Plant Photosynthesis and Dry Matter Accumulation Response of Sweet Pepper to Water–Nitrogen Coupling in Cold and Arid Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Method
2.3. Measurements and Calculations
2.3.1. Photosynthetic Physiological Indices
2.3.2. Dry Matter Accumulation
- Logistic model equation
- b.
- A first-order derivative of the equation obtains the growth rate equation.
- c.
- The maximum growth rate (kg·d−1·ha−1) and the days (d) are obtained by taking the first-order derivative of the growth rate equation and making it zero.
- d.
- By taking the second−order derivative of the growth rate equation and setting it to zero, two inflection points, T2 and T3, can be obtained on the growth curve. The gradual increase stage of dry matter accumulation after transplantation and planting sweet pepper to T2, T2 to T3 is the rapid increase stage, and T3 to the end of the growing season is the slow increase stage.
2.3.3. Fruit Yield
2.3.4. Water and Nitrogen Utilization Efficiency
2.4. Statistical Analysis
3. Results
3.1. Photosynthetic Characteristics
3.1.1. The Net Photosynthetic Rate
3.1.2. The Transpiration Rate
3.1.3. Stomatal Conductance
3.1.4. Intercellular CO2 Concentration
3.2. Dry Matter Accumulation Characteristics
3.2.1. Dry Matter Accumulation
3.2.2. The Dry Matter Accumulation Rate
3.2.3. Logistic Model Equation Fitting the Maximum Increase Rate and Days of Dry Matter Accumulation
3.3. Fruit Yield and Water and Nitrogen Utilization Efficiency
3.3.1. Fruit Yield
3.3.2. Water Use Efficiency and Irrigation Water Use Efficiency
3.3.3. Nitrogen Partial Factor Productivity
3.4. Path Analysis
4. Discussion
4.1. The Effects of Water and Nitrogen Coupling on Sweet Pepper Photosynthesis and Dry Matter Accumulation
4.2. The Effects of Water and Nitrogen Coupling on Sweet Pepper Yield and Water and Nitrogen Utilization Efficiency
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, J.; Liu, L.; Guo, L.; Sun, D.; Liu, W.; Hou, W.; Wu, S. Synergic effects of climate change and phenological variation on agricultural production and its risk pattern in black soil region of Northeast China. Acta Geogr. Sin. 2022, 77, 1681–1700. [Google Scholar]
- Liu, M.; Xu, X.; Jiang, Y.; Huang, Q.; Huo, Z.; Liu, L.; Huang, G. Responses of crop growth and water productivity to climate change and agricultural water-saving in arid region. Sci. Total Environ. 2020, 703, 134621. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.M.; Assi, A.; Zubari, W.K.; Mohtar, R.; Eidan, H.; Al Ali, Z.; Sharma, V.K.; Ma, X. Revegetation of native desert plants enhances food security and water sustainability in arid regions: Integrated modeling assessment. Sci. Total Environ. 2022, 806, 151295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L. Research on Spatial Variability Characteristics and Regulation Mechanism of Irrigation Water Use Efficiency in Irrigation Districts from the Perspective of Complexity. Ph.D. Thesis, Northeast Agricultural University, Harbin, China, 2021. [Google Scholar]
