Stable Isotope Signatures in Tehran’s Precipitation: Insights from Artificial Neural Networks, Stepwise Regression, Wavelet Coherence, and Ensemble Machine Learning Approaches
Abstract
:1. Introduction
2. The Climate and Topography of Tehran
3. Materials and Methods
3.1. Selection of Predictors for Stable Isotope Simulation
3.2. Simulation Models Applied to Predict Stable Isotopes Content
3.3. Repeated v-Fold Cross-Validation
3.4. Evaluation Procedure and Uncertainty Analysis of the Developed Model
3.5. Wavelet Coherency Analyses of Studied Parameters
4. Results and Discussion
4.1. Selection of the Optimum Predictors
4.2. The Impacts of the Regional and the Local Components on the Stable Isotope Signatures of Precipitation in Tehran
4.3. Simulation of the Stable Isotope Signatures in Precipitation by Various Machine Learning Models and Their Validation
4.4. Studying the Multiscale Coherence Analysis of Stable Isotope Signatures and Climate Parameters in Tehran Precipitation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Data Tools
Conflicts of Interest
References
- Bagheri, R.; Bagheri, F.; Karami, G.H.; Jafari, H. Chemo-isotopes (18O & 2H) signatures and HYSPLIT model application: Clues to the atmospheric moisture and air mass origins. Atmos. Environ. 2019, 215, 116892. [Google Scholar] [CrossRef]
- Rezaei, A.; Zare, M.; Raeisi, E.; Ghanbari, R.N. Interaction of a Fresh Water Lake and a Karstic Spring via a Syncline Fold. Groundwater 2013, 51, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, H.; Heydarizad, M. A conceptual model for water resources circulation patterns in Andarokh-Kardeh region (NE, Iran). Geochemistry 2020, 80, 125593. [Google Scholar] [CrossRef]
- Heydarizad, M.; Minaei, F.; Mayvan, J.E.; Mofidi, A.; Minaei, M. Spatial distribution of stable isotopes ((18)O and (2)H) in precipitation and groundwater in Iran. Isotopes Environ. Health Stud. 2021, 57, 400–419. [Google Scholar] [CrossRef] [PubMed]
- Chitsazan, M.; Karimi Vardanjani, H.; Karimi, H.; Charchi, A. A comparison between karst development in two main zones of Iran: Case study—Keyno anticline (Zagros Range) and Shotori anticline (Central Iran). Arab. J. Geosci. 2015, 8, 10833–10844. [Google Scholar] [CrossRef]
- Kazemi, G.A.; Ichiyanagi, K.; Shimada, J. Isotopic characteristics, chemical composition and salinization of atmospheric precipitation in Shahrood, northeastern Iran. Environ. Earth Sci. 2015, 73, 361–374. [Google Scholar] [CrossRef]
- Moghadam, H.M.; Bagheri, R.; Karami, G.H.; Jafari, H. Groundwater Origin in Qanats, Chemo-Isotopic, and Hydrogeological Evidence. Groundwater 2020, 58, 771–776. [Google Scholar] [CrossRef]
- Tindall, J.C.; Valdes, P.J.; Sime, L.C. Stable water isotopes in HadCM3: Isotopic signature of El Niño–Southern Oscillation and the tropical amount effect. J. Geophys. Res. Atmos. 2009, 114, 111. [Google Scholar] [CrossRef] [Green Version]
- Martin, N.J.; Conroy, J.L.; Noone, K.M.; Cobb, B.L.; Konecky, S.R. Seasonal and ENSO Influences on the Stable Isotopic Composition of Galápagos Precipitation. J. Geophys. Res. Atmos. 2018, 123, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; He, Y.; Masson-Delmotte, V.; Yao, T. ENSO Effects on Annual Variations of Summer Precipitation Stable Isotopes in Lhasa, Southern Tibetan Plateau. J. Clim. 2018, 31, 1173–1182. [Google Scholar] [CrossRef]
- Cai, Z.; Tian, L.; Bowen, G.J. ENSO variability reflected in precipitation oxygen isotopes across the Asian Summer Monsoon region. Earth Planet. Sci. Lett. 2017, 475, 25–33. [Google Scholar] [CrossRef]
