Next Article in Journal
Fault Detection of Wastewater Treatment Plants Based on an Improved Kernel Extreme Learning Machine Method
Next Article in Special Issue
Spatiotemporal Changes in Extreme Precipitation in China’s Pearl River Basin during 1951–2015
Previous Article in Journal
Hydraulic Planning in Insular Urban Territories: The Case of Madeira Island—São João Stream, Funchal, Portugal
Previous Article in Special Issue
Evaluation of Statistical PMP Considering RCP Climate Change Scenarios in Republic of Korea
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Predicting Flood Frequency with the LH-Moments Method: A Case Study of Prigor River, Romania

by
Cristian Gabriel Anghel
and
Cornel Ilinca
*
Faculty of Hydrotechnics, Technical University of Civil Engineering Bucharest, Lacul Tei, nr.122−124, 020396 Bucharest, Romania
*
Author to whom correspondence should be addressed.
Water 2023, 15(11), 2077; https://doi.org/10.3390/w15112077
Submission received: 5 May 2023 / Revised: 21 May 2023 / Accepted: 28 May 2023 / Published: 30 May 2023
(This article belongs to the Special Issue Hydrological Extreme Events and Climate Changes)

Abstract

:
The higher-order linear moments (LH-moments) method is one of the most commonly used methods for estimating the parameters of probability distributions in flood frequency analysis without sample censoring. This article presents the relationships necessary to estimate the parameters for eight probability distributions used in flood frequency analysis. Eight probability distributions of three parameters using first- and second-order LH-moments are presented, namely the Pearson V distribution, the CHI distribution, the inverse CHI distribution, the Wilson–Hilferty distribution, the Pseudo-Weibull distribution, the Log-normal distribution, the generalized Pareto Type I distribution and the Fréchet distribution. The exact and approximate relations for parameter estimation are presented, as are the exact and approximate relations for estimating the frequency factor specific to each method. In addition, the exact and approximate relationships of variation in the LH-skewness–LH-kurtosis are presented, as is the variation diagram of these statistical indicators. To numerically represent the analyzed distributions, a flood frequency analysis case study using the annual maximum series was carried out for the Prigor River. The analysis is presented compared to the linear moments (L-moments) method, which is the method that is intended to be used in the development of a new norm in Romania for determining the maximum flows. For the Prigor River, the most fit distributions are the Pseudo-Weibull and the generalized Pareto Type I for the linear moments method and the CHI and the Wilson–Hilferty distributions for the first higher-order linear moments method. The performance was evaluated using linear and higher-order linear moment values and diagrams.

1. Introduction

Since 1996, the higher-order linear moments (LH-moments) method for estimating the parameters of probability distributions in flood frequency analysis has become one of the most popular estimation methods without sample censoring.
This method was introduced by Wang [1] for flood frequency analysis using the Annual Maximum Series (AMS), a generalization of the linear moments method [2,3,4,5] “based on linear combinations of higher-orders statistics, introduced for characterizing the upper part of distributions and larger events in data” [1] up to the fourth order. The method fulfills the so-called “separation effect” [4,6], namely assigning a reduced importance to the lower maximum values, which are not always “floods”. This represents the main disadvantage of using the maximum annual series, which is made up of maximum flow values characteristic of each year.
In hydrology, the LH-moments method has been generally applied for low-flow frequency analysis [7], flood frequency analysis [1,8,9,10], regional flood frequency analysis [11,12,13,14] and frequency analysis of the annual maximum rainfall series [15,16,17].
In this article, only the first two LH-moments are analyzed, and we have formulated the LH-moments for all the analyzed distributions, i.e., the Pearson V (PV) distribution, the CHI distribution, the CHI inverse distribution (ICH), the Wilson–Hilferty distribution (WH), the Pseudo-Weibull distribution (PW), the Log-normal distribution (LN3), the generalized Pareto Type I distribution (PGI) and the Fréchet distribution (FR).
In recent research [18,19,20,21] for these distributions, new mathematical elements are presented regarding their easy applicability in flood frequency analysis, such as the exact and approximate relations for estimating the parameters of the distributions and the frequency factors using the method of ordinary moments and the method of linear moments.
The results obtained from the analyzed case study are presented compared to the L-moments method, because these methods are intended to be used in the new regulations in Romania regarding flood frequency analysis. These methods are much more stable parameter estimation methods and less subject to bias [2,3,4,5,22,23] compared to other parameter estimation methods, especially for small lengths of observed data. In recent years, based on the work of Anghel and Ilinca [20], it has been observed that the L-moments method requires certain corrections of the statistical indicators, which can be achieved using the least-squares method. Gaume [23] also mentions that “the L−moments are less sensitive to sampling variability, but parameters and quantiles are related to the moments by nonlinear functions. The advantage of the lower variance of the L-moments may be lost due to this nonlinear transformation…”. The same principle is applied to LH-moments.
The main purpose of the article is to present all the elements necessary to apply these distributions using the first and second LH-moments method, which is a method that is intended to be implemented in a future normative regarding the determination of maximum flows in Romania. Being a method that achieves the effect of separating the lower maximum flows from the higher ones from the annual series of maximum flows, this can represent an alternative to the frequency analysis that uses the partial series. It also represents a parameter estimation method whose statistical indicators (expected value, L-coefficient of variation, L-skewness, L-kurtosis) can be used to achieve regionalization.
The exact and approximate relations for estimating the parameters of these probability distributions using the L-moments method were also presented in previous research [19,20,21].
In this article, the new elements that are presented are the exact and approximate relationships for parameter estimation, the expression of the inverse functions with the frequency factor, the exact and approximate relationships of the frequency factors, the diagram and the variation relationships of LH-skewness and LH−kurtosis, the confidence interval using the frequency factors and Chow’s relationship [3,18,24,25,26].
All these novelty elements for the distributions presented in Table 1 will help hydrology researchers better understand and easily apply these distributions using LH-moments.
Based on the work of Anghel and Ilinca [19,20,21], the inverse function is expressed using the frequency factor for both methods. Table A1 in Appendix B shows the frequency factors of the analyzed distributions for the L-moments and LH-moments methods. Other important novelty elements are the relationships and the LH-skewness ( τ H 3 )–LH-kurtosis ( τ H 4 ) variation diagrams for the analyzed distributions, presented in Appendix C and Appendix D.
The parameter approximation relations are necessary because, for some probability distributions, it is necessary to solve nonlinear systems of equations, which leads to some difficulties. The relative errors of parameter estimation are between 10−2 and 10−4.
Moreover, for a fast but still accurate calculation, the approximation relations of the frequency factors are presented for both methods for the most common exceedance probabilities in flood frequency analysis (see Appendix E, Appendix F, Appendix G and Appendix H).
All the analyzed distributions and methods presented are applied for flood frequency analysis using the Annual Maximum Series (AMS) for the Prigor River.
The best model is chosen based on the linear moments and the higher-order linear moment values and diagrams.
Indicatively, the values of the relative mean error (RME) and the relative absolute error (RAE) indicators [3] are presented, but it is known that they only properly evaluate the probability area of the observed values.
The article is organized as follows: In Section 2.1, the inverse functions of the probability distributions are presented. In Section 2.2, the relations for the exact calculation and the approximate relations for determining the parameters of the distributions are presented. In Section 3, these distributions and methods are applied for the flood frequency analysis using the AMS for the Prigor River. The results, discussion and conclusions are presented in Section 4, Section 5 and Section 6.

2. Methods

The methods for estimating the parameters of probability distributions analyzed in this article are the L-moments method and the LH-moments method, representing two of the most commonly used parameter estimation methods.
The analysis consists in determining the maximum flows on the Prigor River using the series of annual maximum flows applying the Pearson V, CHI, inverse CHI, Wilson–Hilferty, Pseudo-Weibull, Log-normal, generalized Pareto Type I and Fréchet distributions, as well as the L-moments methods and the LH-moments for parameter estimation.
The derivations of sample L-moments and LH-moments are realized according to formal studies [1,2,3,4,5].

2.1. Probability Distributions

Being two methods based exclusively on the inverse function of the probability distribution, Table 2 only presents the quantile function, x p , for the analyzed distributions [18,19,20,21,27].
The probability density function f x and the complementary cumulative distribution function F x for the analyzed distributions are presented in Appendix I.
All the predefined functions are detailed in Appendix K.

2.2. Parameter Estimation

This section presents the exact and approximate relations for estimating the parameters of the analyzed probability distributions for the first-order LH-moments method. The exact and approximate relations for estimating the parameters of the distributions analyzed for the second-order LH-moments are presented in Appendix A.
The relative errors characterizing the approximate estimates depend only on the values of the statistical indicator LH-skewness ( τ H 3 ), which are always between 0 and 1.
The relationships for estimating the parameters using the L-moments method, as well as their applicability in flood frequency analysis, were presented in previous research [18,19,20,21].

2.2.1. Pearson V (PV)

For the LH-moments method, the parameters are calculated numerically (definite integrals) using the inverse function, but an approximate form of parameter estimation can be adopted. The shape parameter α can be evaluated numerically with the following approximate forms, depending on LH-skewness ( τ H 3 ):
  • if 0.12 < τ H 3 0.5 :
α = exp 33 . 1789157 + 210 . 1051405 ln τ H 3 + 585 . 9500753 ln τ H 3 2 + 915 . 6647285 ln τ H 3 3 + 883 . 3738137 ln τ H 3 4 + 539 . 3747506 ln τ H 3 5 + 204 . 1998415 ln τ H 3 6 + 43 . 9583804 ln τ H 3 7 + 4 . 1340485 ln τ H 3 8
  • if 0.5 < τ H 3 0.89 :
α = exp 0 . 6283077 0 . 5109263 ln τ H 3 + 0 . 2918709 ln τ H 3 2 0 . 2992959 ln τ H 3 3
The scale parameter β and the position parameter γ are determined by the following expressions:
β = L H 2 3 2 z 1
γ = L H 1 2 β z 2
where z 1 = 0 1 1 q g a m m a 1 p , α 1 3 p 2 2 p d p , which can be approximated with the following equation:
z 1 = 0 . 11655082 + 0 . 03060228 α 0 . 00076384 α 2 + 0 . 0000079 α 3 1 1 . 179253 α + 0 . 33961387 α 2
and z 2 = 0 1 1 q g a m m a 1 p , α 1 p d p , which can be approximated with the following equation:
z 2 = 0 . 19533553 + 0 . 22880951 α 0 . 00122785 α 2 + 0 . 00001518 α 3 1 1 . 26076825 α + 0 . 38037518 α 2
L H 1 and L H 2 represent the first two LH-moments.