- Bogale, A.; Müller, J.; Nagle, M.; Aguila, M.; Latif, S. Regulated deficit irrigation and partial root-zone drying irrigation impact bioactive compounds and antioxidant activity in two select tomato cultivars. Sci. Hortic. 2016, 213, 115–124. [Google Scholar] [CrossRef]
- Lu, B.; Che, Z.; Zhang, J.; Bao, X.; Wu, K.; Yang, R. Effects of long-term intercropping of maize with hairy vetch root returning to field on crop yield and nitrogen use efficiency under nitrogen fertilizer reduction. Sci. Agric. Sin. 2022, 55, 2384–2397. [Google Scholar]
- Kaur, R.; Kaur, K.; Sidhu, J.S. Drying kinetics, chemical, and bioactive compounds of yellow sweet pepper as affected by processing conditions. J. Food Process. Pres. 2022, 46, e16330. [Google Scholar] [CrossRef]
- Mendoza, N.N.G.; Rodríguez, S.A.V.; Lima, B.L.R. Mejoramiento de la extracción de carotenoides y capsaicinoides del ají nativo (Capsicum baccatum), asistido con enzimas celulolíticas. Rev. Peru. Biol. 2020, 27, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Duranova, H.; Valkova, V.; Gabriny, L. Chili peppers: The spice not only for cuisine purposes: An update on current knowledge. Phytochem. Rev. 2022, 21, 1379–1413. [Google Scholar] [CrossRef]
- Abu-Zahra, T. Influence of agricultural practices on fruit quality of bell pepper. Pak. J. Biol. Sci. 2011, 14, 876–881. [Google Scholar] [CrossRef] [Green Version]
- Dhotre, M.; Mantur, S.M.; Biradar, M.S.; Hiremath, S.M. Dry matter accumulation, nutrient uptake and use efficiencies in polyhouse grown bell pepper under deficit water and fertilizer application. Commun. Soil. Sci. Plant Anal. 2022, 53, 729–736. [Google Scholar] [CrossRef]
- Zhou, L.; Feng, H. Effects of irrigation and compound fertilizer on yield of winter wheat and net ecosystem productivity of farmland. Trans. Chin. Soc. Agric. Eng. 2011, 27, 31–36. [Google Scholar]
- Li, Y.; Chen, X.; Shamsi, I.H.; Fang, P.; Lin, X. Effects of irrigation patterns and nitrogen fertilization on rice yield and microbial community structure in paddy soil. Pedosphere 2012, 22, 661–672. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, W.; Ruan, H.; Ge, Z.; Xu, C.; Cao, G. Effects of nitrogen addition on microbial community structure in topsoil of poplar plantations. J. For. Res. 2015, 43, 83–88. [Google Scholar]
- Fetahu, S.; Aliu, S.; Rusinovci, I.; Elezi, F.; Bislimi, K.; Behiluli, A.; Shabani, Q. Variation of physiological growth indices, biomass and dry matter yield in some maize hybrids. Albanian J. Agric. Sci. 2014, 69–73. Available online: https://www.proquest.com/scholarly-journals/variation-physiological-growth-indices-biomass/docview/1549924019/se-2?accountid=50702 (accessed on 1 June 2023).
- Xu, Y.; Zhang, M.; Zhai, B.; Li, S. Effects of nitrogen application on dry matter accumulation and translocation of different genotypes of summer maize. J. Plant Nutr. Fert. 2009, 15, 786–792. [Google Scholar]
- Martinez-Vilalta, J.; Garcia-Forner, N. Water potential regulation, stomatal behaviour and hydraulic transport under drought: Deconstructing the iso/anisohydric concept. Plant Cell Environ. 2017, 40, 962–976. [Google Scholar] [CrossRef] [Green Version]