- Ichiyanagi, K.; Yamanaka, M. Interannual variation of stable isotopes in precipitation at Bangkok in response to El Ñino Southern Oscillation. Hydrol. Process. 2005, 19, 3413–3423. [Google Scholar] [CrossRef]
- Heydarizad, M.; Pumijumnong, N. Predication of stable isotopes (18O and 2H) in precipitation of Bangkok metropolitan using artificial neural network. In Proceedings of the in Proceedings of the 5th International Electronic Conference on Atmospheric Sciences; MDPI: Basel, Switzerland, 2022. [Google Scholar]
- Tabari, H.; Aragi, H.; Hosseinzadeh Talaee, P. Impact of the North Atlantic Oscillation on streamflow in Western Iran. Hydrol. Process. 2014, 28, 4411–4418. [Google Scholar] [CrossRef]
- Sabziparvar, A.A.; Movahedi, S.; Asakereh, H.; Maryanaji, Z.; Masoodian, S.A. Geographical factors affecting variability of precipitation regime in Iran. Theor. Appl. Climatol. 2015, 120, 367–376. [Google Scholar] [CrossRef]
- Nazemosadat, M.J. ENSO’ s Impact on the Occurrence of Autumnal Drought in Iran. Drought Netw. News 1999, 11, 65. [Google Scholar]
- Pourasghar, F.; Tozuka, T.; Jahanbakhsh, S.; Sari Sarraf, B.; Ghaemi, H.; Yamagata, T. The interannual precipitation variability in the southern part of Iran as linked to large-scale climate modes. Clim. Dyn. 2012, 39, 2329–2341. [Google Scholar] [CrossRef]
- Heydarizad, M.; Raeisi, E.; Sori, R.; Gimeno, L.; Nieto, R.; Heydarizad, M.; Raeisi, E.; Sori, R.; Gimeno, L.; Nieto, R. The Role of Moisture Sources and Climatic Teleconnections in Northeastern and South-Central Iran’s Hydro-Climatology. Water 2018, 10, 1550. [Google Scholar] [CrossRef] [Green Version]
- Lachniet, M.S.; Patterson, W.P. Use of correlation and stepwise regression to evaluate physical controls on the stable isotope values of Panamanian rain and surface waters. J. Hydrol. 2006, 324, 115–140. [Google Scholar] [CrossRef]
- McNeese, B. Stepwise Regression. Available online: https://www.spcforexcel.com/knowledge/root-cause-analysis/stepwise-regression (accessed on 10 March 2023).
- Heydarizad, M.; Pumijumnong, N.; Minaei, M.; Mayvan, J.E.; Mansourian, D. A comprehensive study of the parameters affecting the stable isotopes in the precipitation of the Bangkok metropolitan area using model-based statistical approaches. Isotopes Environ. Health Stud. 2023, 59, 161–179. [Google Scholar] [CrossRef]
- Heydarizad, M. Meteoric Water Lines of Iran for Various Precipitation Sources; Shiraz University: Shiraz, Iran, 2018. [Google Scholar]
- Mohammadzadeh, H.; Mayvan, J.E.; Heydarizad, M. The effects of moisture sources and local parameters on the 18O and 2H contents of precipitation in the west of Iran and the east of Iraq. Tellus B Chem. Phys. Meteorol. 2020, 72, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Heydarizad, M.; Gimeno, L.; Sorí, R.; Minaei, F.; Mayvan, J.E. The Stable Isotope Characteristics of Precipitation in the Middle East Highlighting the Link between the Köppen Climate Classifications and the δ18O and δ2H Values of Precipitation. Water 2021, 13, 2397. [Google Scholar] [CrossRef]
- Banerjee, P.; Singh, V.S.; Chatttopadhyay, K.; Chandra, P.C.; Singh, B. Artificial neural network model as a potential alternative for groundwater salinity forecasting. J. Hydrol. 2011, 398, 212–220. [Google Scholar] [CrossRef]
- Barzegar, R.; Asghari Moghadam, A. Combining the advantages of neural networks using the concept of committee machine in the groundwater salinity prediction. Model. Earth Syst. Environ. 2016, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Mcculloch, W.; Pitts, W. A Logical Calculus of Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 127–147. [Google Scholar] [CrossRef]