2.2.2. CHI

For the LH-moments method, the parameters are calculated numerically (definite integrals) using the inverse function.
The shape parameter α can be evaluated numerically with the following approximate forms, depending on LH-skewness ( τ H 3 ):
  • if 0.12 < τ H 3 0.35 :
α = exp 16694 . 76115 100768 . 156 ln τ H 3 268451 . 17727 ln τ H 3 2 414276 . 35912 ln τ H 3 3 408164 . 33969 ln τ H 3 4 266288 . 40807 ln τ H 3 5 115056 . 13395 ln τ H 3 6 31753 . 48498 ln τ H 3 7 5080 . 28503 ln τ H 3 8 359 . 09072 ln τ H 3 9
  • if 0.35 < τ H 3 0.86 :
α = 698 . 77925304 2242 . 91013463 τ H 3 + 3940 . 25464468 τ H 3 2 3816 . 83817207 τ H 3 3 + 1382 . 96600663 τ H 3 4 1 + 1919 . 25596802 τ H 3
The scale parameter β and the position parameter γ are determined by the following expressions:
β = L H 2 3 2 z 1
γ = L H 1 2 β z 2
where z 1 = 0 1 2 q g a m m a p , α 3 3 p 2 2 p d p , which can be approximated with the following equation:
z 1 = exp 1 . 6193192 + 0 . 0911325 ln α 0 . 0732734 ln α 2 + 0 . 0210155 ln α 3 0 . 0002631 ln α 4 0 . 0007313 ln α 5 + 0 . 0000303 ln α 6 + 0 . 0000107 ln α 7
and z 2 = 0 1 2 q g a m m a p , α 3 p d p , which can be approximated with the following equation:
z 2 = exp 0 . 5729973 + 0 . 5558033 ln α 0 . 0535962 ln α 2 + 0 . 0108076 ln α 3 + 0 . 000948 ln α 4 0 . 0004607 ln α 5 + 0 . 0000087 ln α 6 + 0 . 0000083 ln α 7

2.2.3. Inverse CHI (ICH)

For the LH-moments method, the parameters are calculated numerically (definite integrals) using the inverse function.
The shape parameter α can be evaluated numerically with the following approximate forms, depending on LH-skewness ( τ H 3 ):
  • if 0.13 < τ H 3 1 3 :
α = exp 61180 . 3132156 366053 . 2214846 ln τ H 3 967907 . 6881457 ln τ H 3 2 1484555 . 793998 ln τ H 3 3 1455630 . 615952 ln τ H 3 4 946282 . 7853778 ln τ H 3 5 407886 . 238361 ln τ H 3 6 112421 . 4415708 ln τ H 3 7 17980 . 252856 ln τ H 3 8 1271 . 5300784 ln τ H 3 9
  • if 1 3 < τ H 3 0.86 :
α = exp 0 . 8215758 1 . 0358243 ln τ H 3 + 0 . 495645 ln τ H 3 2 + 0 . 0935625 ln τ H 3 3 + 0 . 1199457 ln τ H 3 4
The scale parameter β and the position parameter γ are determined by the following expressions:
β = L H 2 3 2 z 1
γ = L H 1 2 β z 2
where z 1 = 0 1 1 q g a m m a 1 p , α 3 p 2 2 p d p , which can be approximated with the following equation:
z 1 = exp 0 . 564274128 2 . 882522149 ln α + 2 . 255841146 ln α 2 2 . 247784696 ln α 3 + 1 . 499774603 ln α 4 0 . 632746529 ln α 5 + 0 . 166600377 ln α 6 0 . 026534223 ln α 7 + 0 . 002338161 ln α 8 0 . 000087492 ln α 9
and z 2 = 0 1 1 q g a m m a 1 p , α p d p , which can be approximated with the following equation:
z 2 = exp 0 . 2300873 1 . 8414555 ln α + 1 . 8519728 ln α 2 2 . 2245978 ln α 3 + 1 . 8378594 ln α 4 0 . 9868348 ln α 5 + 0 . 343659 ln α 6 0 . 0770063 ln α 7 + 0 . 0107105 ln α 8 0 . 0008412 ln α 9 + 0 . 0000285 ln α 10

2.2.4. Wilson–Hilferty (WH)

For the LH-moments method, the parameters are calculated numerically (definite integrals) using the inverse function. The shape parameter α can be evaluated numerically with the following approximate forms, depending on LH-skewness ( τ H 3 ):
  • if 0.12 < τ H 3 0.35 :
α = exp 57 . 509799785 + 253 . 518955488 ln τ H 3 + 436 . 520035507 ln τ H 3 2 + 394 . 289299803 ln τ H 3 3 + 198 . 423841713 ln τ H 3 4 + 52 . 828181707 ln τ H 3 5 + 5 . 824373504 ln τ H 3 6
  • if 0.35 < τ H 3 0.86 :
α = 273 . 6242257 98 . 24031624 τ H 3 235 . 34533957 τ H 3 2 1 + 5141 . 39837304 τ H 3 + 2429 . 51377444 τ H 3 2
The scale parameter β and the position parameter γ are determined by the following expressions:
β = L H 2 3 2 z 1
γ = L H 1 2 β z 2
where z 1 = 0 1 q g a m m a p , α 1 3 3 p 2 2 p d p , which can be approximated with the following equation:
z 1 = exp 2 . 3478324 0 . 1189079 ln α + 0 . 0572596 ln α 2 + 0 . 0450416 ln α 3 0 . 0035155 ln α 4 0 . 0020952 ln α 5 0 . 0001603 ln α 6
and z 2 = 0 1 q g a m m a p , α 1 3 p d p , which can be approximated with the following equation:
z 2 = exp 0 . 6136735 + 0 . 3733551 ln α + 0 . 0145217 ln α 2 + 0 . 0408459 ln α 3 + 0 . 0063655 ln α 4 + 0 . 0001819 ln α 5 0 . 0000152 ln α 6

2.2.5. Pseudo-Weibull (PW)

For the LH-moments method, the parameters are calculated numerically (definite integrals) using the inverse function. The shape parameter α can be evaluated numerically with the following approximate forms, depending on LH-skewness ( τ H 3 ):
α = exp 3 . 8466499 9 . 7748142 ln α 19 . 6970479 ln α 2 30 . 004269 ln α 3 29 . 1593303 ln α 4 17 . 8271467 ln α 5 6 . 6407414 ln α 6 1 . 3760942 ln α 7 0 . 1215435 ln α 8
The scale parameter β and the position parameter γ are determined by the following expressions:
β = L H 2 3 2 z 1
γ = L H 1 2 β z 2
where z 1 = 0 1 q g a m m a p , 1 α + 1 1 α 3 p 2 2 p d p , which can be approximated with the following equation:
z 1 = exp 0 . 771576 2 . 2235425 ln α + 1 . 1244123 ln α 2 0 . 5660755 ln α 3 + 0 . 1614285 ln α 4 0 . 0410233 ln α 5 + 0 . 0180276 ln α 6
and z 2 = 0 1 q g a m m a p , 1 α + 1 1 α p d p , which can be approximated with the following equation:
z 2 = exp 0 . 317018 1 . 5848028 ln α + 1 . 20619 ln α 2 0 . 5676031 ln α 3 + 0 . 1612407 ln α 4 0 . 0417302 ln α 5 + 0 . 0179191 ln α 6

2.2.6. Log-Normal (LN3)

For the L-moments and LH-moments methods, the parameters are calculated numerically (definite integrals) using the inverse function. The scale parameter β can be evaluated numerically with the following approximate forms, depending on LH-skewness ( τ H 3 ):
β = 0 . 299614774 + 3 . 042079635 τ 3 H 2 . 900801018 τ 3 H 2 1 0 . 933093562 τ 3 H 0 . 64009136 τ 3 H 2 + 0 . 51414951 τ 3 H 3
The shape parameter α and the position parameter γ are determined by the following expressions:
α = ln 3 2 L H 2 z 1
γ = L H 1 2 exp α z 2
where z 1 = 0 1 exp β q n o r m p , 0 , 1 3 p 2 2 p d p , which can be approximated with the following equation:
z 1 = exp - 0 . 4607809 + 2 . 1250051 ln β + 0 . 863935 ln β 2 + 0 . 5441155 ln β 3 + 0 . 3300339 ln β 4 + 0 . 1507899 ln β 5 + 0 . 0409295 ln β 6 + 0 . 0057164 ln β 7 + 0 . 0003153 ln β 8
and z 2 = 0 1 exp β q n o r m p , 0 , 1 p d p , which can be approximated with the following equation:
z 2 = exp 0 . 2270454 + 1 . 2930085 ln β + 1 . 0189764 ln β 2 + 0 . 6029839 ln β 3 + 0 . 3173155 ln β 4 + 0 . 1468108 ln β 5 + 0 . 049679 ln β 6 + 0 . 0104601 ln β 7 + 0 . 0011938 ln β 8 + 0 . 000056 ln β 9

2.2.7. Generalized Pareto Type I (PGI)

The equations needed to estimate the parameters with the LH-moments method have the following expressions:
L H 1 = γ + β 3 α 1 α 1 2 α 1 + 1
L H 2 = 3 α 2 β α 1 2 α 1 3 α 1
L H 3 = 4 α 2 β α + 1 α 1 2 α 1 3 α 1 4 α 1
The parameters have the following expressions:
α = 3 τ 3 H + 4 12 τ 3 H 4
β = L H 2 α 1 2 α 1 3 α 1 3 α 2
λ = L H 1 β 3 α 1 α 1 2 α 1 + 1

2.2.8. Fréchet (FR)

The equations needed to estimate the parameters with the LH-moments method have the following expressions:
L H 1 = γ + β 2 1 α Γ 1 1 α
L H 2 = β π 3 3 1 α 2 1 α 2 Γ 1 α sin π α
L H 3 = β 4 π 10 4 1 α 1 + 3 2 1 α 1 4 3 1 α 3 Γ 1 α sin π α
Parameter α can be approximated using the next relation, depending on τ H 3 :
  • if 0.25 < τ H 3 0.45 :
α = exp 344234 . 05729 2949718 . 99555 ln τ H 3 11184756 . 29 ln τ H 3 2 24632415 . 69647 ln τ H 3 3 34724766 . 28977 ln τ H 3 4 32496855 . 88343 ln τ H 3 5 20190182 . 1142 ln τ H 3 6 8031052 . 37039 ln τ H 3 7 1855985 . 01293 ln τ H 3 8 189882 . 3334 ln τ H 3 9
  • if 0.45 < τ H 3 0.95 :
α = exp 0 . 1346326 1 . 1127414 ln τ H 3 + 0 . 2259124 ln τ H 3 2 0 . 3090014 ln τ H 3 3 0 . 2757445 ln τ H 3 4 0 . 2708917 ln τ H 3 5
The scale parameter β and the position parameter γ are determined by the following expressions:
β = 2 L H 2 Γ 1 α sin π α 3 π 3 1 α 2 1 α
γ = L H 1 β 2 1 α Γ 1 1 α
The flood frequency analysis is carried out according to Figure 1. In the curation stage, no outliers have been detected.