- Yl, X.; Zhang, Y.; Yao, H.; Zhang, W. Research progress of the photoprotective mechanisms of cotton leaves under soil water deficit. Plant Physiol. J. 2017, 53, 339–351. [Google Scholar]
- Bousba, R.; Ykhlef, N.; Djekoun, A. Water use efficiency and flat leaf photosynthetic in response to water deficit of durum wheat (Triticum durum Desf). World J. Agric. Sci. 2009, 5, 609–616. [Google Scholar]
- Fan, X.; Cao, X.; Zhou, H.; Hao, L.; Dong, W.; He, C.; Xu, M.; Wu, H.; Wang, L.; Chang, Z.; et al. Carbon dioxide fertilization effect on plant growth under soil water stress associates with changes in stomatal traits, leaf photosynthesis, and foliar nitrogen of bell pepper (Capsicum annuum L.). Environ. Exp. Bot. 2020, 179, 104203. [Google Scholar] [CrossRef]
- Costa, L.D.; Gianquinto, G. Water stress and watertable depth influence yield, water use efficiency, and nitrogen recovery in bell pepper: Lysimeter studies. Aust. J. Agric. Res. 2002, 53, 201–210. [Google Scholar] [CrossRef]
- Chen, K.; Shuang, Y.; Ma, T.; Ding, J.; He, P.; Dai, Y.; Zeng, G. Effects of water and nitrogen management on water productivity, nitrogen use efficiency and leaching loss in rice paddies. Water 2022, 14, 1596. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, J.; Song, L.; Cai, C.; Wang, D.; Wei, W.; Gu, X.; Yang, X.; Zhu, C. Projected elevated [CO2] and warming result in overestimation of SPAD-based rice leaf nitrogen status for nitrogen management. Atmosphere 2021, 12, 1571. [Google Scholar] [CrossRef]
- Tang, B.; Yin, C.; Yang, H.; Sun, Y.; Liu, Q. The coupling effects of water deficit and nitrogen supply on photosynthesis, WUE, and stable isotope composition in picea asperata. Acta Physiol Plant. 2017, 39, 1–11. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, Z.; Wang, D.; Zhang, Y. Nitrogen accumulation and translocation for winter wheat under different irrigation regimes. J. Agron. Crop Sci. 2005, 191, 439–449. [Google Scholar] [CrossRef]
- Wang, X.; Yun, J.; Shi, P.; Li, Z.; Li, P.; Xing, Y. Root growth, fruit yield and water use efficiency of greenhouse grown tomato under different irrigation regimes and nitrogen levels. J. Plant Growth Regul. 2019, 38, 400–415. [Google Scholar] [CrossRef]
- Agami, R.A.; Abousekken, M.S.M.; Hashem, M.; Saad, A.M.; Abd, A.T. Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agric. Water Manag. 2018, 210, 261–270. [Google Scholar] [CrossRef]
- Park, H.; Clay, D.E.; Hall, R.G.; Rohila, J.S.; Kharel, T.P.; Clay, S.A.; Lee, S. Winter wheat quality responses to water, environment, and nitrogen fertilization. Commun. Soil Sci. Plant Anal. 2014, 45, 1894–1905. [Google Scholar] [CrossRef] [Green Version]
- Santiago-Arenas, R.; Dhakal, S.; Ullah, H.; Agarwal, A.; Datta, A. Seeding, nitrogen and irrigation management optimize rice water and nitrogen use efficiency. Nutr. Cycl. Agroecosyst. 2021, 120, 325–341. [Google Scholar] [CrossRef]
- Hammad, H.M.; Ahmad, A.; Abbas, F.; Farhad, W.; Cordoba, B.C.; Hoogenboom, G. Water and Nitrogen Productivity of Maize under Semiarid Environments. Crop Sci. 2015, 55, 877–888. [Google Scholar] [CrossRef]