- Hu, C.; Wu, Q.; Li, H.; Jian, S.; Li, N.; Lou, Z. Deep Learning with a Long Short-Term Memory Networks Approach for Rainfall-Runoff Simulation. Water 2018, 10, 1543. [Google Scholar] [CrossRef] [Green Version]
- Sahour, H.; Gholami, V.; Vazifedan, M. A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer. J. Hydrol. 2020, 591, 125321. [Google Scholar] [CrossRef]
- Chien, J.-T. Chapter 7—Deep Neural Network. In Source Separation and Machine Learning; Chien, J.-T., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 259–320. ISBN 978-0-12-817796-9. [Google Scholar]
- Heydarizad, M.; Pumijumnong, N.; Gimeno, L. A Comparative Analysis of Analytical Hierarchy Process and Machine Learning Techniques to Determine the Fractional Importance of Various Moisture Sources for Iran’s Precipitation. Environ. Sci. Proc. 2022, 19, 29. [Google Scholar] [CrossRef]
- Dehghani, M.; Saghafian, B.; Nasiri Saleh, F.; Farokhnia, A.; Noori, R. Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation. Int. J. Climatol. 2014, 34, 1169–1180. [Google Scholar] [CrossRef]
- Hamidi, O.; Poorolajal, J.; Sadeghifar, M.; Abbasi, H.; Maryanaji, Z.; Faridi, H.; Tapak, L. A comparative study of support vector machines and artificial neural networks for predicting precipitation in Iran. Theor Appl Clim. 2014, 119, 723–731. [Google Scholar] [CrossRef]
- Aggarwal, P. ML | XGBoost (eXtreme Gradient Boosting). Available online: https://www.geeksforgeeks.org/ml-xgboost-extreme-gradient-boosting/ (accessed on 11 October 2022).
- Nelson, D.B.; Basler, D.; Kahmen, A. Precipitation isotope time series predictions from machine learning applied in Europe. Proc. Natl. Acad. Sci. USA 2021, 118, e2024107118. [Google Scholar] [CrossRef]
- Erdélyi, D.; Hatvani, I.G.; Jeon, H.; Jones, M.; Tyler, J.; Kern, Z. Predicting spatial distribution of stable isotopes in precipitation by classical geostatistical- and machine learning methods. J. Hydrol. 2023, 617, 129129. [Google Scholar] [CrossRef]
- Erdélyi, D.; Kern, Z.; Nyitrai, T.; Hatvani, I. Predicting the spatial distribution of stable isotopes in precipitation using a machine learning approach: A comparative assessment of random forest variants. GEM—Int. J. Geomath. 2023, 14, 14. [Google Scholar] [CrossRef]
- Clark, I.D.; Fritz, P. Environmental Isotopes in Hydrogeology; CRC Press/Lewis Publishers: Boca Raton, FL, USA, 1997; ISBN 1566702496. [Google Scholar]
- IAEA; GNIP. Global Network of Isotopes in Precipitation (GNIP); IAEA: Vienna, Austria, 2008. [Google Scholar]
- IAEA; GNIP. Precipitation Sampling Guide; IAEA: Vienna, Austria, 2014. [Google Scholar]
- NOAA. Available online: https://www.esrl.noaa.gov (accessed on 15 March 2023).
- Blazek, P.J.; Lin, M.M. Explainable neural networks that simulate reasoning. Nat. Comput. Sci. 2021, 1, 607–618. [Google Scholar] [CrossRef]
- Donges, N. Random Forest: A Complete Guide for Machine Learning. Available online: https://builtin.com/data-science/random-forest-algorithm (accessed on 14 March 2023).
- Zach, B. A Simple Introduction to Random Forests. Available online: https://www.statology.org/random-forests/ (accessed on 15 June 2023).
- Gradient Boosting with Intel® Optmization for XGBoost. Available online: https://www.intel.com/content/www/us/en/developer/articles/technical/gradient-boosting-with-xgboost.html (accessed on 17 June 2023).
- Frick, H.; Mahoney, M.; Silge, J.; Wickham, H. V-Fold Cross-Validation. Available online: https://rsample.tidymodels.org/reference/vfold_cv.html (accessed on 14 June 2023).
