A Case Study of Leaf Wettability Variability and the Relations with Leaf Traits and Surface Water Storage for Urban Landscape Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design and Plant Sampling
2.3. Measurement of Leaf Wettability
2.4. Measurements of Leaf Functional Traits
2.5. Measurements of Leaf Wax Content and Surface Micromorphology
2.6. Measurement of Leaf Surface Water Storage
2.7. Statistical Analysis
3. Results
3.1. Variability in Leaf Wettability of 30 Common Landscape Plants
3.2. Leaf Wettability Varied with Growth Season and Life Form
3.3. The Relationships between Leaf Wettability and Leaf Functional Traits and Surface Micromorphology
3.4. The Relationships between Leaf Surface Water Storage and Leaf Wettability and Leaf Functional Traits
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xiong, P.; Chen, Z.; Jia, Z.; Wang, Z.; Palta, J.; Xu, B. Variability in Leaf Wettability and Surface Water Retention of Main Species in Semiarid Loess Plateau of China. Ecohydrology 2018, 11, e2021. [Google Scholar] [CrossRef]
- Eller, C.B.; Lima, A.L.; Oliveira, R.S. Foliar Uptake of Fog Water and Transport Belowground Alleviates Drought Effects in the Cloud Forest Tree Species, Drimys brasiliensis (Winteraceae). New Phytol. 2013, 199, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Goldsmith, G.R.; Bentley, L.P.; Shenkin, A.; Salinas, N.; Blonder, B.; Martin, R.E.; Castro-Ccossco, R.; Chambi-Porroa, P.; Diaz, S.; Enquist, B.J.; et al. Variation in Leaf Wettability Traits along a Tropical Montane Elevation Gradient. New Phytol. 2017, 214, 989–1001. [Google Scholar] [CrossRef] [PubMed]
- Aryal, B.; Neuner, G. Leaf Wettability Decreases along an Extreme Altitudinal Gradient. Oecologia 2010, 162, 1–9. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Seasonal Changes of Leaf Surface Contamination in Beech, Oak, and Ginkgo in Relation to Leaf Micromorphology and Wettability. New Phytol. 1998, 138, 91–98. [Google Scholar] [CrossRef]
- Holder, C.D.; Gibbes, C. Influence of Leaf and Canopy Characteristics on Rainfall Interception and Urban Hydrology. Hydrol. Sci. J. 2017, 62, 182–190. [Google Scholar] [CrossRef]
- Li, X.; Xiao, Q.; Niu, J.; Dymond, S.; van Doorn, N.S.; Yu, X.; Xie, B.; Lv, X.; Zhang, K.; Li, J. Process-Based Rainfall Interception by Small Trees in Northern China: The Effect of Rainfall Traits and Crown Structure Characteristics. Agric. For. Meteorol. 2016, 218–219, 65–73. [Google Scholar] [CrossRef]
- Rosado, B.H.P.; Holder, C.D. The Significance of Leaf Water Repellency in Ecohydrological Research: A Review. Ecohydrology 2013, 6, 150–161. [Google Scholar] [CrossRef]
- Ying, W.; Mo, Y.; Min, Z.; Bai, M. Wettability of Metal Coatings with Biomimic Micro Textures. Surf. Coat. Technol. 2008, 203, 137–141. [Google Scholar]
- Koch, K.; Bhushan, B.; Barthlott, W. Multifunctional Surface Structures of Plants: An Inspiration for Biomimetics. Prog. Mater. Sci. 2009, 54, 137–178. [Google Scholar] [CrossRef]
- Holder, C.D. Leaf Water Repellency of Species in Guatemala and Colorado (USA) and Its Significance to Forest Hydrology Studies. J. Hydrol. 2007, 336, 147–154. [Google Scholar] [CrossRef]