- Qu, F.; Jiang, J.; Xu, J.; Liu, T.; Hu, X. Drip irrigation and fertilization improve yield, uptake of nitrogen, and water-nitrogen use efficiency in cucumbers grown in substrate bags. Soil Plant Environ. 2019, 65, 328–335. [Google Scholar] [CrossRef] [Green Version]
- Ertek, A.; Erdal, I.; Yilmaz, H.I.; Senyigit, U. Water and nitrogen application levels for the optimum tomato yield and water use efficiency. J. Agric. Sci. Technol. 2012, 14, 889–902. [Google Scholar]
- Mahbod, M.; Sepaskhah, A.R.; Zand-Parsa, S. Estimation of yield and dry matter of winter wheat using logistic model under different irrigation water regimes and nitrogen application rates. Arch. Agron. Soil Sci. 2014, 60, 1661–1676. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, X.; Wei, G.; Xue, X.; Hao, W.; Wang, Z.; Tan, J. Effects of nitrogen reduction and water saving on the photosynthetic characteristics and yield of spring wheat in the Yellow River Irrigation Areas of Ningxia. Trans. Chin. Soc. Agric. Eng. 2022, 38, 75–84. [Google Scholar]
- Rogers, A.; Fischer, B.U.; Bryant, J.; Rehner, M.F.; Blum, H.; Raines, C.A.; Long, S.P. Acclimation of photosynthesis to elevated CO2 under low-nitrogen nutrition is affected by the capacity for assimilate utilization. Plant Physiol. 1998, 188, 683–689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.; Zhang, Z.; Zheng, E.; Chen, P.; Chen, S.; Shang, W. Photosynthesis, water and nitrogen use efficiency of maize as impacted by different combinations of water and nitrogen applications. J. Irrig. Drain. 2018, 37, 27–34. [Google Scholar]
- Shi, G.; Fang, J.; Wei, S.; Wang, J.; Cheng, Y.; Zhang, X.; Li, S.; Zhao, X.; Lu, Z. Effects of different rotation fallow patterns on agronomic characters, photosynthetic characteristics and yield of spring wheat. J. Gansu Agric. Univ. 2022, 57, 61–71. [Google Scholar]
- Tang, X.; Miao, Y.; Guan, J.; Zhang, K.; Wang, Y.; Yang, J. Interaction of water and nitrogen reveals growth and physiological characteristics responses of isatis indigotica fort. seedlings. Russ. J. Plant. Physiol. 2019, 66, 278–289. [Google Scholar] [CrossRef]
- Chen, N. Research advances on source-sink interaction of the crops. J. Gansu Agric. Univ. 2019, 54, 1–10. [Google Scholar]
- Wei, T.; Hu, F.; Zhao, C.; Feng, F.; Yu, A.; Liu, C.; Chai, Q. Response of dry matter accumulation and yield components of maize under N-fertilizer postponing application in oasis irrigation areas. Sci. Agric. Sin. 2017, 50, 2916–2927. [Google Scholar]
- Wang, X.; Luo, W.; Liu, P.; Zhang, Q.; Wang, R.; Li, J. Regulation effects of water saving and nitrogen reduction on dry matter and nitrogen accumulation, transportation and yield of summer maize. Sci. Agric. Sin. 2021, 54, 3183–3197. [Google Scholar]
- Li, G.; Tang, L.; Zhang, W.; Cao, W.; Zhu, Y. Dynamic analysis on response of dry matter accumulation and partitioning to nitrogen fertilizer in wheat cultivars with different plant types. Acta Agron. Sin. 2009, 35, 2258–2265. [Google Scholar] [CrossRef]