3. Case Study

This case study consists in determining of maximum annual flows on the Prigor River using the proposed probability distributions and the two parameter estimation methods.
The Prigor River is the left tributary of the Nera River, and it is located in the southwestern part of Romania, as shown in Figure 2.
Its location is 44°55′25.5″ N 22°07′21.7″ E. The river is located in the vicinity of the protected natural site 2000 Cheile Nerei.
Table 3 presents the main morphometric indicators of the Prigor River [28].
In the section of the hydrometric station, the watershed area is 141 km2, and the average altitude is 729 m [28].
The river has a length of 33 km, an average slope of 22 ‰ and a sinuosity coefficient of 1.83 [28].
There are 31 annual maximum flows, whose values are presented in Table 4.
The statistical indicators of the observed data are presented in Table 5 for both methods of parameter estimation.
For parameter estimation with the L-moments and the LH-moments methods, the observed data must be in ascending order for the calculation of natural estimators and sample linear moments. The sample L-moments and LH-moments were determined based on the relationships presented in [1,7,8].

4. Results

In the flood frequency analysis, the most important quantiles are those for low exceeding probabilities because hydrotechnical constructions, especially dams, are designed based on these quantiles.
We present only the results obtained with the method of linear moments and the method of linear moments of first order, because these two methods are intended to be implemented in the future normative process of determining maximum flow rates in Romania. The distribution performance for second-order linear moments is presented in Appendix A.
Table 6 presents the quantiles for the most common exceedance probabilities in flood frequency analysis in the design of the dams.
Figure 3 shows the fitting distributions for the Prigor River. For plotting positions, the Alexeev formula was used [29].
In Figure A4 (Appendix J), the confidence interval for each analyzed distribution is presented for both methods using Chow’s relation for a 95% confidence level. Table 7 shows the values of the distribution parameters for the two methods of parameter estimation.
The performance of the analyzed distribution and the choice of the best-fit model were evaluated using the linear and higher-order linear moment values and diagrams.
The distribution performance values are presented in Table 8. The values for the best-fit model are highlighted in bold. The values of the RME and RAE indicators are presented informatively, knowing that they are relevant only in the area of the observed data.

5. Discussion

In flood frequency analysis, the main purpose is to determine, as accurately and rigorously as possible, the values of the quantiles that characterize the field of low exceedance probabilities, where generally there are no observed values.
As can be seen from the values in Table 6 and the graphics in Figure 3, the results characterizing the range of probabilities lower than 1% vary significantly, both between the analyzed distributions and between the estimation methods of the distribution parameters.
Regarding the results obtained for the same probability distributions but with different parameter estimation methods, for the CHI, WH, PW and PGI probability distributions, the values are not much different between the two methods. This is due to the variation in the shape parameter that characterizes the skewness, where the differences in its values are very small. It can also be observed in the variation graphs of the parameters of the analyzed distributions presented in Figure 4.
In the case of the PV, LN3, ICH and FR distributions, for the values of the statistical indicators L-skewness and LH-skewness of the analyzed observed data, the two values that characterize the shape parameter differ significantly between the two methods, an aspect highlighted by the obtained quantile values.
In the case of the Prigor River, among the distributions analyzed in this article, the Pseudo-Weibull, generalized Pareto Type I, CHI and Wilson–Hilferty distributions give the best results. The values of the natural indicators L-skewness and LH-skewness are the closest to the values of the corresponding indicators of the observed data, an aspect also highlighted in the graphs of Figure 5.
In the case of both parameter estimation methods, the application of a certain probability distribution of three parameters in the frequency analysis of extreme events in hydrology is carried out only if the theoretical values of the indicators L-skewness, L-kurtosis, LH-skewness and LH-kurtosis are closest to the corresponding values of the indicators of the analyzed data set, an aspect also highlighted in the literature [2,3,14,15,17,22,23]. The inconvenience of three-parameter distributions is due to the fact that they cannot calibrate higher-order linear moments (the fourth-order linear moment that characterizes L-kurtosis).

6. Conclusions

The LH-moments method has become one of the most commonly used methods for estimating statistical parameters without sample censoring in flood frequency analysis using the series of maximum annual flows.
This article presents all the necessary elements for the application of the eight probability distributions using the first and second LH methods.
The exact and approximate relations for estimating the distribution parameters are presented, as are exact and approximate relations for determining the frequency factor for a quick but accurate calculation of the most common occurring probabilities in flood frequency analysis (see Appendix E, Appendix F, Appendix G and Appendix H). In the case of the CHI, WH and PW distributions, the exact and approximate estimations of the frequency factor for the L-moments method were presented in previous research [20,21].
The variation graphs of the shape parameters for each distribution and each analyzed method are presented, as are the relative estimation errors of these parameters.
Considering that the main selection criterion in the case of these parameter estimation methods is represented by the values and the variation graphs of the statistical indicators, the variation relations for a wide range of distributions, including those analyzed in this article, are presented, providing information of real help in using these distributions.
In the case of the Prigor River, based on the selection criteria specific to these methods, among the presented distributions, the PW, GPI, CHI and WH distributions give the best results.
All this research is part of much more complex scientific research carried out within the Faculty of Hydrotechnics, in which a large number of distributions and families of distributions were analyzed using the method of ordinary moments and the method of linear moments, with results concretized in other papers [18,19,20,21,27,30].
The main purpose of this article is to present all the elements necessary for the application of these distributions in frequency analysis in hydrology using the LH-moments method and, in particular, the use of these distributions and methods in the elaboration of a normative regarding the determination of maximum flows in Romania, a normative that will contain dedicated, open-source applications with these elements.
Otherwise, these new elements will also be used for future regulations regarding the analysis of another extreme phenomenon in hydrology, namely water scarcity, which, in the context of climate change, becomes of particular importance (an aspect also highlighted in other publications [31,32]).
All the presented elements represent novelty elements and facilitate the ease of application of these probability distributions, which is important considering that the vast majority of the distributions used in frequency analysis in hydrology using the LH-moments method are not included in existing dedicated programs.

Author Contributions

Conceptualization, C.I. and C.G.A.; methodology, C.I. and C.G.A.; software, C.I. and C.G.A.; validation, C.I. and C.G.A.; formal analysis, C.I. and C.G.A.; investigation, C.I. and C.G.A.; resources, C.I. and C.G.A.; data curation, C.I. and C.G.A.; writing—original draft preparation, C.I. and C.G.A.; writing—review and editing, C.I. and C.G.A.; visualization, C.I. and C.G.A.; supervision, C.I. and C.G.A.; project administration, C.I. and C.G.A.; funding acquisition, C.I. and C.G.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Not applicable.

Conflicts of Interest

The authors declare no conflict of interest.

Abbreviations

MOMthe method of ordinary moments
L-momentsthe method of linear moments
LH-momentsthe method of higher-order linear moments
L 1 , L 2 , L 3 linear moments
L H 1 , L H 2 , L H 3 higher-order linear moments
τ 2 , L C v coefficient of variation based on the L-moments method
τ 3 , L C s coefficient of skewness based on the L-moments method
τ 4 , L C k coefficient of kurtosis based on the L-moments method
τ H 2 , L H C v coefficient of variation based on the LH-moments method
τ H 3 , L H C s coefficient of skewness based on the LH-moments method
τ H 4 , L H C k coefficient of kurtosis based on the LH-moments method
PVPearson V distribution
CHICHI distribution
ICHinverse CHI distribution
WHWilson–Hilferty distribution
PWPseudo-Weibull distribution
LN3three-parameter Log-normal distribution
GPIgeneralized Pareto Type I distribution
FRthree-parameter Fréchet distribution

