment, 3rd ed.; Kümmerer, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 13–24. [Google Scholar]
- Verlicchi, P.; Al Aukidy, M.; Jelic, A.; Petrović, M.; Barceló, D. Comparison of measured and predicted concentrations of selected pharmaceuticals in wastewater and surface water: A case study of a catchment area in the Po Valley (Italy). Sci. Total Environ. 2014, 470–471, 844–854. [Google Scholar] [CrossRef]
- Staatsbetrieb Geobasisinformation und Vermessung Sachsen. Digitales Geländemodell. Available online: https://www.landesvermessung.sachsen.de/digitales-gelaendemodell-4082.html (accessed on 30 January 2023).
- Statistische Ämter des Bundes und der Länder & OpenStreetMap. Downloadbereich. Available online: https://www.suche-postleitzahl.org/downloads (accessed on 30 January 2023).
- Bundesamt für Kartographie und Geodäsie. Verwaltungsgebiete und Verwaltungsgrenzen. Available online: http://www.bkg.bund.de (accessed on 30 January 2023).
- Sächsisches Staatsministerium für Energie, Klimaschutz, Umwelt und Landwirtschaft (SMEKUL). Lagebericht 2016 zur Beseitigung von Kommunalem Abwasser und Klärschlamm im Freistaat Sachsen; SMEKUL: Dresden, Germany, 2017; Available online: https://publikationen.sachsen.de/bdb/artikel/28493 (accessed on 30 January 2023).
- Peterson, E.; Ver Hoef, J. STARS: An ArcGIS toolset used to calculate the spatial information needed to fit spatial statistical models to stream network data. J. Stat. Softw. 2014, 56, 1–17. [Google Scholar] [CrossRef]
- Ver Hoef, J.; Peterson, E.; Clifford, D.; Shah, R. SSN: An R package for spatial statistical modeling on stream networks. J. Stat. Softw. 2014, 56, 1–45. [Google Scholar]
- Becker, A.; Ehrcke, R.; Fischer, B.; Horn, S.; Köpp-Klausch, K.; Kübler, S.; Bohn, E.; Büttner, U.; Friese, H.; Wolf, E.; et al. Durchflusskennwerte und Querbauwerke, Schriftenreihe, Heft 5/2019. Available online: https://www.wasser.sachsen.de/durchflusskennwerte-und-querbauwerke-11180.html (accessed on 30 January 2023).
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model Evaluation Guidelines for Systematic Quantification of Accuracy in Watershed Simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Kouchi, D.H.; Esmaili, K.; Faridhosseini, A.; Sanaeinejad, S.H.; Khalili, D.; Abbaspour, K.C. Sensitivity of Calibrated Parameters and Water Resource Estimates on Different Objective Functions and Optimization Algorithms. Water 2017, 9, 384. [Google Scholar] [CrossRef]
- Irving, K.; Kuemmerlen, M.; Kiesel, J.; Kakouei, K.; Domisch, S.; Jähnig, S.C. A high-resolution streamflow and hydrological metrics dataset for ecological modeling using a regression model. Sci. Data 2018, 5, 1–14. [Google Scholar] [CrossRef]
- Gupta, H.V.; Beven, K.J.; Wagener, T. 131: Model calibration and uncertainty estimation. In Encyclopedia of Hydrological Sciences, 1st ed.; Anderson, M.G., McDonnell, J.J., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2005. [Google Scholar]
- Sun, W.; Ishidaira, H.; Bastola, S. Calibration of hydrological models in ungauged basins based on satellite radar altimetry observations of river water level. Hydrol. Process. 2012, 26, 3524–3537. [Google Scholar] [CrossRef]
- Beven, K.; Binley, A. The future of distributed models: Model calibration and uncertainty prediction. Hydrol. Process. 1992, 6, 279–298. [Google Scholar] [CrossRef]
