TreatEEM—A Software Tool for the Interpretation of Fluorescence Excitation-Emission Matrices (EEMs) of Dissolved Organic Matter in Natural Waters
Abstract
:1. Introduction
2. Basic Software Description and Main Graphical User Interface
- Inner filter effect (IFE) correction;
- Raman/Rayleigh (RR) scatter removal;
- Reconstruction of spectra under Raman/Rayleigh bands (interpolation);
- Blank subtraction;
- Raman normalisation;
- Alignment of drifted EEMs;
- Calculation of EEM wavelength drift;
- Manual correction of region inside of EEM;
- Smoothing;
- Resampling—EEM resolution increase;
- Selection of active EEM wavelength ranges;
- Peak picking;
- Fluorescence indices (HIX, BIX, FI, YFI, Coble peaks);
- User-defined fluorescence indices;
- Preparation of data for PARAFAC analysis;
- Presentation of PARAFAC components;
- Reconstruction of EEMs using PARAFAC components.
3. Initial EEM Treatment
3.1. Inner Filter Effect (IFE) Correction
3.2. Raman and Rayleigh Scatter
- Selection of bands to be removed by selecting corresponding checkboxes;
- Adjustment of the width of each scatter band;
- Interpolation of missing values under RR-bands.
3.3. Blank Subtraction
3.4. Raman Normalization
3.5. EEM Alignment
4. Parameters Derived from EEMs
4.1. Peak Picking
Component | Coble, 2007 [6] | λex,max/λem,max (nm) | Source |
---|---|---|---|
Humic-like | C | 300–370/400–500 | Terrestrial or anthropogenic; agriculture |
Humic-like | A | 237–260/400–500 | Terrestrial or autochthonous |
Marine humic-like | M | 290–312/370–420 | Anthropogenic; wastewater and agriculture |
Protein-like Tyrosine-like | B | 225–237/309–321 270–280/305–310 | Autochthonous |
Protein-like Tryptophan-like | T | 225–237/340–381 270–280/340 | Autochthonous |
Pigment-like | P | 400–430/660–670 | Autochthonous |
PAH-like [55] | - | 220–280/311–350 | Anthropogenic; oil-related or wildfires |
4.2. Fluorescence Index
4.3. Biological Activity and Humification Indices
5. EEM Decomposition
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DeFrancesco, C.; Guéguen, C. Long-Term Trends in Dissolved Organic Matter Composition and Its Relation to Sea Ice in the Canada Basin, Arctic Ocean (2007–2017). J. Geophys. Res. Ocean. 2021, 126, e2020JC016578. [Google Scholar] [CrossRef]
- Malakar, A.; Singh, R.; Westrop, J.; Weber, K.A.; Elofson, C.N.; Kumar, M.; Snow, D.D. Occurrence of Arsenite in Surface and Groundwater Associated with a Perennial Stream Located in Western Nebraska, USA. J. Hazard. Mater. 2021, 416, 126170. [Google Scholar] [CrossRef]
- Baszanowska, E.; Otremba, Z. Fluorometric Detection of Oil Traces in a Seawater Column. Sensors 2022, 22, 2039. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kim, G.; Kwon, H.K.; Han, H.; Park, T.G.; Son, M. Origins and Characteristics of Dissolved Organic Matter Fueling Harmful Dinoflagellate Blooms Revealed by Δ13C and d/l-Amino Acid Compositions. Sci. Rep. 2022, 12, 15052. [Google Scholar] [CrossRef]
- Bachi, G.; Morelli, E.; Gonnelli, M.; Balestra, C.; Casotti, R.; Evangelista, V.; Repeta, D.J.; Santinelli, C. Fluorescent Properties of Marine Phytoplankton Exudates and Lability to Marine Heterotrophic Prokaryotes Degradation. Limnol. Oceanogr. 2023, 68, 982–1000. [Google Scholar] [CrossRef]