- Xie, Y.; Li, L.; Hong, J.; Wang, H.; Zhang, L. Effects of nitrogen application and irrigation on grain yield, water and nitrogen utilizations of summer maize. J. Plant Nutr. Fert. 2012, 18, 1354–1361. [Google Scholar]
- Yu, H.; Wu, H.; Wang, Z. Evaluation of SPAD and Dualex for in-season corn nitrogen status estimation. Acta Agron. Sin. 2010, 36, 840–847. [Google Scholar]
- Wang, H.; Xiang, Y.; Zhang, F.; Tang, Z.; Guo, J.; Zhang, X.; Hou, X.; Wang, H.; Cheng, M.; Li, Z. Responses of yield, quality and water-nitrogen use efficiency of greenhouse sweet pepper to different drip fertigation regimes in northwest china. Agric. Water Manag. 2022, 260, 107279. [Google Scholar] [CrossRef]
- Wei, T.; Chai, Q.; Wang, W.; Wang, J. Effects of coupling of irrigation and nitrogen application as well as planting density on photosynthesis and dry matter accumulation characteristics of maize in oasis irrigated areas. Sci. Agric. Sin. 2019, 52, 428–444. [Google Scholar]
- Hong, T.; Cai, Z.; Zhao, R.; He, Z.; Ding, M.; Zhang, Z. Effects of water and nitrogen coupling on the yield, quality, and water and nitrogen utilization of watermelon under CO2 enrichment. Sci. Hortic. 2021, 286, 110213. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, K.; Hu, C.; Dong, S. Effects of different nitrogen application stages on forage nutritive value of summer maize. Sci. Agric. Sin. 2002, 11, 1337–1342. [Google Scholar]
- Zou, H.; Fan, J.; Zhang, F.; Xiang, Y.; Wu, L.; Yan, S. Optimization of drip irrigation and fertilization regimes for high grain yield, crop water productivity and economic benefits of spring maize in Northwest China. Agric. Water Manag. 2020, 230, 105986. [Google Scholar] [CrossRef]
- Li, L.; Hong, J.; Wang, H.; Xie, Y.; Zhang, L. Effects of watering and nitrogen fertilization on the growth, grain yield, and water-and nitrogen use efficiency of winter wheat. Chin. J. Appl. Ecol. 2013, 24, 1367–1373. [Google Scholar]
- Guo, Z.; Luo, W.; Liu, P.; Shi, Z.; Wang, R.; Li, J. Effect of different irrigation and nitrogen treatments on water and nitrogen efficiency and yield of winter wheat under micro-sprinkler irrigation. J. Triticeae Crops 2021, 41, 1256–1265. [Google Scholar]
Treatments | Nitrogen Application | Relative Soil Water Content (%FC) | |||
---|---|---|---|---|---|
Seedling | Blossoming and Fruiting | Full Fruiting | Later Fruiting | ||
CK | 0 | 75–85 | 75–85 | 75–85 | 75–85 |
N1W1 | 300 | 75–85 | 75–85 | 75–85 | 75–85 |
N1W2 | 300 | 65–75 | 65–75 | 65–75 | 65–75 |
N1W3 | 300 | 55–65 | 55–65 | 55–65 | 55–65 |
N2W1 | 225 | 75–85 | 75–85 | 75–85 | 75–85 |
N2W2 | 225 | 65–75 | 65–75 | 65–75 | 65–75 |
N2W3 | 225 | 55–65 | 55–65 | 55–65 | 55–65 |
N3W1 | 150 | 75–85 | 75–85 | 75–85 | 75–85 |
N3W2 | 150 | 65–75 | 65–75 | 65–75 | 65–75 |
N3W3 | 150 | 55–65 | 55–65 | 55–65 | 55–65 |
Year | Treatment | Gradual Increase Stage | Rapid Increase Stage | Slow Increase Stage | |||
---|---|---|---|---|---|---|---|
DT/d | MD/(kg·d−1·ha−1) | DT/d | MD/(kg·d−1·ha−1) | DT/d | MD/(kg·d−1·ha−1) | ||
2021 | CK | 46.75 a | 69.03 d | 33.18 a | 174.80 d | 32.07 e | 74.49 c |
N1W1 | 44.40 a | 91.09 a | 29.78 b | 232.32 a | 37.81 bcd | 93.24 a | |