- Brewer, C.A.; Nuñez, C.I. Patterns of Leaf Wettability along an Extreme Moisture Gradient in Western Patagonia, Argentina. Int. J. Plant Sci. 2007, 168, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Fernández, V.; Guzmán-Delgado, P.; Graça, J.; Santos, S.; Gil, L. Cuticle Structure in Relation to Chemical Composition: Re-Assessing the Prevailing Model. Front. Plant Sci. 2016, 7, 427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Yu, C.; Li, Y.; Zhu, Q.; Zhou, L.; Cao, C.; Yu, T.; Du, F. Research on the Changes in Wettability of Rice (Oryza sativa.) Leaf Surfaces at Different Development Stages Using the OWRK Method: Wettability Changes of Rice Leaf Surfaces. Pest. Manag. Sci. 2014, 70, 462–469. [Google Scholar] [CrossRef] [PubMed]
- Barima, Y.S.S.; Angaman, D.M.; N’gouran, K.P.; Koffi, N.A.; Tra Bi, F.Z.; Samson, R. Involvement of Leaf Characteristics and Wettability in Retaining Air Particulate Matter from Tropical Plant Species. Environ. Eng. Res. 2016, 21, 121–131. [Google Scholar] [CrossRef]
- Cavallaro, A.; Carbonell-Silletta, L.; Burek, A.; Goldstein, G.; Scholz, F.G.; Bucci, S.J. Leaf Surface Traits Contributing to Wettability, Water Interception and Uptake of above-Ground Water Sources in Shrubs of Patagonian Arid Ecosystems. Ann. Bot. 2022, 130, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Duan, J.; Jiang, T.; Yang, Z. Microscale Mechanism of Microstructure, Micromorphology and Janus Wettability of the Banana Leaf Surface. Micron 2021, 146, 103073. [Google Scholar] [CrossRef]
- Gou, X.; Guo, Z. Superhydrophobic Plant Leaves: The Variation in Surface Morphologies and Wettability during the Vegetation Period. Langmuir 2019, 35, 1047–1053. [Google Scholar] [CrossRef]
- Burton, Z.T. Surface Characterization, Adhesion, and Friction Properties of Hydrophobic Leaf Surfaces and Nanopatterned Polymers for Superhydrophobic Surfaces. In Applied Scanning Probe Methods; Springer: Berlin/Heidelberg, Germany, 2006; pp. 55–81. [Google Scholar]
- Wang, H.X.; Shi, H.; Li, Y.Y.; Yu, Y.; Zhang, J. Seasonal Variations in Leaf Capturing of Particulate Matter, Surface Wettability and Micromorphology in Urban Tree Species. Front. Environ. Sci. Eng. 2013, 7, 579–588. [Google Scholar] [CrossRef]
- Klamerus-Iwan, A.; Błońska, E. Canopy Storage Capacity and Wettability of Leaves and Needles: The Effect of Water Temperature Changes. J. Hydrol. 2018, 559, 534–540. [Google Scholar] [CrossRef]
- Holder, C.D. The Relationship between Leaf Hydrophobicity, Water Droplet Retention, and Leaf Angle of Common Species in a Semi-Arid Region of the Western United States. Agric. For. Meteorol. 2012, 152, 11–16. [Google Scholar] [CrossRef]
- Livesley, S.J.; Baudinette, B.; Glover, D. Rainfall Interception and Stem Flow by Eucalypt Street Trees—The Impacts of Canopy Density and Bark Type. Urban For. Urban Green. 2014, 13, 192–197. [Google Scholar] [CrossRef]
- Holder, C.D. Effects of Leaf Hydrophobicity and Water Droplet Retention on Canopy Storage Capacity. Ecohydrology 2013, 6, 483–490. [Google Scholar] [CrossRef]