- Coble, P.G. Marine Optical Biogeochemistry: The Chemistry of Ocean Color. Chem. Rev. 2007, 107, 402–418. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Nelson, N.B. The Optical Properties of DOM in the Ocean. In Biogeochemistry of Marine Dissolved Organic Matter; Carlson, D.A., Hansell, C.A., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 509–533. ISBN 0124071538, 9780124071537. [Google Scholar]
- Pedrosa, P.; Souza, C.M.M.A.; Rezende, C.E. Linking Major Nutrients (C, H, N, and P) to Trace Metals (Fe, Mn, and Cu) in Lake Seston in Southern Brazil. Limnology 2007, 8, 233–242. [Google Scholar] [CrossRef]
- Carpenter, L.J.; Nightingale, P.D. Chemistry and Release of Gases from the Surface Ocean. Chem. Rev. 2015, 115, 4015–4034. [Google Scholar] [CrossRef]
- Baker, A. Fluorescence Excitation—Emission Matrix Characterization of Some Sewage-Impacted Rivers. Environ. Sci. Technol. 2001, 35, 948–953. [Google Scholar] [CrossRef]
- Philibert, M.; Luo, S.; Moussanas, L.; Yuan, Q.; Filloux, E.; Zraick, F.; Murphy, K.R. Drinking Water Aromaticity and Treatability Is Predicted by Dissolved Organic Matter Fluorescence. Water Res. 2022, 220, 118592. [Google Scholar] [CrossRef] [PubMed]
- Catalá, T.S.; Martínez-Pérez, A.M.; Nieto-Cid, M.; Álvarez, M.; Otero, J.; Emelianov, M.; Reche, I.; Arístegui, J.; Álvarez-Salgado, X.A. Dissolved Organic Matter (DOM) in the Open Mediterranean Sea. I. Basin–Wide Distribution and Drivers of Chromophoric DOM. Prog. Oceanogr. 2018, 165, 35–51. [Google Scholar] [CrossRef]
- Retelletti Brogi, S.; Balestra, C.; Casotti, R.; Cossarini, G.; Galletti, Y.; Gonnelli, M.; Vestri, S.; Santinelli, C. Time Resolved Data Unveils the Complex DOM Dynamics in a Mediterranean River. Sci. Total Environ. 2020, 733, 139212. [Google Scholar] [CrossRef] [PubMed]
- Galletti, Y.; Gonnelli, M.; Retelletti Brogi, S.; Vestri, S.; Santinelli, C. DOM Dynamics in Open Waters of the Mediterranean Sea: New Insights from Optical Properties. Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 144, 95–114. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Yao, X.; Ding, W.; Zhang, Y.; Jeppesen, E.; Zhang, Y.; Podgorski, D.C.; Chen, C.; Ding, Y.; et al. Response of Chromophoric Dissolved Organic Matter Dynamics to Tidal Oscillations and Anthropogenic Disturbances in a Large Subtropical Estuary. Sci. Total Environ. 2019, 662, 769–778. [Google Scholar] [CrossRef]
- Gómez-Letona, M.; Arístegui, J.; Hernández-Hernández, N.; Álvarez-Salgado, X.A.; Álvarez, M.; Delgadillo, E.; Pérez-Lorenzo, M.; Teira, E.; Hernández-León, S.; Sebastián, M. Deep Ocean Prokaryotes and Fluorescent Dissolved Organic Matter Reflect the History of the Water Masses across the Atlantic Ocean. Prog. Oceanogr. 2022, 205, 102819. [Google Scholar] [CrossRef]
- Gonnelli, M.; Vestri, S.; Santinelli, C. Chromophoric Dissolved Organic Matter and Microbial Enzymatic Activity. A Biophysical Approach to Understand the Marine Carbon Cycle. Biophys. Chem. 2013, 182, 79–85. [Google Scholar] [CrossRef]