N1W2 | 45.43 a | 77.78 c | 31.59 ab | 197.48 c | 34.97 de | 81.43 b | |
N1W3 | 44.38 a | 61.04 e | 29.64 b | 155.76 e | 37.98 bc | 62.42 d | |
N2W1 | 46.19 a | 76.04 c | 32.85 a | 192.51 c | 32.96 e | 81.24 b | |
N2W2 | 44.94 a | 85.38 b | 31.09 ab | 216.92 b | 35.96 cd | 88.61 a | |
N2W3 | 44.38 a | 58.71 e | 29.50 a | 149.89 e | 38.12 bc | 59.98 d | |
N3W1 | 46.10 a | 68.37 d | 32.95 b | 172.96 d | 32.96 e | 73.05 c | |
N3W2 | 43.58 a | 56.14 e | 29.32 b | 143.14 e | 39.11 b | 56.98 d | |
N3W3 | 44.48 a | 49.07 f | 24.74 c | 127.28 f | 42.78 a | 49.20 e | |
2022 | CK | 46.81 ab | 73.50 c | 32.23 a | 186.88 c | 31.96 d | 78.49 d |
N1W1 | 44.98 b | 91.91 a | 31.74 ab | 232.91 a | 34.27 cd | 95.95 b | |
N1W2 | 45.59 b | 82.58 b | 31.76 ab | 209.63 b | 33.66 cd | 86.71 c | |
N1W3 | 44.21 b | 62.35 e | 28.75 cd | 159.58 e | 38.04 a | 63.35 f | |
N2W1 | 48.74 a | 92.35 a | 32.80 a | 235.45 a | 29.46 e | 101.42 a | |
N2W2 | 44.68 b | 90.55 a | 31.42 ab | 229.57 a | 34.90 bc | 94.02 b | |
N2W3 | 45.02 b | 60.32 e | 31.06 ab | 153.30 e | 34.91 bc | 62.63 f | |
N3W1 | 45.40 b | 80.73 b | 30.11 bc | 206.17 b | 35.49 bc | 83.44 c | |
N3W2 | 44.74 b | 67.80 d | 28.90 cd | 173.66 d | 37.35 ab | 69.19 e | |
N3W3 | 44.17 b | 49.90 f | 27.34 e | 128.36 f | 39.49 a | 50.37 g |
Year | Treatment | Regression Equation | R2 | DM/d | MR/(kg·d−1·ha−1) |
---|---|---|---|---|---|
2021 | CK | y = 105.4675/[1 + 152.7580exp(−0.07939t)] | 0.9999 ** | 63.34 a | 199.36 d |
N1W1 | y = 125.8319/[1 + 189.4544exp(−0.08844t)] | 0.9997 ** | 59.30 ab | 264.97 a | |
N1W2 | y = 113.4659/[1 + 164.7848exp(−0.08337t)] | 0.9997 ** | 61.23 ab | 225.23 c | |
N1W3 | y = 83.9666/[1 + 192.6368exp(−0.08886t)] | 0.9998 ** | 59.20 ab | 177.65 e | |
N2W1 | y = 114.9941/[1 + 151.5540exp(−0.08019t)] | 0.9998 ** | 62.61 a | 219.56 c | |
N2W2 | y = 122.6659/[1 + 168.0023exp(−0.08471t)] | 0.9997 ** | 60.49 ab | 247.41 b | |
N2W3 | y = 80.4147/[1 + 196.3542exp(−0.08929t)] | 0.9999 ** | 59.13 ab | 170.96 e | |
N3W1 | y = 103.6271/[1 + 148.7734exp(−0.07995t)] | 0.9999 ** | 62.57 a | 197.26 d | |
N3W2 | y = 76.3106/[1 + 187.2143exp(−0.08985t)] | 0.9998 ** | 58.23 ab | 163.25 e | |
2022 | N3W3 | y = 57.2609/[1 + 425.4876exp(−0.10648t)] | 0.9995 * | 56.85 c | 145.17 f |
2022 | CK | y = 109.5280/[1 + 171.19746exp(−0.08173t)] | 0.9999 ** | 62.92 ab | 213.14 c |
N1W1 | y = 134.45317/[1 + 155.9884exp(−0.0829t)] | 0.9998 ** | 60.86 bc | 265.64 a | |
N1W2 | y = 121.0691/[1 + 163.6797exp(−0.08294t)] | 0.9997 ** | 61.47 abc | 239.08 b | |
N1W3 | y = 83.4313/[1 + 214.3845exp(−0.09162t)] | 0.9996 ** | 58.59 c | 182.00 e | |
N2W1 | y = 140.4546/[1 + 186.9313exp(−0.0803t)] | 0.9998 ** | 65.14 a | 268.54 a | |
N2W2 | y = 131.1786/[1 + 158.0301exp(−0.08383t)] | 0.9998 ** | 60.39 bc | 261.83 a | |
N2W3 | y = 86.6077/[1 + 169.7551exp(−0.08479t)] | 0.9999 ** | 60.55 bc | 174.84 e | |
N3W1 | y = 112.8918/[1 + 197.9960exp(−0.08748t)] | 0.9999 ** | 60.45 bc | 235.14 b | |
N3W2 | y = 91.2836/[1 + 220.16147exp(−0.06441t)] | 0.9997 ** | 59.19 bc | 198.06 d | |
N3W3 | y = 63.8251/[1 + 263.04775exp(−0.09634t)] | 0.9995 ** | 57.84 c | 146.40 f | |
Significance (F value) | |||||
Irrigation level W | — | — | 5.9671 ** | 385.978 ** | |
Nitrogen level N | — | — | 2.3310 | 133.632 ** | |
W × N | — | — | 1.3891 | 18.1187 ** |
Year | Treatment | Yield/(kg·ha−1) | WUE/(kg·ha−1·mm−1) | IWUE/(kg·ha−1·mm−1) | NPP/(kg·kg−1) |
---|---|---|---|---|---|
2021 | CK | 35,033.33 cd | 13.17 cde | 15.09 cd | — |
N1W1 | 36,733.33 cd | 12.53 e | 14.13 de | 122.44 c | |
N1W2 | 38,100.00 bc | 15.16 b | 17.45 b | 127.01 c | |
N1W3 | 33,533.33 d | 14.90 b | 17.42 b | 111.79 c | |
N2W1 | 41,000.00 ab | 14.41 bc | 16.31 bc | 182.22 b | |
N2W2 | 43,758.33 a | 17.31 a | 19.92 a | 194.49 b | |
N2W3 | 33,666.67 d | 14.96 b | 17.52 b | 149.62 c | |
N3W1 | 35,658.33 cd | 12.9 de | 14.68 de | 237.70 a | |
N3W2 | 35,366.67 cd | 14.15 bcd | 16.29 bc | 235.78 a | |
N3W3 | 24,733.33 e | 11.33 f | 13.36 e | 164.89 c | |
2022 | CK | 37,170.44 e | 12.40 de | 16.28 e | — |
N1W1 | 41,431.57 cd | 12.67 de | 16.77 de | 138.11 e | |
N1W2 | 42,192.97 c | 14.16 b | 19.58 b | 140.64 e | |
N1W3 | 33,612.40 f | 12.18 ef | 17.63 cd | 112.04 f | |
N2W1 | 44,538.67 b | 14.53 b | 18.98 b | 197.95 c | |
N2W2 | 47,858.07 a | 16.86 a | 21.24 a | 212.70 b | |
N2W3 | 34,430.11 f | 13.09 cd | 19.21 b | 153.02 d | |
N3W1 | 40,044.91 d | 12.80 cde | 16.81 de | 266.97 a | |
N3W2 | 40,495.79 d | 13.39 c | 18.52 bc | 267.75 a | |
N3W3 | 30,301.40 g | 11.57 f | 16.56 de | 202.01 c | |
Significance (F value) | |||||
Irrigation level W | 235.973 ** | 66.194 ** | 52.351 ** | 208.281 ** | |
Nitrogen level N | 71.489 ** | 52.443 ** | 41.153 ** | 833.675 ** | |
W × N | 7.604 * | 8.216 ** | 5.402 ** | 21.493 ** |
Index | Single Correlation Coefficient | Direct Path Coefficient | Indirect Path Coefficient | |
---|---|---|---|---|
X1→Yield | X2→Yield | |||
Net photosynthetic rate X1→ | 0.941 ** | 0.705 | – | 0.226 |
Dry matter accumulation X2→ | 0.875 ** | 0.268 | 0.595 | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Wang, Y.; Yu, S.; Zhou, C.; Li, F.; Chen, X.; Liu, L.; Wang, Y. Plant Photosynthesis and Dry Matter Accumulation Response of Sweet Pepper to Water–Nitrogen Coupling in Cold and Arid Environment. Water 2023, 15, 2134. https://doi.org/10.3390/w15112134
Zhang H, Wang Y, Yu S, Zhou C, Li F, Chen X, Liu L, Wang Y. Plant Photosynthesis and Dry Matter Accumulation Response of Sweet Pepper to Water–Nitrogen Coupling in Cold and Arid Environment. Water. 2023; 15(11):2134. https://doi.org/10.3390/w15112134
Chicago/Turabian StyleZhang, Hengjia, Yong Wang, Shouchao Yu, Chenli Zhou, Fuqiang Li, Xietian Chen, Lintao Liu, and Yingying Wang. 2023. "Plant Photosynthesis and Dry Matter Accumulation Response of Sweet Pepper to Water–Nitrogen Coupling in Cold and Arid Environment" Water 15, no. 11: 2134. https://doi.org/10.3390/w15112134
APA StyleZhang, H., Wang, Y., Yu, S., Zhou, C., Li, F., Chen, X., Liu, L., & Wang, Y. (2023). Plant Photosynthesis and Dry Matter Accumulation Response of Sweet Pepper to Water–Nitrogen Coupling in Cold and Arid Environment. Water, 15(11), 2134. https://doi.org/10.3390/w15112134