- Molinaro, A.M.; Simon, R.; Pfeiffer, R.M. Prediction error estimation: A comparison of resampling methods. Bioinformatics 2005, 21, 3301–3307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sreedevi, V.; Adarsh, S.; Nourani, V. Multiscale coherence analysis of reference evapotranspiration of north-western Iran using wavelet transform. J. Water Clim. Chang. 2021, 13, 505–521. [Google Scholar] [CrossRef]
- Ng, E.K.W.; Chan, J.C.L. Geophysical Applications of Partial Wavelet Coherence and Multiple Wavelet Coherence. J. Atmos. Ocean. Technol. 2012, 29, 1845–1853. [Google Scholar] [CrossRef]
- Hu, W.; Si, B. Technical Note: Improved partial wavelet coherency for understanding scale-specific and localized bivariate relationships in geosciences. Hydrol. Earth Syst. Sci. 2021, 25, 321–331. [Google Scholar] [CrossRef]
- Nalley, D.; Adamowski, J.; Biswas, A.; Gharabaghi, B.; Hu, W. A multiscale and multivariate analysis of precipitation and streamflow variability in relation to ENSO, NAO and PDO. J. Hydrol. 2019, 574, 288–307. [Google Scholar] [CrossRef]
- R core team. R: A Language and Environment for Statistical Computing; R core team: Vienna, Austria, 2018. [Google Scholar]
- Jeelani, G.; Bhat, N.A.; Shivanna, K. Use of δ18O tracer to identify stream and spring origins of a mountainous catchment: A case study from Liddar watershed, Western Himalaya, India. J. Hydrol. 2010, 393, 257–264. [Google Scholar] [CrossRef]
- Yang, Q.; Mu, H.; Guo, J.; Bao, X.; Martín, J.D. Temperature and rainfall amount effects on hydrogen and oxygen stable isotope in precipitation. Quat. Int. 2019, 519, 25–31. [Google Scholar] [CrossRef]
- Huang, L.; Wen, X. Temporal variations of atmospheric water vapor δD and δ18O above an arid artificial oasis cropland in the Heihe River Basin. J. Geophys. Res. Atmos. 2014, 119, 11–456. [Google Scholar] [CrossRef]
- Lone, S.A.; Jeelani, G.; Deshpande, R.D.; Mukherjee, A. Stable isotope (δ18O and δD) dynamics of precipitation in a high altitude Himalayan cold desert and its surroundings in Indus river basin, Ladakh. Atmos. Res. 2019, 221, 46–57. [Google Scholar] [CrossRef]
- Kohn, M.J.; Welker, J.M. On the temperature correlation of δ18O in modern precipitation. Earth Planet. Sci. Lett. 2005, 231, 87–96. [Google Scholar] [CrossRef]
Parameter | Min | Max | Mean | Std. Deviation | Variance | |
---|---|---|---|---|---|---|
Statistic | Statistic | Statistic | Std. error | Statistic | Statistic | |
δ18O (VSMOW‰) | −15.34 | 9.30 | −4.59 | ±0.43 | 4.72 | 22.28 |
δ2H (VSMOW‰) | −114.20 | 55.80 | −26.77 | ±2.93 | 32.28 | 1.04 |
Precipitation (mm) | 1.00 | 117.00 | 23.71 | ±2.06 | 22.69 | 514.80 |
Temperature (°C) | −4.10 | 30.70 | 13.03 | ±0.74 | 8.23 | 67.82 |
Vapor pressure (Pa) | 1.10 | 28.70 | 6.47 | ±0.28 | 3.05 | 9.32 |
NAO | −2.47 | 2.16 | −0.23 | ±0.089 | 0.97 | 0.95 |
BEST | −2.46 | 1.63 | 0.06 | ±0.68 | 0.75 | 0.56 |
SOI | −2.01 | 2.85 | −0.07 | ±0.082 | 0.90 | 0.82 |