Appendix A. Parameter Estimation Using the Second-Order LH-Moments

The statistical indicators are calculated using the specific relations of the second-order LH method [1].
Pearson V (PV) distribution
The shape parameter α can be evaluated numerically with the following approximate forms, depending on LH-skewness ( 0.2 < τ H 3 0.8 ):
α = exp 0 . 7703254 + 1 . 8023535 ln τ H 3 + 12 . 0654748 ln τ H 3 2 + 31 . 3070953 ln τ H 3 3 + 50 . 0185737 ln τ H 3 4 + 48 . 0218148 ln τ H 3 5 + 27 . 8335549 ln τ H 3 6 + 8 . 9904377 ln τ H 3 7 + 1 . 2597532 ln τ H 3 8
The scale parameter β and the position parameter γ are determined by the following expressions:
β = L H 2 z 1
γ = L H 1 3 β z 2
where z 1 = 0 1 1 q g a m m a 1 p , α 1 8 p 3 6 p 2 d p , which can be approximated with the following equation:
z 1 = exp 70 . 068220301 253 . 066147842 ln α + 405 . 371887371 ln α 2 375 . 469158123 ln α 3 + 218 . 079975625 ln α 4 82 . 183290073 ln α 5 + 20 . 100915955 ln α 6 3 . 080861051 ln α 7 + 0 . 268939488 ln α 8 0 . 010204593 ln α 9
and z 2 = 0 1 1 q g a m m a 1 p , α 1 p 2 d p , which can be approximated with the following equation:
z 2 = exp 65 . 5870555 241 . 6468173 ln α + 391 . 1225404 ln α 2 363 . 9624699 ln α 3 + 212 . 019458 ln α 4 80 . 064287 ln α 5 + 19 . 6131341 ln α 6 3 . 0098374 ln α 7 + 0 . 2630127 ln α 8 0 . 0099887 ln α 9
Pseudo-Weibull (PW) distribution
The shape parameter α can be evaluated numerically with the following approximate forms, depending on LH-skewness ( 0.2 < τ H 3 0.8 ):
α = exp 5 . 2225077 17 . 8654702 ln τ H 3 43 . 4458049 ln τ H 3 2 69 . 6462537 ln τ H 3 3 68 . 8374609 ln τ H 3 4 42 . 2639586 ln τ H 3 5 15 . 7018547 ln τ H 3 6 3 . 2319781 ln τ H 3 7 0 . 2826753 ln τ H 3 8
The scale parameter β and the position parameter γ are determined by the following expressions:
β = L H 2 z 1
γ = L H 1 3 β z 2
where z 1 = 0 1 q g a m m a p , 1 α + 1 1 α 8 p 3 6 p 2 d p , which can be approximated with the following equation:
z 1 = exp 0 . 40607485 2 . 368325995 ln α + 1 . 154932857 ln α 2 0 . 51477681 ln α 3 + 0 . 154969653 ln α 4 0 . 058279056 ln α 5 + 0 . 014783487 ln α 6
and z 2 = 0 1 q g a m m a p , 1 α + 1 1 α p 2 d p , which can be approximated with the following equation:
z 2 = exp 0 . 0671983 1 . 6755793 ln α + 1 . 213393 ln α 2 0 . 5661667 ln α 3 + 0 . 1746241 ln α 4 0 . 0389579 ln α 5 + 0 . 0109139 ln α 6 0 . 0024496 ln α 7
Fréchet (FR) distribution
The equations needed to estimate the parameters with LH-moments have the following expressions:
L H 1 = γ + β 3 1 α Γ 1 1 α
L H 2 = β π 2 2 α + 1 2 3 1 α Γ 1 α sin π α
L H 3 = β 5 π 6 5 1 α + 2 3 1 α 5 4 1 α 3 Γ 1 α sin π α
The parameter α can be approximated using the next relation, depending on τ H 3 :
  • if 0.28 < τ H 3 0.45 :
α = exp 749480 . 96282 6708919 . 18032 ln τ H 3 26612862 . 7257 ln τ H 3 2 61402618 . 18226 ln τ H 3 3 90812958 . 2641 ln τ H 3 4 89285821 . 56955 ln τ H 3 5 58358858 . 11388 ln τ H 3 6 24453687 . 54297 ln τ H 3 7 5960979 . 27152 ln τ H 3 8 644094 . 53004 ln τ H 3 9
  • if 0.45 < τ H 3 0.90 :
α = exp 0 . 2236259 1 . 1243974 ln τ H 3 + 0 . 6247787 ln τ H 3 2 + 0 . 493862 ln τ H 3 3 + 0 . 6072315 ln τ H 3 4
The scale parameter β and the position parameter γ are determined by the following expressions:
β = L H 2 Γ 1 α sin π α π 2 2 α + 1 2 3 1 α
γ = L H 1 β 3 1 α Γ 1 1 α
Wilson–Hilferty (WH) distribution
The shape parameter α can be evaluated numerically with the following approximate forms, depending on LH-skewness ( 0.16 < τ H 3 0.8 ):
α = exp 24 . 2717598 199 . 9827559 ln τ H 3 907 . 1696354 ln τ H 3 2 2393 . 7758375 ln τ H 3 3 3946 . 6821282 ln τ H 3 4 4196 . 8735478 ln τ H 3 5 2878 . 4415831 ln τ H 3 6 1229 . 852233 ln τ H 3 7 297 . 7079385 ln τ H 3 8 31 . 1843533 ln τ H 3 9
The scale parameter β and the position parameter γ are determined by the following expressions:
β = L H 2 z 1
γ = L H 1 3 β z 2
where z 1 = 0 1 q g a m m a p , α 1 3 8 p 3 6 p 2 d p , which can be approximated with the following equation:
z 1 = exp 2 . 085292134 0 . 150846234 ln α + 0 . 012279379 ln α 2 0 . 011892699 ln α 3 0 . 021740029 ln α 4 0 . 004444376 ln α 5 0 . 000269647 ln α 6
and z 2 = 0 1 q g a m m a p , α 1 3 p 2 d p , which can be approximated with the following equation:
z 2 = exp 0 . 9433178 + 0 . 2891917 ln α 0 . 0525735 ln α 2 0 . 0287951 ln α 3 0 . 0231076 ln α 4 0 . 0060035 ln α 5 0 . 0006706 ln α 6 0 . 0000281 ln α 7
Log-Normal (LN3) distribution
The scale parameter β can be evaluated numerically with the following approximate forms, depending on LH-skewness ( 0.16 < τ H 3 0.8 ):
β = exp 5 . 5997658 + 53 . 4446795 ln τ H 3 + 280 . 5758463 ln τ H 3 2 + 866 . 7797953 ln τ H 3 3 + 1659 . 7530346 ln τ H 3 4 + 2033 . 1857675 ln τ H 3 5 + 1592 . 7716345 ln τ H 3 6 + 770 . 8810928 ln τ H 3 7 + 209 . 7251296 ln τ H 3 8 + 24 . 5139669 ln τ H 3 9
The shape parameter α and the position parameter γ are determined by the following expressions:
α = ln L H 2 z 1
γ = L H 1 3 exp α z 2
where z 1 = 0 1 exp β q n o r m p , 0 , 1 8 p 3 6 p 2 d p , which can be approximated with the following equation:
z 1 = exp 0 . 014722846 + 2 . 299838276 ln β + 0 . 925071272 ln β 2 + 0 . 526679239 ln β 3 + 0 . 297100461 ln β 4 + 0 . 142726563 ln β 5 + 0 . 043986648 ln β 6 + 0 . 007187861 ln β 7 + 0 . 000469736 ln β 8
and z 2 = 0 1 exp β q n o r m p , 0 , 1 p 2 d p , which can be approximated with the following equation:
z 2 = exp 0 . 0441496 + 1 . 4591307 ln β + 1 . 0576843 ln β 2 + 0 . 5860892 ln β 3 + 0 . 292079 ln β 4 + 0 . 1379002 ln β 5 + 0 . 0524525 ln β 6 + 0 . 0130832 ln β 7 + 0 . 0018047 ln β 8 + 0 . 0001031 ln β 9
CHI distribution
The shape parameter α can be evaluated numerically with the following approximate forms, depending on LH-skewness ( 0.2 < τ H 3 0.8 ):
α = exp 25 . 6337507 236 . 6618708 ln τ H 3 1126 . 3329329 ln τ H 3 2 3104 . 9770673 ln τ H 3 3 5335 . 3285993 ln τ H 3 4 5903 . 6543563 ln τ H 3 5 4209 . 4097095 ln τ H 3 6 1869 . 4841235 ln τ H 3 7 470 . 7309743 ln τ H 3 8 51 . 3805751 ln τ H 3 9
The scale parameter β and the position parameter γ are determined by the following expressions:
β = L H 2 z 1
γ = L H 1 3 β z 2
where z 1 = 0 1 2 q g a m m a p , α 2 8 p 3 6 p 2 d p , which can be approximated with the following equation:
z 1 = exp 1 . 282810649 + 0 . 027979479 ln α 0 . 05033417 ln α 2 + 0 . 021850999 ln α 3 0 . 001932334 ln α 4 0 . 000810088 ln α 5 + 0 . 000082461 ln α 6 + 0 . 000016615 ln α 7
and z 2 = 0 1 2 q g a m m a p , α 2 p 2 d p , which can be approximated with the following equation:
z 2 = exp 0 . 8159636 + 0 . 484355 ln α 0 . 0434581 ln α 2 + 0 . 013379 ln α 3 + 0 . 0001081 ln α 4 0 . 0005661 ln α 5 + 0 . 0000168 ln α 6 + 0 . 0000115 ln α 7
Inverse CHI (ICH) distribution
The shape parameter α can be evaluated numerically with the following approximate forms, depending on LH-skewness ( 0.2 < τ H 3 0.8 ):
α = exp 1 . 1409838 3 . 7281901 ln τ H 3 11 . 4041535 ln τ H 3 2 28 . 1895148 ln τ H 3 3 37 . 6078101 ln τ H 3 4 28 . 8259956 ln τ H 3 5 11 . 7387827 ln τ H 3 6 2 . 0006845 ln τ H 3 7
The scale parameter β and the position parameter γ are determined by the following expressions:
β = L H 2 z 1
γ = L H 1 3 β z 2
where z 1 = 0 1 1 q g a m m a 1 p , α 8 p 3 6 p 2 d p , which can be approximated with the following equation:
z 1 = exp 0 . 057334428 2 . 622136121 ln α + 1 . 262885759 ln α 2 2 . 0026002 ln α 3 + 2 . 983910396 ln α 4 2 . 546891691 ln α 5 + 1 . 233970727 ln α 6 0 . 340022204 ln α 7 + 0 . 049778844 ln α 8 0 . 003009371 ln α 9
and z 2 = 0 1 1 q g a m m a 1 p , α p 2 d p , which can be approximated with the following equation:
z 2 = exp 0 . 016945843 1 . 719328787 ln α + 1 . 152177296 ln α 2 1 . 836394903 ln α 3 + 2 . 539946588 ln α 4 2 . 07825526 ln α 5 + 0 . 983614297 ln α 6 0 . 267138228 ln α 7 + 0 . 038725467 ln α 8 0 . 002324394 ln α 9
Generalized Pareto Type I (PGI)
The equations needed to estimate the parameters with LH-moments have the following expressions:
L H 1 = γ + β 11 α 2 6 α + 1 α 1 2 α 1 3 α 1 + 1
L H 2 = 12 α 3 β α 1 2 α 1 3 α 1 4 α 1
L H 3 = 20 α 3 β α + 1 α 1 2 α 1 3 α 1 4 α 1 5 α 1
The parameters have the following expressions:
α = 3 τ H 3 + 5 15 τ H 3 5
β = L H 2 α 1 2 α 1 3 α 1 4 α 1 12 α 3
λ = L H 1 β 11 α 2 6 α + 1 α 1 2 α 1 3 α 1 + 1
Figure A1 shows the fitting distributions for the Prigor River for the second-order LH-moments.
Figure A1. Evaluation of the quantile function for the second-order LH-moments.
Figure A1. Evaluation of the quantile function for the second-order LH-moments.
Water 15 02077 g0a1