- Yamashita, Y.; Tanoue, E. Chemical Characterization of Protein-like Fluorophores in DOM in Relation to Aromatic Amino Acids. Mar. Chem. 2003, 82, 255–271. [Google Scholar] [CrossRef]
- He, Q.; Xiao, Q.; Fan, J.; Zhao, H.; Cao, M.; Zhang, C.; Jiang, Y. Excitation-Emission Matrix Fluorescence Spectra of Chromophoric Dissolved Organic Matter Reflected the Composition and Origination of Dissolved Organic Carbon in Lijiang River, Southwest China. J. Hydrol. 2021, 598, 126240. [Google Scholar] [CrossRef]
- Catalá, T.S.; Mladenov, N.; Echevarría, F.; Reche, I. Positive Trends between Salinity and Chromophoric and Fluorescent Dissolved Organic Matter in a Seasonally Inverse Estuary. Estuar. Coast. Shelf Sci. 2013, 133, 206–216. [Google Scholar] [CrossRef]
- Tong, G.; Yang, X.; Li, Y.; Jin, M.; Yu, X.; Huang, Y.; Zheng, R.; Wang, J.-J.; Chen, H. Impacts of Haze on the Photobleaching of Chromophoric Dissolved Organic Matter in Surface Water. Environ. Res. 2022, 212, 113305. [Google Scholar] [CrossRef] [PubMed]
- Omori, Y.; Saeki, A.; Wada, S.; Inagaki, Y.; Hama, T. Experimental Analysis of Diurnal Variations in Humic-like Fluorescent Dissolved Organic Matter in Surface Seawater. Front. Mar. Sci. 2020, 7, 589064. [Google Scholar] [CrossRef]
- Xu, X.; Kang, J.; Shen, J.; Zhao, S.; Wang, B.; Zhang, X.; Chen, Z. EEM–PARAFAC Characterization of Dissolved Organic Matter and Its Relationship with Disinfection by-Products Formation Potential in Drinking Water Sources of Northeastern China. Sci. Total Environ. 2021, 774, 145297. [Google Scholar] [CrossRef] [PubMed]
- Baker, A.; Curry, M. Fluorescence of Leachates from Three Contrasting Landfills. Water Res. 2004, 38, 2605–2613. [Google Scholar] [CrossRef]
- Liu, B.; Wu, J.; Cheng, C.; Tang, J.; Khan, M.F.S.; Shen, J. Identification of Textile Wastewater in Water Bodies by Fluorescence Excitation Emission Matrix-Parallel Factor Analysis and High-Performance Size Exclusion Chromatography. Chemosphere 2019, 216, 617–623. [Google Scholar] [CrossRef] [PubMed]
- Carstea, E.M.; Bridgeman, J.; Baker, A.; Reynolds, D.M. Fluorescence Spectroscopy for Wastewater Monitoring: A Review. Water Res. 2016, 95, 205–219. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Xu, J.; Wang, J.; Wen, Y.; Zhuo, J.; Yan, Y. Characterization of Dissolved Organic Matter in Urban Sewage Using Excitation Emission Matrix Fluorescence Spectroscopy and Parallel Factor Analysis. J. Environ. Sci. 2010, 22, 1728–1734. [Google Scholar] [CrossRef] [Green Version]
- Niloy, N.M.; Haque, M.M.; Tareq, S.M. Fluorescent Whitening Agents in Commercial Detergent: A Potential Marker of Emerging Anthropogenic Pollution in Freshwater of Bangladesh. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100419. [Google Scholar] [CrossRef]
- Bianchi, T.S.; Osburn, C.; Shields, M.R.; Yvon-Lewis, S.; Young, J.; Guo, L.; Zhou, Z. Deepwater Horizon Oil in Gulf of Mexico Waters after 2 Years: Transformation into the Dissolved Organic Matter Pool. Environ. Sci. Technol. 2014, 48, 9288–9297. [Google Scholar] [CrossRef]