IOD | −0.05 | 0.94 | 0.12 | ±0.024 | 0.26 | 0.07 |
QBO | −24.18 | 14.16 | −2.28 | ±0.98 | 10.75 | 115.50 |
Isotope | Method | XGboost | DNN | SNN | Random Forest | Stepwise |
---|---|---|---|---|---|---|
δ18O (VSMOW‰) | AIC | 517.44 | 605.20 | 614.04 | 680.12 | 531.42 |
BIC | 531.42 | 618.99 | 628.02 | 694.09 | 545.10 | |
R2 | 0.84 | 0.69 | 0.65 | 0.34 | 0.80 | |
VNS | 0.83 | 0.68 | 0.64 | 0.33 | 0.80 | |
RMSE | 1.97 | 2.83 | 2.93 | 3.85 | 2.08 | |
δ2H (VSMOW‰) | AIC | 965.57 | 1062.39 | 1083.06 | 1148.70 | 972.14 |
BIC | 979.55 | 1076.37 | 1097.04 | 1162.75 | 986.12 | |
R2 | 0.86 | 0.63 | 0.62 | 0.32 | 0.85 | |
VNS | 0.85 | 0.62 | 0.62 | 0.31 | 0.84 | |
RMSE | 12.54 | 18.72 | 20.39 | 26.75 | 12.89 |
Combination | AWC | Combination | AWC | ||
---|---|---|---|---|---|
PWC | 18O | 2H | BWC | 18O | 2H |
Temperature | |||||
18O-T-P/2H-T-P | 0.45 | 0.45 | 18O-T | 0.63 | |
18O-T-V/2H-T-V | 0.43 | 0.42 | 2H-T | 0.55 | |
Precipitation | |||||
18O-P-T/2H-P-T | 0.35 | 0.3 | 18O-P | 0.62 | |
18O-P-V/2H-P-V | 0.44 | 0.37 | 2H-P | 0.50 | |
Vapor pressure | |||||
18O-V-P | 0.44 | 18O-V | 0.53 | ||
18O-V-T | 0.32 | ||||
SOI teleconnection | |||||
18O-NAO-P | 0.35 | 18O-NAO | 0.33 | ||
18O-NAO-T | 0.44 | ||||
18O-SOI-P | 0.33 | 18O-SOI | 0.30 | ||
18O-SOI-T | 0.31 | ||||
18O-IOD-P | 0.37 | 18O-IOD | 0.31 | ||
18O-IOD-T | 0.44 | ||||
18O-QBO-P | 0.38 | 18O-QBO | 0.32 | ||
18O-QBO-T | 0.46 | ||||
2H-NAO-P | 0.30 | 2H-NAO | 0.33 | ||
2H-NAO-T | 0.32 | ||||
2H-SOI-P | 0.42 | 2H-SOI | 0.42 | ||
2H-SOI-T | 0.31 | ||||
2H-IOD-P | 0.31 | 2H-IOD | 0.31 | ||
2H-IOD-T | 0.32 | ||||
2H-QBO-P | 0.32 | 2H-QBO | 0.33 | ||
2H-QBO-T | 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heydarizad, M.; Gimeno, L.; Minaei, M.; Gharehghouni, M.S. Stable Isotope Signatures in Tehran’s Precipitation: Insights from Artificial Neural Networks, Stepwise Regression, Wavelet Coherence, and Ensemble Machine Learning Approaches. Water 2023, 15, 2357. https://doi.org/10.3390/w15132357
Heydarizad M, Gimeno L, Minaei M, Gharehghouni MS. Stable Isotope Signatures in Tehran’s Precipitation: Insights from Artificial Neural Networks, Stepwise Regression, Wavelet Coherence, and Ensemble Machine Learning Approaches. Water. 2023; 15(13):2357. https://doi.org/10.3390/w15132357
Chicago/Turabian StyleHeydarizad, Mojtaba, Luis Gimeno, Masoud Minaei, and Marjan Shahsavan Gharehghouni. 2023. "Stable Isotope Signatures in Tehran’s Precipitation: Insights from Artificial Neural Networks, Stepwise Regression, Wavelet Coherence, and Ensemble Machine Learning Approaches" Water 15, no. 13: 2357. https://doi.org/10.3390/w15132357
APA StyleHeydarizad, M., Gimeno, L., Minaei, M., & Gharehghouni, M. S. (2023). Stable Isotope Signatures in Tehran’s Precipitation: Insights from Artificial Neural Networks, Stepwise Regression, Wavelet Coherence, and Ensemble Machine Learning Approaches. Water, 15(13), 2357. https://doi.org/10.3390/w15132357