- Tao, X.; Cui, J.; Dai, Y.; Wang, Z.; Xu, X. Soil Respiration Responses to Soil Physiochemical Properties in Urban Different Green-Lands: A Case Study in Hefei, China. Int. Soil Water Conserv. Res. 2016, 4, 224–229. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Shi, H.; Li, Y.; Wang, Y. The Effects of Leaf Roughness, Surface Free Energy and Work of Adhesion on Leaf Water Drop Adhesion. PLoS ONE 2014, 9, e107062. [Google Scholar] [CrossRef]
- Kardel, F.; Wuyts, K.; Babanezhad, M.; Wuytack, T.; Adriaenssens, S.; Samson, R. Tree Leaf Wettability as Passive Bio-Indicator of Urban Habitat Quality. Environ. Exp. Bot. 2012, 75, 277–285. [Google Scholar] [CrossRef]
- Zhang, X.; Lyu, J.; Han, Y.; Sun, N.; Sun, W.; Li, J.; Liu, C.; Yin, S. Effects of the Leaf Functional Traits of Coniferous and Broadleaved Trees in Subtropical Monsoon Regions on PM2.5 Dry Deposition Velocities. Environ. Pollut. 2020, 265, 114845. [Google Scholar] [CrossRef]
- Ichie, T.; Inoue, Y.; Takahashi, N.; Kamiya, K.; Kenzo, T. Ecological distribution of leaf stomata and trichomes among tree species in a Malaysian lowland tropical rain forest. J. Plant Res. 2016, 129, 625–635. [Google Scholar] [CrossRef]
- Garcia-Estringana, P.; Alonso-Blázquez, N.; Alegre, J. Water storage capacity, stemflow and water funneling in Mediterranean shrubs. J. Hydrol. 2010, 389, 363–372. [Google Scholar] [CrossRef]
- Gao, Y.; Guo, R.; Fan, R.; Liu, Z.; Kong, W.; Zhang, P.; Du, F. Wettability of Pear Leaves from Three Regions Characterized at Different Stages after Flowering Using the OWRK Method: Characterization of Leaf Wettability Using the OWRK Method. Pest. Manag. Sci. 2018, 74, 1804–1809. [Google Scholar] [CrossRef]
- Puente, D.W.M.; Baur, P. Wettability of Soybean (Glycine max L.) Leaves by Foliar Sprays with Respect to Developmental Changes. Pest. Manag. Sci. 2011, 67, 798–806. [Google Scholar] [CrossRef]
- Fernández, V.; Sancho-Knapik, D.; Guzmán, P.; Peguero-Pina, J.J.; Gil, L.; Karabourniotis, G.; Khayet, M.; Fasseas, C.; Heredia-Guerrero, J.A.; Heredia, A.; et al. Wettability, Polarity, and Water Absorption of Holm Oak Leaves: Effect of Leaf Side and Age. Plant Physiol. 2014, 166, 168–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holder, C.D. The Relationship between Leaf Water Repellency and Leaf Traits in Three Distinct Biogeographical Regions. Plant Ecol. 2011, 212, 1913–1926. [Google Scholar] [CrossRef]
- Burton, Z.; Bhushan, B. Surface Characterization and Adhesion and Friction Properties of Hydrophobic Leaf Surfaces. Ultramicroscopy 2006, 106, 709–719. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.F.; Dai, Z.D. Effects of the Natural Microstructures on the Wettability of Leaf Surfaces. Biosurf. Biotribol. 2016, 2, 70–74. [Google Scholar] [CrossRef] [Green Version]
- Pandey, S.; Nagar, P.K. Patterns of leaf surface wetness in some important medicinal and aromatic plants of Western Himalaya. Flora 2003, 198, 349–357. [Google Scholar] [CrossRef]
- Xiong, P.; Chen, Z.; Yang, Q.; Zhou, J.; Zhang, H.; Wang, Z.; Xu, B. Surface Water Storage Characteristics of Main Herbaceous Species in Semiarid Loess Plateau of China. Ecohydrology 2019, 12, e2145. [Google Scholar] [CrossRef]
Species | Abbreviations | Families | Life Forms | Leaf Contact Angle (°, Mean ± SE) | |
---|---|---|---|---|---|
Adaxial | Abaxial | ||||
Acer palmatum | AP | Aceraceae | D-B-T | 82 ± 6 a | 93 ± 4 a |
Albizia julibrissin | AJ | Leguminosae | D-B-T | 120 ± 3 a | 132 ± 1 a |
Buxus sinica | BS | Buxaceae | E-B-S | 79 ± 6 a | 91 ± 5 a |
Chimonanthus praecox | CP | Calycanthaceae | D-B-S | 78 ± 5 a | 91 ± 5 a |
Cinnamomum camphora | CC | Lauraceae | E-B-T | 82 ± 2 b | 126 ± 2 a |
Gardenia jasminoides | GJ | Rubiaceae | E-B-S | 83 ± 4 a | 77 ± 6 a |
Ginkgo biloba | GB | Ginkgoaceae | D-C-T | 88 ± 12 b | 123 ± 5 a |
Hypericum monogynum | HM | Guttiferae | E-B-S | 122 ± 4 a | 134 ± 1 a |
Ligustrum lucidum | LL | Oleaceae | E-B-S | 89 ± 4 a | 94 ± 9 a |
Liriodendron chinense | LCs | Magnoliaceae | D-B-T | 102 ± 12 b | 128 ± 6 a |
Loropetalum chinense | LCr | Hamamelidaceae | E-B-S | 110 ± 8 b | 133 ± 3 a |
Magnolia grandiflora | MG | Magnoliaceae | E-B-T | 78 ± 7 b | 121 ± 9 a |
Malus halliana | MH | Rosaceae | D-B-T | 83 ± 5 a | 92 ± 2 a |
Nandina domestica | ND | Berberidaceae | E-B-S | 102 ± 5 a | 114 ± 6 a |
Osmanthus fragrans | OF | Oleaceae | E-B-S | 83 ± 4 a | 87 ± 2 a |
Photinia serratifolia | PSk | Rosaceae | E-B-S | 76 ± 4 a | 88 ± 3 a |
Phyllostachys sulphurea | PSv | Gramineae | E-B-T | 75 ± 2 b | 131 ± 1 a |
Pinus parviflora | PP | Pinaceae | E-C-T | 74 ± 5 a | 66 ± 5 a |
Pittosporum tobira | PT | Goodeniaceae | E-B-S | 71 ± 7 a | 90 ± 4 a |
Platanus orientalis | PO | Platanaceae | D-B-T | 84 ± 4 a | 86 ± 6 a |
Prunus cerasifera | PC | Rosaceae | D-B-T | 69 ± 7 b | 94 ± 4 a |
Salix babylonica | SB | Salicaceae | D-B-T | 73 ± 4 b | 120 ± 5 a |
Sapindus mukorossi | SM | Sapindaceae | D-B-T | 78 ± 6 a | 83 ± 6 a |
Sophora japonica | SJ | Leguminosae | D-B-T | 89 ± 14 b | 126 ± 3 a |
Spiraea salicifolia | SS | Rosaceae | D-B-S | 98 ± 10 a | 111 ± 9 a |
Ulmus pumila | UP | Ulmaceae | D-B-T | 69 ± 4 a | 78 ± 3 a |
Viburnum odoratissimum | VO | Caprifoliaceae | E-B-S | 88 ± 6 a | 82 ± 5 a |
Cynodon dactylon | CD | Gramineae | Perennial herb | 125 ± 4 a | 119 ± 5 a |
Ophiopogon bodinieri | OB | Liliaceae | Perennial herb | 63 ± 5 a | 76 ± 3 a |
Oxalis corniculata | OC | Oxalidaceae | Perennial herb | 134 ± 1 a | 79 ± 5 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, B.; Bao, P.; Wang, R.; Min, A.; Xiong, P. A Case Study of Leaf Wettability Variability and the Relations with Leaf Traits and Surface Water Storage for Urban Landscape Plants. Water 2023, 15, 2152. https://doi.org/10.3390/w15122152
Wang Y, Li B, Bao P, Wang R, Min A, Xiong P. A Case Study of Leaf Wettability Variability and the Relations with Leaf Traits and Surface Water Storage for Urban Landscape Plants. Water. 2023; 15(12):2152. https://doi.org/10.3390/w15122152
Chicago/Turabian StyleWang, Yan, Binbin Li, Peipei Bao, Ronghua Wang, Aoyun Min, and Peifeng Xiong. 2023. "A Case Study of Leaf Wettability Variability and the Relations with Leaf Traits and Surface Water Storage for Urban Landscape Plants" Water 15, no. 12: 2152. https://doi.org/10.3390/w15122152
APA StyleWang, Y., Li, B., Bao, P., Wang, R., Min, A., & Xiong, P. (2023). A Case Study of Leaf Wettability Variability and the Relations with Leaf Traits and Surface Water Storage for Urban Landscape Plants. Water, 15(12), 2152. https://doi.org/10.3390/w15122152