- Ohno, T.; Amirbahman, A.; Bro, R. Parallel Factor Analysis of Excitation–Emission Matrix Fluorescence Spectra of Water Soluble Soil Organic Matter as Basis for the Determination of Conditional Metal Binding Parameters. Environ. Sci. Technol. 2008, 42, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Rinot, O.; Borisover, M.; Levy, G.J.; Eshel, G. Fluorescence Spectroscopy: A Sensitive Tool for Identifying Land-Use and Climatic Region Effects on the Characteristics of Water-Extractable Soil Organic Matter. Ecol. Indic. 2021, 121, 107103. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, X.; Zhao, M.; Zhao, W.; Liu, J.; Tang, J.; Liao, H.; Chen, Z.; Zhou, S. Hyperthermophilic Composting Accelerates the Humification Process of Sewage Sludge: Molecular Characterization of Dissolved Organic Matter Using EEM–PARAFAC and Two-Dimensional Correlation Spectroscopy. Bioresour. Technol. 2019, 274, 198–206. [Google Scholar] [CrossRef]
- Long, W.-J.; Wu, H.-L.; Wang, T.; Dong, M.-Y.; Chen, L.-Z.; Yu, R.-Q. Fast Identification of the Geographical Origin of Gastrodia Elata Using Excitation-Emission Matrix Fluorescence and Chemometric Methods. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 258, 119798. [Google Scholar] [CrossRef] [PubMed]
- DaCosta, R.S.; Andersson, H.; Wilson, B.C. Molecular Fluorescence Excitation–Emission Matrices Relevant to Tissue Spectroscopy. Photochem. Photobiol. 2003, 78, 384. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira Neves, A.C.; Tauler, R.; de Lima, K.M.G. Area Correlation Constraint for the MCR−ALS Quantification of Cholesterol Using EEM Fluorescence Data: A New Approach. Anal. Chim. Acta 2016, 937, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Drezek, R.; Sokolov, K.; Utzinger, U.; Boiko, I.; Malpica, A.; Follen, M.; Richards-Kortum, R. Understanding the Contributions of NADH and Collagen to Cervical Tissue Fluorescence Spectra: Modeling, Measurements, and Implications. J. Biomed. Opt. 2001, 6, 385. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Josselin de Jong, E.; Higham, S.M.; Hope, C.K.; Kim, B. Fluorescence Fingerprints of Oral Bacteria. J. Biophotonics 2020, 13, e201900190. [Google Scholar] [CrossRef]
- Murphy, K.R.; Stedmon, C.A.; Graeber, D.; Bro, R. Fluorescence Spectroscopy and Multi-Way Techniques. PARAFAC. Anal. Methods 2013, 5, 6557. [Google Scholar] [CrossRef] [Green Version]
- Luciani, X.; Mounier, S.; Redon, R.; Bois, A. A Simple Correction Method of Inner Filter Effects Affecting FEEM and Its Application to the PARAFAC Decomposition. Chemom. Intell. Lab. Syst. 2009, 96, 227–238. [Google Scholar] [CrossRef] [Green Version]
- Chiappini, F.A.; Alcaraz, M.R.; Goicoechea, H.C.; Olivieri, A.C. A Graphical User Interface as a New Tool for Scattering Correction in Fluorescence Data. Chemom. Intell. Lab. Syst. 2019, 193, 103810. [Google Scholar] [CrossRef]
- Bro, R.; Vidal, M. EEMizer: Automated Modeling of Fluorescence EEM Data. Chemom. Intell. Lab. Syst. 2011, 106, 86–92. [Google Scholar] [CrossRef]
- Pucher, M.; Wünsch, U.; Weigelhofer, G.; Murphy, K.; Hein, T.; Graeber, D. StaRdom: Versatile Software for Analyzing Spectroscopic Data of Dissolved Organic Matter in R. Water 2019, 11, 2366. [Google Scholar] [CrossRef] [Green Version]