Appendix B. The Frequency Factors for the Analyzed Distributions

Table A1 shows the expressions of the frequency factors for the L-moments and LH-moments methods.
Table A1. Frequency factors.
Table A1. Frequency factors.
Distr. Frequency   Factor   K p p
Quantile Function (Inverse Function)
LH-Moments (First Order)LH-Moments (Second Order)
x p = L H 1 + L H 2 K p p
PV 1 q g a m m a p , α 1 2 z 2 3 2 z 1
the expressions for z 1 and z 2
are explained in Section 2.2.1
1 q g a m m a p , α 1 3 z 2 z 1
the expressions for z 1 and z 2
are explained in Appendix A
CHI 2 q g a m m a 1 p , α 2 2 z 2 3 2 z 1
the expressions for z 1 and z 2
are explained in Section 2.2.4
2 q g a m m a 1 p , α 2 3 z 2 z 1
the expressions for z 1 and z 2
are explained in Appendix A
ICH 1 q g a m m a p , α 2 z 2 3 2 z 1
the expressions for z 1 and z 2
are explained in Section 2.2.3
1 q g a m m a p , α 3 z 2 z 1
the expressions for z 1 and z 2
are explained in Appendix A
WH q g a m m a 1 p , α 1 3 2 z 2 3 2 z 1
the expressions for z 1 and z 2
are explained in Section 2.2.4
q g a m m a 1 p , α 1 3 3 z 2 z 1
the expressions for z 1 and z 2
are explained in Appendix A
PW q g a m m a 1 p , 1 α + 1 1 α 2 z 2 3 2 z 1
the expressions for z 1 and z 2
are explained in Section 2.2.5
q g a m m a 1 p , 1 α + 1 1 α 3 z 2 z 1
the expressions for z 1 and z 2
are explained in Appendix A
LN3 exp β q n o r m 1 p , 0 , 1 2 z 2 3 2 z 1
the expressions for z 1 and z 2
are explained in Section 2.2.6
exp β q n o r m 1 p , 0 , 1 3 z 2 z 1
the expressions for z 1 and z 2
are explained in Appendix A
PGI 3 α 1 p 1 α 2 α 2 3 α + 1 2 α 2 3 α 2 4 α 1 p 1 α 6 α 3 11 α 2 + 6 α 1 6 α 3 12 α 3
FR 2 Γ 1 α sin π α ln 1 p 1 α π 2 1 α + 1 π 3 1 α + 1 3 2 1 α π 3 1 α Γ 1 α sin π α ln 1 p 1 α 2 π 3 1 α 2 2 α

Appendix C. The First-Order LH-Moments Diagram

In the next section, the variation in the first-order LH-kurtosis depending on the positive first-order LH-skewness is presented for certain theoretical distributions often used in hydrology and in this article.
Figure A2. The variation diagram for the first-order LH-skewness and LH-kurtosis.
Figure A2. The variation diagram for the first-order LH-skewness and LH-kurtosis.
Water 15 02077 g0a2
Pearson III:
τ H 4 = 0 . 1012322 0 . 2437927 τ H 3 + 3 . 5538482 τ H 3 2 13 . 8996553 τ H 3 3 + 31 . 3422272 τ H 3 4 35 . 5781144 τ H 3 5 + 20 . 677076 τ H 3 6 4 . 8315272 τ H 3 7
Log-normal:
τ H 4 = 0 . 0801496 + 0 . 2283728 τ H 3 0 . 9987353 τ H 3 2 + 8 . 8369201 τ H 3 3 24 . 2488462 τ H 3 4 + 37 . 7635295 τ H 3 5 30 . 6596349 τ H 3 6 + 10 . 1236239 τ H 3 7
GEV:
τ H 4 = 0 . 066585 + 0 . 1207821 τ H 3 + 0 . 8711194 τ H 3 2 0 . 0456666 τ H 3 3 0 . 0033066 τ H 3 4 + 0 . 0170713 τ H 3 5 0 . 0094267 τ H 3 6 + 0 . 0009899 τ H 3 7
Weibull:
τ H 4 = 0 . 0940624 0 . 167248 τ H 3 + 2 . 2686976 τ H 3 2 9 . 8557774 τ H 3 3 + 35 . 7330334 τ H 3 4 66 . 7529615 τ H 3 5 + 61 . 9426076 τ H 3 6 22 . 3935866 τ H 3 7
Rayleigh:
τ H 4 = 7 10 + 4 5 2 3 τ H 3 1 30 6 10 2 60 + 99 τ H 3 28 30
Log-logistic:
τ H 4 = 170 τ H 3 2 + 36 τ H 3 + 224 1920
Fréchet:
τ H 4 = 0 . 0022429 + 0 . 9647477 τ H 3 3 . 6860338 τ H 3 2 + 13 . 1297753 τ H 3 3 22 . 1386065 τ H 3 4 + 21 . 7301791 τ H 3 5 11 . 5710264 τ H 3 6 + 2 . 5873135 τ H 3 7
Kappa (generalized Gumbel, Jeong 2009):
τ H 4 = 0 . 2623693 1 . 8726094 τ H 3 + 12 . 2859097 τ H 3 2 45 . 0169093 τ H 3 3 + 100 . 4606818 τ H 3 4 122 . 9124059 τ H 3 5 + 76 . 5421309 τ H 3 6 19 . 1260088 τ H 3 7
Pearson V:
τ H 4 = 0 . 0698137 + 0 . 3768677 τ H 3 1 . 8015231 τ H 3 2 + 10 . 5928008 τ H 3 3 22 . 5459968 τ H 3 4 + 27 . 1756708 τ H 3 5 17 . 5457 τ H 3 6 + 4 . 7032094 τ H 3 7
Pseudo-Weibull:
τ H 4 = 0 . 1247692 0 . 8132588 τ H 3 + 7 . 8245742 τ H 3 2 32 . 9812148 τ H 3 3 + 89 . 3432014 τ H 3 4 136 . 9045781 τ H 3 5 + 110 . 4775227 τ H 3 6 36 . 3378089 τ H 3 7
Wilson–Hilferty:
τ H 4 = 0 . 1963258 1 . 5474914 τ H 3 + 7 . 4777715 τ H 3 2 19 . 8099209 τ H 3 3 + 38 . 3808311 τ H 3 4 43 . 3828583 τ H 3 5 + 26 . 5600641 τ H 3 6 6 . 7790242 τ H 3 7
CHI:
τ H 4 = 0 . 0469014 + 1 . 2890443 τ H 3 10 . 3957874 τ H 3 2 + 38 . 4367035 τ H 3 3 69 . 8260621 τ H 3 4 + 70 . 9754662 τ H 3 5 36 . 8705108 τ H 3 6 + 7 . 4087633 τ H 3 7
Inverse CHI:
τ H 4 = 0 . 0892257 + 0 . 0403381 τ H 3 + 0 . 4733583 τ H 3 2 + 2 . 80145 τ H 3 3 6 . 8676052 τ H 3 4 + 8 . 32418 τ H 3 5 5 . 0845891 τ H 3 6 + 1 . 2372547 τ H 3 7
Generalized Pareto Type I:
τ H 4 = 45 τ H 3 350 6 + 1400 3 τ H 3 + 24

Appendix D. The Second-Order LH-Moments Diagram

In the next section, the variation in the second-order LH-kurtosis depending on the positive second-order LH-skewness is presented for certain theoretical distributions often used in hydrology and in this article.
Figure A3. The variation diagram for the second-order LH-skewness and LH-kurtosis.
Figure A3. The variation diagram for the second-order LH-skewness and LH-kurtosis.
Water 15 02077 g0a3
Log-normal:
τ H 4 = 0 . 5839924 + 11 . 4481002 τ H 3 80 . 7815681 τ H 3 2 + 312 . 6958061 τ H 3 3 693 . 2943739 τ H 3 4 + 891 . 9112256 τ H 3 5 617 . 8611695 τ H 3 6 + 178 . 3238894 τ H 3 7
GEV:
τ H 4 = 0 . 0482673 + 0 . 1356835 τ H 3 + 0 . 871055 τ H 3 2 0 . 0306327 τ H 3 3 0 . 0006064 τ H 3 4 + 0 . 0078749 τ H 3 5 0 . 0043548 τ H 3 6 + 0 . 0002965 τ H 3 7
Weibull:
τ H 4 = 0 . 0752617 + 0 . 1485934 τ H 3 1 . 4212834 τ H 3 2 + 13 . 37326 τ H 3 3 42 . 2993121 τ H 3 4 + 75 . 3056365 τ H 3 5 69 . 4800457 τ H 3 6 + 25 . 8473539 τ H 3 7
Rayleigh:
τ H 4 = 63 τ H 3 20 6 14 10 6 + 3 8 2 15 3 τ H 3 1 9 10 + 54 6 60 2 72
Log-logistic:
τ H 4 = 2016 τ H 3 2 + 105 τ H 3 + 200 2250
Fréchet:
τ H 4 = 0 . 033874 + 0 . 2724765 τ H 3 + 0 . 4979464 τ H 3 2 0 . 3498839 τ H 3 3 + 3 . 6272441 τ H 3 4 7 . 4671598 τ H 3 5 + 6 . 602143 τ H 3 6 2 . 1982501 τ H 3 7
Pearson V:
τ H 4 = 0 . 249419 3 . 2415526 τ H 3 + 26 . 1472533 τ H 3 2 104 . 7386881 τ H 3 3 + 253 . 0618092 τ H 3 4 354 . 2485544 τ H 3 5 + 265 . 8319905 τ H 3 6 82 . 6153103 τ H 3 7
Pseudo-Weibull:
τ H 4 = 0 . 3121672 4 . 5110186 τ H 3 + 36 . 6833749 τ H 3 2 153 . 3360061 τ H 3 3 + 380 . 7876839 τ H 3 4 546 . 2031254 τ H 3 5 + 419 . 1284756 τ H 3 6 132 . 8075228 τ H 3 7
Wilson–Hilferty:
τ H 4 = 0 . 8041465 11 . 1539365 τ H 3 + 70 . 1801786 τ H 3 2 236 . 6915869 τ H 3 3 + 467 . 3353544 τ H 3 4 526 . 1946551 τ H 3 5 + 311 . 3745049 τ H 3 6 74 . 1049756 τ H 3 7
CHI:
τ H 4 = 0 . 1619727 + 6 . 0051765 τ H 3 52 . 2568473 τ H 3 2 + 232 . 1939653 τ H 3 3 577 . 2377642 τ H 3 4 + 827 . 685701 τ H 3 5 634 . 4947449 τ H 3 6 + 201 . 0426143 τ H 3 7
Inverse CHI:
τ H 4 = 0 . 0083177 + 1 . 4215276 τ H 3 11 . 199805 τ H 3 2 + 55 . 2535502 τ H 3 3 141 . 758711 τ H 3 4 + 207 . 6688672 τ H 3 5 162 . 1766982 τ H 3 6 + 52 . 284264 τ H 3 7
Generalized Pareto Type I:
τ H 4 = 21 τ H 3 240 2 + 4200 3 τ H 3 + 35