- Stocki, R. A method to improve design reliability using optimal Latin hypercube sampling. Comput. Assist. Mech. Eng. Sci. 2005, 12, 393. [Google Scholar]
- Gimeno, P.; Marcé, R.; Bosch, Ll.; Comas, J.; Corominas, Ll. Incorporating model uncertainty into the evaluation of interventions to reduce microcontaminant loads in rivers. Water Res. 2017, 124, 415–424. [Google Scholar] [CrossRef] [PubMed]
- Conradt, T.; Wechsung, F.; Bronstert, A. Three perceptions of the evapotranspiration landscape: Comparing spatial patterns from a distributed hydrological model, remotely sensed surface temperatures, and sub-basin water balances. Hydrol Earth Syst. Sci. 2013, 17, 2947–2966. [Google Scholar] [CrossRef]
- Boyd, R.A.; Turck, D.; Abel, R.B.; Sedman, A.J.; Bockbrader, H.N. Effects of Age and Gender on Single-Dose Pharmacokinetics of Gabapentin. Epilepsia 1999, 40, 474–479. [Google Scholar] [CrossRef]
- Soldin, O.P.; Mattison, D.R. Sex Differences in Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef]
- Buck, D.; Jacoby, A.; Baker, G.A.; Chadwick, D.W. Factors influencing compliance with antiepileptic drug regimes. Seizure 1997, 6, 87–93. [Google Scholar] [CrossRef]
- Writer, J.H.; Keefe, S.K.; Ryan, J.N.; Ferrer, I.; Thurman, M.E.; Barber, L.B. Methods for evaluating in-stream attenuation of trace organic compounds. Appl. Geochem. 2011, 26, S344–S345. [Google Scholar] [CrossRef]
- Franco, A.C.L.; de Oliveira, D.Y.; Bonumá, N.B. Comparison of single-site, multi-site and multi-variable SWAT calibration strategies. Hydrol. Sci. J. 2020, 65, 2376–2389. [Google Scholar] [CrossRef]
- Wu, L.; Liu, X.; Yang, Z.; Yu, Y.; Ma, X. Effects of single-and multi-site calibration strategies on hydrological model performance and parameter sensitivity of large-scale semi-arid and semi-humid watersheds. Hydrol. Process. 2022, 36, e14616. [Google Scholar] [CrossRef]
- Altmann, J.; Ruhl, A.S.; Zietzschmann, F.; Jekel, M. Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment. Water Res. 2014, 55, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Klavins, M.; Klavins, L.; Stabnikova, O.; Stabnikov, V.; Marynin, A.; Ansone-Bertina, L.; Mezulis, M.; Vaseashta, A. Interaction between Microplastics and Pharmaceuticals Depending on the Composition of Aquatic Environment. Microplastics 2022, 1, 520–535. [Google Scholar] [CrossRef]
Performance Levels | Goodness-of-Fit | Source |
---|---|---|
very good | NSE > 0.75 and RSR < 0.50 and % PBIAS < ±25% | [92] |
good | NSE > 0.65 and RSR < 0.60 and % PBIAS < ±40% | [92] |
satisfactory | NSE > 0.50 and RSR < 0.70 and % PBIAS < ±70% | [92] |
fair | KGE > 0.40 or bR2 > 0.40 | [93,94] |
insufficient | NSE < 0.50 and RSR > 0.70 and % PBIAS > ±70% KGE < 0.40 and bR2 < 0.40 | [92,93,94] |
Selected PhC | Elbe | Freiberger Mulde | Zwickauer Mulde | Vereinigte Mulde | Upper Weiße Elster 2 | Lower Weiße Elster | Spree | Schwarze Elster 1,2 | Lausitzer Neiße |
---|---|---|---|---|---|---|---|---|---|
WQMST Dommitzsch | WQMST Mdg. in Erlln | WQMST Mdg. Sermuth | WQMST Bad Düben | WQMST uh. Elsterberg | WQMST Schkeuditz | WQMST Zerre | WQMST Senftenberger | WQMST uh. Muskau | |
Carbamazepine (CBZ), Time Period: 2008–2014 | |||||||||
Conc. (s) (ng L−1) | 92.9 | 92.0 | 231.3 | 143.2 | 150.7 | 291.4 | 59.6 | 180.5 | 87.5 |