- Omanović, D.; Santinelli, C.; Marcinek, S.; Gonnelli, M. ASFit—An All-Inclusive Tool for Analysis of UV–Vis Spectra of Colored Dissolved Organic Matter (CDOM). Comput. Geosci. 2019, 133, 104334. [Google Scholar] [CrossRef]
- Weitner, T.; Friganović, T.; Šakić, D. Inner Filter Effect Correction for Fluorescence Measurements in Microplates Using Variable Vertical Axis Focus. Anal. Chem. 2022, 94, 7107–7114. [Google Scholar] [CrossRef]
- Lakowicz, J.R. (Ed.) Instrumentation for Fluorescence Spectroscopy. In Principles of Fluorescence Spectroscopy; Springer: Boston, MA, USA, 2006; pp. 27–61. ISBN 978-0-387-46312-4. [Google Scholar]
- Chen, S.; Yu, Y.L.; Wang, J.H. Inner Filter Effect-Based Fluorescent Sensing Systems: A Review. Anal. Chim. Acta 2018, 999, 13–26. [Google Scholar] [CrossRef] [PubMed]
- Mazivila, S.J.; Soares, J.X.; Santos, J.L.M. A Tutorial on Multi-Way Data Processing of Excitation-Emission Fluorescence Matrices Acquired from Semiconductor Quantum Dots Sensing Platforms. Anal. Chim. Acta 2022, 1211, 339216. [Google Scholar] [CrossRef]
- Zepp, R.G.; Sheldon, W.M.; Moran, M.A. Dissolved Organic Fluorophores in Southeastern US Coastal Waters: Correction Method for Eliminating Rayleigh and Raman Scattering Peaks in Excitation-Emission Matrices. Mar. Chem. 2004, 89, 15–36. [Google Scholar] [CrossRef]
- Lawaetz, A.J.; Stedmon, C.A. Fluorescence Intensity Calibration Using the Raman Scatter Peak of Water. Appl. Spectrosc. 2009, 63, 936–940. [Google Scholar] [CrossRef]
- Coble, P.G. Characterization of Marine and Terrestrial DOM in Seawater Using Excitation-Emission Matrix Spectroscopy. Mar. Chem. 1996, 51, 325–346. [Google Scholar] [CrossRef]
- Henderson, R.K.; Baker, A.; Murphy, K.R.; Hambly, A.; Stuetz, R.M.; Khan, S.J. Fluorescence as a Potential Monitoring Tool for Recycled Water Systems: A Review. Water Res. 2009, 43, 863–881. [Google Scholar] [CrossRef]
- Qin, J.; Tan, J.; Zhou, X.; Yang, Y.; Qin, Y.; Wang, X.; Shi, S.; Xiao, K.; Wang, X. Measurement Report: Particle-Size-Dependent Fluorescence Properties of Water-Soluble Organic Compounds (WSOCs) and Their Atmospheric Implications for the Aging of WSOCs. Atmos. Chem. Phys. 2022, 22, 465–479. [Google Scholar] [CrossRef]
- Rodríguez-Vidal, F.J.; García-valverde, M.; Ortega-azabache, B. Characterization of Urban and Industrial Wastewaters Using Excitation-Emission Matrix (EEM) Fluorescence: Searching for Specific Fingerprints. J. Environ. Manag. 2020, 263, 110396. [Google Scholar] [CrossRef] [PubMed]
- Su, L.; Chen, M.; Wang, S.; Ji, R.; Liu, C.; Lu, X.; Zhen, G.; Zhang, L. Fluorescence Characteristics of Dissolved Organic Matter during Anaerobic Digestion of Oil Crop Straw Inoculated with Rumen Liquid. RSC Adv. 2021, 11, 14347–14356. [Google Scholar] [CrossRef]
- Mendoza, W.G.; Riemer, D.D.; Zika, R.G. Application of Fluorescence and PARAFAC to Assess Vertical Distribution of Subsurface Hydrocarbons and Dispersant during the Deepwater Horizon Oil Spill. Environ. Sci. Process. Impacts 2013, 15, 1017. [Google Scholar] [CrossRef] [PubMed]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric Characterization of Dissolved Organic Matter for Indication of Precursor Organic Material and Aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- DePalma, S.G.S.; Arnold, W.R.; McGeer, J.C.; Dixon, D.G.; Smith, D.S. Variability in Dissolved Organic Matter Fluorescence and Reduced Sulfur Concentration in Coastal Marine and Estuarine Environments. Appl. Geochem. 2011, 26, 394–404. [Google Scholar] [CrossRef]
- Heo, J.; Yoon, Y.; Kim, D.; Lee, H.; Lee, D. A New Fluorescence Index with a Fluorescence Excitation-Emission Matrix for Dissolved Organic. Desalination Water Treat. 2015, 57, 20270–20282. [Google Scholar] [CrossRef]
- Kelso, J.E.; Baker, M.A. Organic Matter Is a Mixture of Terrestrial, Autochthonous, and Wastewater Effluent in an Urban River. Front. Environ. Sci. 2020, 7, 202. [Google Scholar] [CrossRef] [Green Version]
- Derrien, M.; Shin, K.-H.; Hur, J. Assessment on Applicability of Common Source Tracking Tools for Particulate Organic Matter in Controlled End Member Mixing Experiments. Sci. Total Environ. 2019, 666, 187–196. [Google Scholar] [CrossRef]
- Santos, L.; Pinto, A.; Filipe, O.; Cunha, Â.; Santos, E.B.H.; Almeida, A. Insights on the Optical Properties of Estuarine DOM—Hydrological and Biological Influences. PLoS ONE 2016, 11, e0154519. [Google Scholar] [CrossRef] [Green Version]
- Huguet, A.; Vacher, L.; Relexans, S.; Saubusse, S.; Froidefond, J.M.; Parlanti, E. Properties of Fluorescent Dissolved Organic Matter in the Gironde Estuary. Org. Geochem. 2009, 40, 706–719. [Google Scholar] [CrossRef]
- Zsolnay, A.; Baigar, E.; Jimenez, M.; Steinweg, B.; Saccomandi, F. Differentiating with Fluorescence Spectroscopy the Sources of Dissolved Organic Matter in Soils Subjected to Drying. Chemosphere 1999, 38, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Ohno, T. Fluorescence Inner-Filtering Correction for Determining the Humification Index of Dissolved Organic Matter. Environ. Sci. Technol. 2002, 36, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Liang, C.; Shen, G.; Lv, J.; Wu, H. Spectral Characteristics of Dissolved Organic Matter in Various Agricultural Soils throughout China. Chemosphere 2017, 176, 108–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Sun, J.; Wang, X.; Liu, X.; Wu, X.; Chen, Z.; Gu, T.; Wang, W.; Yu, L.; Guo, Y.; et al. Fluorescence Characteristics of Chromophoric Dissolved Organic Matter in the Eastern Indian Ocean: A Case Study of Three Subregions. Front. Mar. Sci. 2021, 8, 742595. [Google Scholar] [CrossRef]
- Lei, J.; Yang, L.; Zhu, Z. Testing the Effects of Coastal Culture on Particulate Organic Matter Using Absorption and Fluorescence Spectroscopy. J. Clean. Prod. 2021, 325, 129203. [Google Scholar] [CrossRef]
- Lyu, C.; Liu, R.; Li, X.; Song, Y.; Gao, H. Degradation of Dissolved Organic Matter in Effluent of Municipal Wastewater Plant by a Combined Tidal and Subsurface Flow Constructed Wetland. J. Environ. Sci. 2021, 106, 171–181. [Google Scholar] [CrossRef]
- Ishii, S.K.L.; Boyer, T.H. Behavior of Reoccurring PARAFAC Components in Fluorescent Dissolved Organic Matter in Natural and Engineered Systems: A Critical Review. Environ. Sci. Technol. 2012, 46, 2006–2017. [Google Scholar] [CrossRef]
- Murphy, K.R.; Hambly, A.; Singh, S.; Henderson, R.K.; Baker, A.; Stuetz, R.; Khan, S.J. Organic Matter Fluorescence in Municipal Water Recycling Schemes: Toward a Unified PARAFAC Model. Environ. Sci. Technol. 2011, 45, 2909–2916. [Google Scholar] [CrossRef]
- Li, Y.; Song, G.; Massicotte, P.; Yang, F.; Li, R.; Xie, H. Distribution, Seasonality, and Fluxes of Dissolved Organic Matter in the Pearl River (Zhujiang) Estuary, China. Biogeosciences 2019, 16, 2751–2770. [Google Scholar] [CrossRef] [Green Version]
- Marcinek, S.; Santinelli, C.; Cindrić, A.M.; Evangelista, V.; Gonnelli, M.; Layglon, N.; Mounier, S.; Lenoble, V.; Omanović, D. Dissolved Organic Matter Dynamics in the Pristine Krka River Estuary (Croatia). Mar. Chem. 2020, 225, 103848. [Google Scholar] [CrossRef]
- Cory, R.M.; McKnight, D.M. Fluorescence Spectroscopy Reveals Ubiquitous Presence of Oxidized and Reduced Quinones in Dissolved Organic Matter. Environ. Sci. Technol. 2005, 39, 8142–8149. [Google Scholar] [CrossRef] [PubMed]
- Asmala, E.; Haraguchi, L.; Markager, S.; Massicotte, P.; Riemann, B.; Staehr, P.A.; Carstensen, J. Eutrophication Leads to Accumulation of Recalcitrant Autochthonous Organic Matter in Coastal Environment. Global Biogeochem. Cycles 2018, 32, 1673–1687. [Google Scholar] [CrossRef]
- Lu, K.; Gao, H.; Yu, H.; Liu, D.; Zhu, N.; Wan, K. Insight into Variations of DOM Fractions in Different Latitudinal Rural Black-Odor Waterbodies of Eastern China Using Fluorescence Spectroscopy Coupled with Structure Equation Model. Sci. Total Environ. 2022, 816, 151531. [Google Scholar] [CrossRef] [PubMed]
- Eder, A.; Weigelhofer, G.; Pucher, M.; Tiefenbacher, A.; Strauss, P.; Brandl, M.; Blöschl, G. Pathways and Composition of Dissolved Organic Carbon in a Small Agricultural Catchment during Base Flow Conditions. Ecohydrol. Hydrobiol. 2022, 22, 96–112. [Google Scholar] [CrossRef]
- Retelletti Brogi, S.; Cossarini, G.; Bachi, G.; Balestra, C.; Camatti, E.; Casotti, R.; Checcucci, G.; Colella, S.; Evangelista, V.; Falcini, F.; et al. Evidence of Covid-19 Lockdown Effects on Riverine Dissolved Organic Matter Dynamics Provides a Proof-of-Concept for Needed Regulations of Anthropogenic Emissions. Sci. Total Environ. 2022, 812, 152412. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.-E.; Chen, W.; Cheng, Q.; Yang, L. Assessing the Priming Effect of Dissolved Organic Matter from Typical Sources Using Fluorescence EEMs-PARAFAC. Chemosphere 2021, 264, 128600. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omanović, D.; Marcinek, S.; Santinelli, C. TreatEEM—A Software Tool for the Interpretation of Fluorescence Excitation-Emission Matrices (EEMs) of Dissolved Organic Matter in Natural Waters. Water 2023, 15, 2214. https://doi.org/10.3390/w15122214
Omanović D, Marcinek S, Santinelli C. TreatEEM—A Software Tool for the Interpretation of Fluorescence Excitation-Emission Matrices (EEMs) of Dissolved Organic Matter in Natural Waters. Water. 2023; 15(12):2214. https://doi.org/10.3390/w15122214
Chicago/Turabian StyleOmanović, Dario, Saša Marcinek, and Chiara Santinelli. 2023. "TreatEEM—A Software Tool for the Interpretation of Fluorescence Excitation-Emission Matrices (EEMs) of Dissolved Organic Matter in Natural Waters" Water 15, no. 12: 2214. https://doi.org/10.3390/w15122214