Appendix E. Estimation of the Frequency Factor for the PV Distribution

The frequency factor for L-moments can be estimated using the following polynomial function:
K p p = a + b τ 3 + c τ 3 2 + d τ 3 3 + e τ 3 4 + f τ 3 5 + g τ 3 6 + h τ 3 7
Table A2. The frequency factor for estimation with L-moments for PV distribution.
Table A2. The frequency factor for estimation with L-moments for PV distribution.
P
(%)
abcdefgh
0.0111.25716−131.203501949.68567−11,151.2593937,380.04905−68,646.5656670,412.75359−29,839.17905
0.15.953295.28685105.58814−116.64929−37.552781085.44951−1235.53789185.05204
0.55.20696−6.34402171.13982−663.096421552.89993−1826.49212975.79402−210.37970
14.67849−6.34289145.23208−593.972061402.57612−1769.233891073.27459−257.35685
24.09166−5.72542113.45047−479.903121119.04640−1438.61769917.93954−231.36365
33.72488−5.3481395.45312−411.10312948.26394−1217.30511786.82014−201.56570
53.23329−4.9168874.39560−328.29622747.90220−951.38916618.18166−160.15142
102.49248−4.3315348.49037−222.21910502.38567−628.82146406.76300−105.78320
201.61367−3.5009524.39044−116.57543265.83072−329.17366211.21241−54.80899
400.46069−1.902370.28296−2.204616.47671−7.316584.39076−1.18922
50−0.02947−1.00147−8.0463738.61740−88.73004111.53103−71.9097818.57044
80−1.636513.08779−30.87890144.26162−339.62037429.40736−277.8241272.21398
90−2.466815.99191−42.14745187.59670−439.64825556.34369−360.5539393.89877
The frequency factor for the first-order LH-moments can be estimated using the following polynomial function:
K p p = a + b τ 3 H + c τ 3 H 2 + d τ 3 H 3 + e τ 3 H 4 + f τ 3 H 5 + g τ 3 H 6 + h τ 3 H 7
Table A3. The frequency factor for estimation with LH-moments for PV distribution.
Table A3. The frequency factor for estimation with LH-moments for PV distribution.
P
(%)
abcdefgh
0.0181.910475−1771.51435516,819.397533−82,805.460187235,276.652260−386,190.499025346,280.769342−130,055.21879
0.12.22873159.123754−391.3946211911.377627−4602.4496966513.540173−4024.546602352.304188
0.53.51220512.804180−28.860341198.686814−458.874164782.400511−811.234773272.458238
13.3149927.768633−2.46335639.354768−38.46775415.733888−88.86531249.856120
22.9255065.809312−5.17331130.048369−37.998837−28.90501031.467196−5.026159
32.6558394.814207−8.27812636.412452−73.68280234.2810051.400566−2.325368
52.2774293.322797−9.64599135.521977−91.12887089.977174−41.4495118.012619
101.6563671.012819−7.24879918.654250−56.54057376.866583−48.60923712.214375
200.806822−1.031876−3.5260862.999739−6.72766815.136075−13.3297654.178605
40−0.520195−2.0071670.0799530.8968355.241720−10.7510927.944665−2.160109
50−1.161667−1.7939331.853417−0.0187403.201880−8.3234647.222178−2.214021
80−3.6515502.6642875.060010−17.18021327.188778−26.52091414.982105−3.714598
90−5.2245938.397516−2.422149−17.37468541.178694−46.18631927.185834−6.714774

Appendix F. Estimation of the Frequency Factor for the ICH Distribution

The frequency factor for L-moments can be estimated using the following polynomial function:
K p p = a + b τ 3 + c τ 3 2 + d τ 3 3
Table A4. The frequency factor for estimation with L-moments for ICH distribution.
Table A4. The frequency factor for estimation with L-moments for ICH distribution.
P
(%)
abcd
0.016.5299726.8206714.85657464.96943
0.15.4494117.2017611.39250177.19999
0.54.5511211.161904.4346272.13282
14.113048.707641.4044644.77481
23.633246.34343−1.2180425.78376
33.328375.00664−2.4411517.89105
52.912073.38007−3.5351910.69300
102.270331.30825−3.992664.64115
201.49234−0.51235−2.924301.11878
400.45076−1.781150.04530−2.15319
500.00178−1.917641.40809−3.60146
80−1.49132−0.604393.68532−7.00379
90−2.272561.153602.18165−5.73713
The frequency factor for the first-order LH-moments can be estimated using the following polynomial function:
K p p = a + b τ 3 H + c τ 3 H 2 + d τ 3 H 3 + e τ 3 H 4 + f τ 3 H 5 + g τ 3 H 6 + h τ 3 H 7
Table A5. The frequency factor for estimation with LH-moments for ICH distribution.
Table A5. The frequency factor for estimation with LH-moments for ICH distribution.
P
(%)
abcdefgh
0.0179.883758−1679.41795415,661.299605−76,196.141845215,236.713−351,779.05466315,145.61355−118,719.36587
0.12.43948554.257459−349.5129011696.329214−3847.0282375154.772004−2931.22576645.180979
0.53.64038011.167621−27.074245238.032175−608.858332991.975375−943.188586306.114622
13.5136304.47759114.9666969.106453−49.568623100.765426−176.34538579.786789
23.1468441.73434322.157049−55.65051094.739536−129.45433162.029820−5.334231
32.8640350.84888720.078952−62.468499105.677263−139.46442786.184870−18.314985
52.4470990.00492715.332281−58.81453098.385355−117.73023976.491903−19.179270
101.753158−0.8967127.695230−41.88405875.958313−82.33890250.779609−13.064095
200.834726−1.5344560.288985−13.26463332.253908−36.48555721.964914−5.564021
40−0.531047−1.730709−2.50983212.719488−22.30446623.482121−13.8810773.482139
50−1.176148−1.474153−0.96803412.970906−28.14398032.298762−19.7771445.041014
80−3.6670512.8291864.750684−19.03615235.510723−39.89224324.957853−6.634231
90−5.2485418.651554−2.624214−24.41759970.138835−93.92573963.986862−17.749432

Appendix G. Estimation of the Frequency Factor for the LN3 Distribution

The frequency factor for L-moments can be estimated using a rational function:
K p p = a + b τ 3 + c τ 3 2 + d τ 3 3 + e τ 3 4 + f τ 3 5 + g τ 3 6 1 + h τ 3 + i τ 3 2 + j τ 3 3
Table A6. The frequency factor for estimation with L-moments for Log-normal distribution.
Table A6. The frequency factor for estimation with L-moments for Log-normal distribution.
P
(%)
abcdefghi
0.017.34577−11.93543716.47126−4366.7643313,233.45376−17,502.294269087.370900.13890−0.31483
0.1−182.885480,948.5736769,705.9144329,162.82665−47,509.61155−40,863.74927−86,394.581313,007.97382−22,817.9312
0.54.46079768.03648392.388042614.73022−5453.949094471.71101−2769.46863161.69088−188.52368
15.053923381.944904190.830181683.11151−4342.06310−1032.28092−3834.14862828.61007−638.47665
23.72540559.11509678.67334283.47264−1231.65344218.68686−530.59615152.94462−60.42997
33.34676268.95983249.0993162.99081−578.8603894.48113−119.7265979.34274−32.25046
52.905553.51178−4.4434921.53572−56.2960359.07715−27.31915−0.000550.00201
102.2739210.311290.12209−25.4667015.97668−30.1123826.694394.08106−2.17704
201.478521457.8469−918.40881−2278.41631−529.778212130.23329−102.47085977.02214−257.24175
400.44943−1.71341−0.58245−0.175692.15788−1.996080.85851
50−0.00005−1.81172−0.022370.94326−0.207180.17417−0.07598
80−1.49191−0.521771.78568−0.41759−0.932310.93656−0.35804
90−2.271651.171861.28540−1.612200.186290.49903−0.25817
The frequency factor for LH-moments can be estimated using a polynomial function:
K p p = a + b τ H 3 + c τ H 3 2 + d τ H 3 3 + e τ H 3 4
Table A7. The frequency factor for estimation with LH-moments for Log-normal distribution.
Table A7. The frequency factor for estimation with LH-moments for Log-normal distribution.
P
(%)
abcd
0.0120.45605660.01572147.67511910.1690430
0.119.92231360.01575657.73068690.1694185
0.519.48636080.01578537.77605930.1697253
119.27515290.01579927.79803640.1698740
219.04454240.01581447.82202890.1700363
318.89831870.01582407.83723990.1701393
518.69895910.01583727.85797610.1702796
1018.39224100.01585747.88987370.1704956
2018.02124650.01588197.92844720.1707569
4017.52586630.01591457.97993860.1711059
5017.31277620.01592868.00208270.1712560
8016.60597210.01597528.07551030.1717541
9016.23717490.01599968.11380960.1720141