Conc. (w) (ng L−1) | 80.7 | 69.6 | 189.1 | 125.4 | 106.8 | 278.5 | 49.9 | 117.6 | 78.4 |
RC % (s) to (w) | 15.1% | 32.2% | 22.3% | 14.2% | 41.1% | 4.6% | 19.4% | 53.5% | 11.6% |
Load (s) (mg cap−1 d−1) | 1.088 | 0.273 | 0.314 | 0.467 | 0.140 | 0.163 | 0.146 | 0.175 | 0.435 |
Load (w) (mg cap−1 d−1) | 1.146 | 0.286 | 0.328 | 0.616 | 0.146 | 0.198 | 0.164 | 0.228 | 0.475 |
RC % (w) to (s) | 5.3% | 4.5% | 4.5% | 32.0% | 4.2% | 21.3% | 12.7% | 30.7% | 9.3% |
Gabapentin (GBP), Time Period: 2010–2014 | |||||||||
Conc. (s) (ng L−1) | 625.9 | 928.0 | 2596.3 | 1022.9 | 1364.9 | 4581.1 | 739.7 | 2101.5 | 931.4 |
Conc. (w) (ng L−1) | 568.4 | 749.7 | 2351.1 | 925.2 | 1029.2 | 4312.3 | 568.0 | 1240.4 | 918.3 |
RC % (s) to (w) | 10.1% | 23.8% | 10.4% | 10.6% | 32.6% | 6.2% | 30.2% | 69.4% | 1.4% |
Load (s) (mg cap−1 d−1) | 8.062 | 2.562 | 3.572 | 3.337 | 1.347 | 3.000 | 2.357 | 2.419 | 5.320 |
Load (w) (mg cap−1 d−1) | 8.521 | 2.576 | 3.617 | 4.392 | 1.384 | 3.136 | 2.415 | 2.463 | 5.597 |
RC % (w) to (s) | 5.7% | 0.5% | 1.3% | 31.6% | 2.8% | 4.5% | 2.4% | 1.8% | 5.2% |
Sulfamethoxazole (SFX), Time Period: 2010–2014 | |||||||||
Conc. (s) (ng L−1) | 53.3 | 21.0 | 60.2 | 31.3 | 27.1 | 100.6 | 11.7 | 29.0 | 46.6 |
Conc. (w) (ng L−1) | 49.0 | 17.4 | 57.2 | 29.0 | 22.7 | 98.7 | 9.6 | 18.5 | 45.6 |
RC % (s) to (w) | 8.8% | 20.7% | 5.2% | 7.9% | 19.4% | 1.9% | 21.9% | 56.8% | 2.2% |
Load (s) (mg cap−1 d−1) | 0.678 | 0.061 | 0.085 | 0.102 | 0.030 | 0.065 | 0.039 | 0.036 | 0.256 |
Load (w) (mg cap−1 d−1) | 0.744 | 0.067 | 0.093 | 0.138 | 0.035 | 0.076 | 0.004 | 0.040 | 0.307 |
RC % (w) to (s) | 9.8% | 8.5% | 10.4% | 35.3% | 18.9% | 17.4% | 3.7% | 10.3% | 19.8% |
Ciprofloxacin (CIP) 2, Time Period: 2011–2014 | |||||||||
Conc. (s) (ng L−1) | 15.9 | 21.7 | 52.7 | 11.3 | 35.1 | - | 22.0 | - | 13.3 |
Conc. (w) (ng L−1) | 14.7 | 18.0 | 49.1 | 10.8 | 26.4 | - | 17.4 | - | 13.1 |
RC % (s) to (w) | 8.2% | 20.6% | 7.3% | 4.6% | 33.0% | - | 26.4% | - | 1.5% |
Load (s) (mg cap−1 d−1) | 0.200 | 0.064 | 0.067 | 0.040 | 0.032 | - | 0.080 | - | 0.076 |
Load (w) (mg cap−1 d−1) | 0.219 | 0.071 | 0.073 | 0.059 | 0.036 | - | 0.082 | - | 0.085 |
RC % (w) to (s) | 9.4% | 10.3% | 7.9% | 47.2% | 11.2% | - | 3.0% | - | 11.7% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teran-Velasquez, G.; Helm, B.; Krebs, P. High Spatiotemporal Model-Based Tracking and Environmental Risk-Exposure of Wastewater-Derived Pharmaceuticals across River Networks in Saxony, Germany. Water 2023, 15, 2001. https://doi.org/10.3390/w15112001
Teran-Velasquez G, Helm B, Krebs P. High Spatiotemporal Model-Based Tracking and Environmental Risk-Exposure of Wastewater-Derived Pharmaceuticals across River Networks in Saxony, Germany. Water. 2023; 15(11):2001. https://doi.org/10.3390/w15112001
Chicago/Turabian StyleTeran-Velasquez, Geovanni, Björn Helm, and Peter Krebs. 2023. "High Spatiotemporal Model-Based Tracking and Environmental Risk-Exposure of Wastewater-Derived Pharmaceuticals across River Networks in Saxony, Germany" Water 15, no. 11: 2001. https://doi.org/10.3390/w15112001
APA StyleTeran-Velasquez, G., Helm, B., & Krebs, P. (2023). High Spatiotemporal Model-Based Tracking and Environmental Risk-Exposure of Wastewater-Derived Pharmaceuticals across River Networks in Saxony, Germany. Water, 15(11), 2001. https://doi.org/10.3390/w15112001