Appendix H. Estimation of the Frequency Factor for the FR Distribution

The frequency factor for L-moments can be estimated using a rational function:
K p p = a + b τ 3 1 + c τ 3 + d τ 3 2 + e τ 3 3 + f τ 3 4 + g τ 3 5 + h τ 3 6
Table A8. The frequency factor for estimation with L-moments for FR distribution.
Table A8. The frequency factor for estimation with L-moments for FR distribution.
P
(%)
abcdefgh
0.014.79878−4.79613−6.3212517.28586−25.9236922.32216−10.405202.04267
0.14.60163−4.60769−4.9047210.51612−12.277077.99307−2.641790.31910
0.54.22930−4.25399−3.715185.66451−3.27906−1.323162.62737−0.95280
13.91982−3.96379−3.312474.71382−2.66524−0.951611.98933−0.73158
23.54772−3.62982−2.864773.75946−2.06788−0.659051.46457−0.55126
33.29251−3.41148−2.582803.23198−1.80321−0.410531.11661−0.43379
52.92396−3.11434−2.193342.52840−1.27243−0.517701.05146−0.40659
102.31559−2.67844−1.615811.72570−0.89911−0.209510.61552−0.25426
201.53537−2.24054−0.939981.02318−0.49957−0.060990.30917−0.12674
400.45853−1.89670−0.078810.416720.13819−0.05952−0.062960.08501
50−0.00696−1.849550.261390.400090.162430.00554−0.019900.04712
80−1.521930.01607−0.144400.92152−0.447530.001900.33891−0.16508
90−2.283411.292950.046460.24771−0.28723−0.063460.06346−0.05894
The frequency factor for LH-moments can be estimated using a polynomial function:
K p p = a + b τ H 3 + c τ H 3 2 + d τ H 3 3 + e τ H 3 4
Table A9. The frequency factor for estimation with LH-moments for FR distribution.
Table A9. The frequency factor for estimation with LH-moments for FR distribution.
P
(%)
abcd
0.0120.45605660.01572147.67511910.1690430
0.119.92231360.01575657.73068690.1694185
0.519.48636080.01578537.77605930.1697253
119.27515290.01579927.79803640.1698740
219.04454240.01581447.82202890.1700363
318.89831870.01582407.83723990.1701393
518.69895910.01583727.85797610.1702796
1018.39224100.01585747.88987370.1704956
2018.02124650.01588197.92844720.1707569
4017.52586630.01591457.97993860.1711059
5017.31277620.01592868.00208270.1712560
8016.60597210.01597528.07551030.1717541
9016.23717490.01599968.11380960.1720141

Appendix I. The Probability Density Functions and Complementary Cumulative Distribution Function

In Table A10, the probability density function f x and the complementary cumulative distribution function F x for the analyzed distributions are presented [20,21,31,32].
Table A10. The probability density functions and complementary cumulative distribution function.
Table A10. The probability density functions and complementary cumulative distribution function.
Distribution f x F x
PV exp β x γ β Γ α 1 x γ β α 1 γ x exp β x γ β Γ α 1 x γ β α d x = Γ α 1 , β x γ Γ α 1
CHI x γ β α 1 2 α 2 1 β Γ α 2 exp x γ 2 2 β 2 1 γ x x γ β α 1 2 α 2 1 β Γ α 2 exp x γ 2 2 β 2 d x = Γ α 2 , x γ 2 2 β 2 Γ α 2
ICH 2 exp β x γ 2 β Γ α β x γ 2 α + 1 1 γ x 2 exp β x γ 2 β Γ α β x γ 2 α + 1 d x = Γ α , β x γ 2 Γ α
WH 3 exp x γ β 3 β Γ α x γ β 3 α 1 1 γ x 3 exp x γ β 3 β Γ α x β 3 α 1 d x = Γ α , x γ β 3 Γ α
PW 1 Γ 1 + 1 α α β x γ β α exp x γ β α 1 γ x 1 Γ 1 + 1 α α β x γ β α exp x γ β α d x = = Γ 1 α + 1 , x γ β α Γ 1 α + 1
LN3 exp ln x γ α 2 2 β 2 x γ β 2 π
1 x γ d n o r m ln x γ , α , β
d l n o r m x γ , α , β
1 1 2 e r f ln x γ α 2 β + 1
1 p n o r m ln x γ , α , β = 1 p l n o r m x γ , α , β
1 c n o r m ln x γ α β
GPI α β x γ β α 1 x γ β α
FR α β x γ β α 1 exp x γ β α 1 exp x γ β α

Appendix J. The Confidence Intervals of the Analysed Distributions

Figure A4 presents the results of the analysed distributions, highlighting the confidence interval (C.I) for each distribution for both parameter estimation methods.
Figure A4. The probability distribution curves with confidence intervals.
Figure A4. The probability distribution curves with confidence intervals.
Water 15 02077 g0a4
The confidence interval for each distribution was established based on Chow’s relation [3,18], which, until recently [24,25,26], was exclusively used for parameter estimation using the method of ordinary moments. This is based on a Gaussian assumption, using the frequency factor and the desired confidence level.

Appendix K. Built-In Function in Mathcad

Γ α = 0 t α 1 e t d t the complete gamma function.
Γ α , x = x t α 1 e t d t returns the value of the upper incomplete gamma function of x with parameter α .
q g a m m a p , α = Γ 1 p ; α returns the inverse cumulative probability distribution for probability p for the Gamma distribution.
d n o r m x , α , β —returns the probability density for value x for normal distribution.
p n o r m x , α , β —returns the cumulative probability distribution for value x for normal distribution.
q n o r m p , 0 , 1 —returns the inverse standard cumulative probability distribution for probability p for normal distribution.
c n o r m x —returns the cumulative probability distribution with mean 0 and variance 1 for normal distribution.
d l n o r m x , α , β —returns the probability density for value x for Log-normal distribution.
p l n o r m x , α , β —returns the cumulative probability distribution for value x for Log-normal distribution.
q l n o r m p , μ , σ —returns the inverse cumulative probability distribution for probability p for Log-normal distribution.
e r f x —returns the error function.

References

  1. Wang, Q.J. LH moments for statistical analysis of extreme events. Water Resour. Res. 1997, 33, 2841–2848. [Google Scholar] [CrossRef]
  2. Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L–Moments; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar] [CrossRef]
  3. Rao, A.R.; Hamed, K.H. Flood Frequency Analysis; CRC Press LLC: Boca Raton, FL, USA, 2000. [Google Scholar]
  4. Greenwood, J.A.; Landwehr, J.M.; Matalas, N.C.; Wallis, J.R. Probability Weighted Moments: Definition and Relation to Parameters of Several Distributions Expressable in Inverse Form. Water Resour. Res. 1979, 15, 1049–1054. [Google Scholar] [CrossRef]
  5. Hosking, J.R.M. L–moments: Analysis and Estimation of Distributions using Linear, Combinations of Order Statistics. J. R. Statist. Soc. 1990, 52, 105–124. [Google Scholar] [CrossRef]
  6. Houghton, J.C. Birth of a parent: The Wakeby distribution for modeling flood flows. Water Resour. Res. 1978, 14, 1105–1109. [Google Scholar] [CrossRef]
  7. Hewa, G.A.; Wang, Q.J.; McMahon, T.A.; Nathan, R.J.; Peel, M.C. Generalized extreme value distribution fitted by LH moments for low–flow frequency analysis. Water Resour. Res. 2007, 43, W06301. [Google Scholar] [CrossRef]
  8. Wang, Q.J. Approximate Goodness–of–Fit Tests of fitted generalized extreme value distributions using LH moments. Water Resour. Res. 1998, 34, 3497–3502. [Google Scholar] [CrossRef]
  9. Fawad, M.; Cassalho, F.; Ren, J.; Chen, L.; Yan, T. State–of–the–Art Statistical Approaches for Estimating Flood Events. Entropy 2022, 24, 898. [Google Scholar] [CrossRef]
  10. Lee, S.H.; Maeng, S.J. Comparison and analysis of design floods by the change in the order of LH–moment methods. Irrig. Drain. 2003, 52, 231–245. [Google Scholar] [CrossRef]
  11. Meshgi, A.; Khalili, D. Comprehensive evaluation of regional flood frequency analysis by L– and LH–moments. II. Development of LH–moments parameters for the generalized Pareto and generalized logistic distributions. Stoch. Environ. Res. Risk Assess. 2009, 23, 137–152. [Google Scholar] [CrossRef]
  12. Meshgi, A.; Khalili, D. Comprehensive evaluation of regional flood frequency analysis by L– and LH–moments. I. A revisit to regional homogeneity. Stoch. Environ. Res. Risk Assess. 2009, 23, 119–135. [Google Scholar] [CrossRef]
  13. Bhuyan, A.; Borah, M.; Kumar, R. Regional Flood Frequency Analysis of North–Bank of the River Brahmaputra by Using LH–Moments. Water Resour. Manag. 2010, 24, 1779–1790. [Google Scholar] [CrossRef]
  14. Nouri Gheidari, M.H. Comparisons of the L– and LH–moments in the selection of the best distribution for regional flood frequency analysis in Lake Urmia Basin. Civ. Eng. Environ. Syst. 2013, 30, 72–84. [Google Scholar] [CrossRef]
  15. Deka, S.; Borah, M.; Kakaty, S.C. Statistical analysis of annual maximum rainfall in North–East India: An application of LH–moments. Theor. Appl. Climatol. 2011, 104, 111–122. [Google Scholar] [CrossRef]
  16. Zakaria, Z.; Suleiman, J.; Mohamad, M. Rainfall frequency analysis using LH–moments approach: A case of Kemaman Station, Malaysia. Int. J. Eng. Technol. 2018, 7, 107–110. [Google Scholar] [CrossRef]
  17. Bora, D.J.; Borah, M.; Bhuyan, A. Regional analysis of maximum rainfall using L–moment and LH–moment: A comparative case study for the northeast India. Mausam 2017, 68, 451–462. [Google Scholar] [CrossRef]
  18. Ilinca, C.; Anghel, C.G. Flood–Frequency Analysis for Dams in Romania. Water 2022, 14, 2884. [Google Scholar] [CrossRef]
  19. Anghel, C.G.; Ilinca, C. Hydrological Drought Frequency Analysis in Water Management Using Univariate Distributions. Appl. Sci. 2023, 13, 3055. [Google Scholar] [CrossRef]
  20. Ilinca, C.; Anghel, C.G. Flood Frequency Analysis Using the Gamma Family Probability Distributions. Water 2023, 15, 1389. [Google Scholar] [CrossRef]
  21. Anghel, C.G.; Ilinca, C. Parameter Estimation for Some Probability Distributions Used in Hydrology. Appl. Sci. 2022, 12, 12588. [Google Scholar] [CrossRef]
  22. Md Sharwar, M.; Park, B.-J.; Jeong, B.-Y.; Park, J.-S. LH–Moments of Some Distributions Useful in Hydrology. Commun. Stat. Appl. Methods 2009, 16, 647–658. [Google Scholar]
  23. Gaume, E. Flood frequency analysis: The Bayesian choice. WIREs Water. 2018, 5, e1290. [Google Scholar] [CrossRef]
  24. Chow, V.T.; Maidment, D.R.; Mays, L.W. Applied Hydrology; McGraw–Hill, Inc.: New York, NY, USA, 1988; ISBN 007-010810-2. [Google Scholar]
  25. Bulletin 17B Guidelines for Determining Flood Flow Frequency; Hydrology Subcommittee; Interagency Advisory Committee on Water Data; U.S. Department of the Interior; U.S. Geological Survey; Office of Water Data Coordination: Reston, VA, USA, 1981.
  26. Bulletin 17C Guidelines for Determining Flood Flow Frequency; U.S. Department of the Interior; U.S. Geological Survey: Reston, VA, USA, 2017.
  27. Anghel, C.G.; Ilinca, C. Evaluation of Various Generalized Pareto Probability Distributions for Flood Frequency Analysis. Water 2023, 15, 1557. [Google Scholar] [CrossRef]
  28. Ministry of the Environment. The Romanian Water Classification Atlas, Part I—Morpho–Hydrographic Data on the Surface Hydrographic Network; Ministry of the Environment: Bucharest, Romania, 1992. [Google Scholar]
  29. Teodorescu, I.; Filotti, A.; Chiriac, V.; Ceausescu, V.; Florescu, A. Water Management; Ceres Publishing House: Bucharest, Romania, 1973. [Google Scholar]
  30. Ilinca, C.; Anghel, C.G. Frequency Analysis of Extreme Events Using the Univariate Beta Family Probability Distributions. Appl. Sci. 2023, 13, 4640. [Google Scholar] [CrossRef]
  31. Zhao, F.; Wang, X.; Wu, Y.; Singh, S.K. Prefectures vulnerable to water scarcity are not evenly distributed across China. Commun. Earth Environ. 2023, 4, 145. [Google Scholar] [CrossRef]
  32. Zhao, F.; Wang, X.; Wu, Y.; Sivakumar, B.; Liu, S. Enhanced Dependence of China’s Vegetation Activity on Soil Moisture Under Drier Climate Conditions. J. Geophys. Res. Biogeosci. 2023, 128, e2022JG007300. [Google Scholar] [CrossRef]
Figure 1. The flow chart describing the methodological approach.
Figure 1. The flow chart describing the methodological approach.
Water 15 02077 g001
Figure 2. The Prigor River location, Danube watershed, Romania.
Figure 2. The Prigor River location, Danube watershed, Romania.
Water 15 02077 g002
Figure 3. Evaluations of the quantile function for the two methods of parameter estimation.
Figure 3. Evaluations of the quantile function for the two methods of parameter estimation.
Water 15 02077 g003
Figure 4. Variation in the shape parameter for the two methods.
Figure 4. Variation in the shape parameter for the two methods.
Water 15 02077 g004
Figure 5. The skewness–kurtosis variation for the two parameter estimation methods.
Figure 5. The skewness–kurtosis variation for the two parameter estimation methods.
Water 15 02077 g005
Table 1. Novelty elements.
Table 1. Novelty elements.
New ElementsMethod of Parameter Estimation
LH−Moments
Exact parameter estimationPV, CHI, ICH, WH, PW, PGI, FR
Approximate estimation of parametersPV, CHI, ICH, WH, PW, PGI, FR, LN3
Expression of the inverse function with the frequency factorPV, CHI, ICH, WH, PW, PGI, FR
Exact relationships of the frequency factorsPV, CHI, ICH, WH, PW, PGI, FR
Approximate estimation of the frequency factorsPV, CHI, ICH, WH, PW, PGI, FR
The confidence interval with Chow’s relationshipPV, CHI, ICH, WH, PW, PGI, FR
The skewness−kurtosis variation graph and relationshipsPV, CHI, ICH, WH, PW, PGI, FR
Table 2. The analyzed probability distributions.
Table 2. The analyzed probability distributions.
Distribution x p Distribution x p
PV γ + β q g a m m a p , α 1 WH γ + β q g a m m a 1 p , α 1 3
CHI γ + β 2 g a m m a 1 p , α 2 PW γ + β q g a m m a 1 p , 1 α + 1 1 α
LN3 γ + exp α + β q n o r m 1 p , 0 , 1
γ + q l n o r m 1 p , α , β
ICH γ + β q g a m m a p , α 1 2
PGI γ + β p 1 α FR γ + β ln 1 p 1 / α
Table 3. The morphometric indicators of the Prigor River.
Table 3. The morphometric indicators of the Prigor River.
Length
(km)
Average
Stream Slope (‰)
Sinuosity
Coefficient (−)
Average
Altitude (m)
Watershed
Area (km2)
33221.83713153
Table 4. The observed data from the Prigor River.
Table 4. The observed data from the Prigor River.
AMS
19901991199219931994199519961997199819992000
Flow(m3/s)9.961510.114.87.3021.218.221.413.114.535
20012002200320042005200620072008200920102011
Flow(m3/s)19.922.111.880.38851.672.216.242.628.512.8
201220132014201520162017201820192020
Flow(m3/s)31.224.152.221.118.96.4024.915.136.6
Table 5. The statistical indicators of the data series for the L-moments and LH-moments.
Table 5. The statistical indicators of the data series for the L-moments and LH-moments.
Prigor RiverStatistical Indicators
L-moments
L 1 L 2 L 3 L 4 τ 2 τ 3 τ 4
(m3/s)(m3/s)(m3/s)(m3/s)(−)(−)(−)
27.210.74.262.430.3860.3990.228
LH-moments (first order)
L H 1 L H 2 L H 3 L H 4 τ H 2 τ H 3 τ H 4
(m3/s)(m3/s)(m3/s)(m3/s)(−)(−)(−)
38.311.24.461.990.2920.3980.177
Table 6. Quantile results for the two methods of parameter estimation.
Table 6. Quantile results for the two methods of parameter estimation.
Distr.Annual Maximum Series (AMS)
Exceedance Probabilities (%)
L-MomentsLH-Moments (First Order)
0.010.10.5123580900.010.10.512358090
PV56227015912597.283.668.512.49.6346724415112196.583.769.411.48.16
CHI16513711410390.983.473.411.110.417814712110894.986.475.113.413.2
ICH62428416212697.583.568.212.49.4649825115212296.283.37011.47.94
WH13912110697.488.282.173.511.210.715213111310493.286.176.113.913.8
PW29219814111897.485.87211.89.6429720014211997.7867211.99.82
LN348026616513210387.971.412.410.336722214712197.48570.711.68.88
GPI32920714211896.885.171.411.79.6034021114411997.185.271.311.89.76
FR62328516212697.783.668.212.49.4748925015212296.383.56911.47.90
Table 7. Parameters estimated using the L-moments and LH-moments methods for Prigor River.
Table 7. Parameters estimated using the L-moments and LH-moments methods for Prigor River.
Annual Maximum Series (AMS)
ParametersDistribution
PVCHIICHWHPWLN3GPIFR
L-moments
α 4.30550.38871.50050.10990.54672.6017.13443.0516
β 69.444.432.373.22.410.956912231.2
γ −2.4610.3−8.8310.77.236.34−114−14.2
LH-moments (first order)
α 4.86150.29291.76170.0810.53752.8946.68533.6925
β 98.248.743.280.12.240.807211242.5
γ −6.9513.2−15.0413.87.522.47−104−26.03
Table 8. Distribution performance values.
Table 8. Distribution performance values.
Distr.Statistical Measures
Methods of Parameter EstimationObserved Data
L-MomentsLH-MomentsL-MomentsLH-Moments
RMERAE τ 3 τ 4 RMERAE τ H 3 τ H 4 τ 3 τ 4 τ H 3 τ H 4
PV0.01520.06490.39870.27280.01880.08420.39810.24560.39870.22770.39810.1773
CHI0.03010.12380.14380.04680.13670.1584
ICH0.01510.06370.27970.02090.09120.2495
WH0.03340.13820.12140.05210.15080.1408
PW0.01730.07350.22190.0180.07390.2175
LN30.01990.07590.28000.01480.06730.2330
GPI0.01810.07650.22110.01870.07660.2205
FR0.01520.0636 0.28160.02130.0925 0.2499
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Anghel, C.G.; Ilinca, C. Predicting Flood Frequency with the LH-Moments Method: A Case Study of Prigor River, Romania. Water 2023, 15, 2077. https://doi.org/10.3390/w15112077

AMA Style

Anghel CG, Ilinca C. Predicting Flood Frequency with the LH-Moments Method: A Case Study of Prigor River, Romania. Water. 2023; 15(11):2077. https://doi.org/10.3390/w15112077

Chicago/Turabian Style

Anghel, Cristian Gabriel, and Cornel Ilinca. 2023. "Predicting Flood Frequency with the LH-Moments Method: A Case Study of Prigor River, Romania" Water 15, no. 11: 2077. https://doi.org/10.3390/w15112077

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop