Temporal and Spatial Characteristics of Soil Salinization and Its Impact on Cultivated Land Productivity in the BOHAI Rim Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.2.1. Remote Sensing Data
2.2.2. Soil Data
2.3. Methods
2.3.1. Descriptive Statistical Analysis Method
2.3.2. Analysis of the Land Type Transfer Matrix
2.3.3. Random Forest Inversion of Soil Salt Content
2.3.4. Inverse Distance Weight Space Interpolation and Mapping
2.3.5. Correlation and Regression Analysis
- (1)
- The Spearman correlation coefficient method
- (2)
- Regression model construction
3. Results
3.1. Descriptive Statistical Characteristics of Cultivated Land Salinization
3.2. Spectral Index Screening
3.3. Temporal and Spatial Pattern Change Characteristics in Cultivated Land Quantity
3.4. Temporal and Spatial Characteristics of Soil Salinization in Cultivated Land
3.4.1. Spatial Distribution of Soil Salinization in Cultivated Land
3.4.2. Spatial and Temporal Evolutionary Characteristics of Soil Salinization in the Cultivated Land
3.5. Temporal and Spatial Characteristics of the NPP of Cultivated Land
3.6. Analysis of the Influence of the Salinization Degree of Cultivated Land on NPP
3.6.1. Correlation between Soil Salinization and NPP in Cultivated Land
3.6.2. Fitted Relationship between Soil Salinization and NPP of Cultivated Land
4. Discussion
4.1. Quantity Change in Salinized Cultivated Land
4.2. Change in Soil Salinization Degree in Cultivated Land
4.3. Temporal and Spatial Changes in the NPP of Salinized Cultivated Land
4.4. Quantitative Relationship between Annual Average NPP of the Cultivated Land and Soil Salt Content
4.5. Research Limitations and Future Prospects
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sevda, A.; Hossein, G.; Chen, C.G.; Petra, M. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. J. Soil. Sediment. 2016, 16, 939–953. [Google Scholar]
- Li, J.G.; Pu, L.J.; Zhu, M.; Zhang, R.S. The present situation and hot issues in the salt-affected soil research. Acta Geogr. Sin. 2012, 67, 1233–1245. [Google Scholar]
- Kanzari, S.; Hachicha, M.; Bouhlila, R.; Battle-Sales, J. Characterization and modeling of water movement and salts transfer in a semi-arid region of Tunisia (Bou Hajla, Kairouan)-salinization risk of soils and aquifers. Comput. Electron. Agric. 2012, 86, 34–42. [Google Scholar] [CrossRef]
- Asiedu, E.; Sadekla, S.S.; Bokpin, G.A. Aid to Africa’s agriculture towards building physical capital: Empitical ecidence and implications for post-COVID-19 food insecurity. World Dev. Perspect. 2020, 20, 100269. [Google Scholar] [CrossRef]
- FAO; IFAD; UNICEF; WFP; WHO. The State of Food Security and Nutrition in the World 2020. Transforming Food Systems for Affordable Healthy Diets; FAO: Rome, Italy, 2020. [Google Scholar]
- Kansiime, M.K.; Tanbo, J.A.; Mugambi, I.; Bundi, M.; Kara, A.; Owuor, C. COVID-19 implications on household income and food security in kenya and Uganda: Findings from a rapid assessment. World Dev. 2021, 137, 105199. [Google Scholar] [CrossRef]
- Zhuang, Q.W.; Shao, Z.F.; Huang, X. Evolution of soil salinization under the background of landscape patterns in the irrigated northern slopes of Tianshan Mountains, Xinjiang, China. Catena 2021, 206, 105561. [Google Scholar] [CrossRef]
- Yang, J.S.; Yao, R.J.; Wang, X.P.; Xie, W.P.; Zhang, X.; Zhu, W.; Zhang, L.; Sun, R.J. Research on Salt-affected soils in China: History, Status Quo and Prospect. Acta Pedol. Sin. 2021, 59, 10–27. [Google Scholar]
- Liu, X.J.; Tian, K.X. Preliminary discussion on the distribution of agricultural resources and sustainable agriculture development pattern in saline region around Bohai Sea. Chin. J. Eco-Agric. 2000, 8, 67–70. [Google Scholar]
- Li, Z.S.; Ou, Y.Z.; Liu, X.J.; Hu, C.S. Scientific basis for constructing the “Bohai Sea Granary”—Demands, Potential and Approches. Bull. Chin. Acad. Sci. 2011, 26, 371–374. [Google Scholar]
- Gao, M.X.; Xue, M.; Wang, H.Y. Route choice and policy recommendations of saline-alkali land sustainable utilization in Bohai Rim Region. Chin. Popul. Resour. Enviro. 2016, 26, 228–231. [Google Scholar]
- Zhuang, Q.W.; Wu, S.X.; Huang, X.; Lu, K.; Yan, Y.Y.; Xiao, H.; Li, Y.Z.; Cai, P. Monitoring the impacts of cultivated land quality on crop production capacity in arid regions. Catena 2022, 214, 106263. [Google Scholar] [CrossRef]
- Dewitte, O.; Jones, A.; Elbelrhiti, H.; Horion, S.; Montanarella, L. Satellite remote sensing for soil mapping in Africa: An overview. Prog. Phys. Geog. 2012, 36, 514–538. [Google Scholar] [CrossRef]
- Dakak, H.; Huang, J.; Zouahri, A.; Triantafilis, J. Mapping soil salinity in 3-dimensions using an EM38 and EM4Soil inversion modelling at the reconnaissance scale in central Morocco. Soil Use Manag. 2017, 33, 553–567. [Google Scholar] [CrossRef]
- Singh, A. Managing the salinization and drainage problems of irrigated areas through remote sensing and GIS techniques. Ecol. Indic. 2018, 89, 584–589. [Google Scholar] [CrossRef]
- Masoud, A.A.; Koike, K.; Atwia, M.G.; EI-Horiny, M.M.; Gemail, K.S. Mapping soil salinity using spectral mixture analysis of landsat 8 OLI images to identify factors influencing salinization in an arid region. Int. J. Appl. Earth Obs. 2019, 83, 101944. [Google Scholar] [CrossRef]
- Wang, D.Y.; Chen, H.Y.; Wang, Z.R.; Ma, Y. Inversion of soil salinity according to different salinization grades using multi-source remote sensing. Geocarto Int. 2022, 37, 1274–1293. [Google Scholar] [CrossRef]
- Tran, T.V.; Tran, D.X.; Myint, S.W.; Huang, C.Y.; Pham, H.V.; Luu, T.H.; Vo, T.M.T. Examining spatio-temporal salinity dynamics in the Mekong River Delta using Landsat time series imagery and a spatial regression approach. Sci. Total Environ. 2019, 687, 1087–1097. [Google Scholar] [CrossRef] [PubMed]
- Potapov, P.; Turubanova, S.; Hansen, M.C.; Tyukavina, A.; ZALLES, V.; Khan, A.; Song, X.P.; Pickens, A.; Shen, Q.; Cortez, J. Global maps of cropland extent and change show accelerated cropland expansion in the twenty-first century. Nat. Food 2022, 3, 19–28. [Google Scholar] [CrossRef]
- Yan, W.B.; He, Y.L.; Cai, Y.; Qu, X.X.; Cui, X.L. Relationship between extreme climate indices and spatiotemporal changes of vegetation on Yunnan Plateau from 1982 to 2019. Glob. Ecol. Conserv. 2021, 31, e01813. [Google Scholar] [CrossRef]
- Song, L.Y.; Li, M.Y.; Xu, H.; Guo, Y.; Wang, Z.; Li, Y.C.; Wu, X.J.; Feng, L.C.; Chen, J.; Liu, X.; et al. Spatiotemporal variation and driving factors of vegetation net primary productivity in a typical karst area in China from 2000 to 2010. Ecol. Indic. 2021, 132, 108280. [Google Scholar] [CrossRef]
- Jaafar, H.H.; Ahmad, F.A. Crop yield prediction from remotely sensed vegetation indices and primary productivity in arid and semi-arid lands. Int. J. Remote Sens. 2015, 36, 4570–4589. [Google Scholar] [CrossRef]
- Steffen, W.; Noble, I.; Canadell, J. The Terrestrail Carbon Cycle: Implications for the Kyoto Protocol. Science 1998, 280, 1393–1394. [Google Scholar]
- Yang, S.L.; Bai, Y.; Alatalo, J.M.; Wang, H.M.; Tong, J.P.; Liu, G.; Zhang, F.; Chen, J.Y. Spatial-temporal pattern of cultivated land productivity based on net primary productivity and analysis of influencing factors in the Songhua River basin. Land Degrada. Dev. 2022, 11, 1917–1932. [Google Scholar] [CrossRef]
- Yang, H.F.; Hu, D.D.; Xu, H.; Zhong, X.N. Assessing the spatiotemporal variation of NPP and its response to driving factors in Anhui province, China. Environ. Sci. Pollut. Res. 2020, 27, 14915–14932. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.L.; Wang, D.; Liu, J.M.; Wen, X.H.; Gao, M.; Shao, H.B. Relationships between typical vegetations, soil salinity, and groundwater depth in the Yellow River Delta of China. Chin. J. Appl. Ecol. 2013, 24, 2423–2430. [Google Scholar]
- Yang, J.; Huang, X. The 30m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Vernet, M.; Ellingsen, I.; Marchese, C.; Belanger, S.; Cape, M.; Slagstad, D.; Matrai, P.A. Spatial variability in rates of net primary production (NPP) and onset of spring bloom in Greenland shelf waters. Prog. Oceanogr. 2021, 198, 102655. [Google Scholar] [CrossRef]
- Wang, Y.G.; Deng, C.Y.; Liu, Y.; Niu, Z.R.; Li, Y. Identifying change in spatial accumulation of soil salinity in an inland river watershed, China. Sci. Total Environ. 2018, 621, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Abadie, J.; Dupouey, J.; Avon, C.; Rochel, X.; Tatoni, T. Forest recovery since 1860 in a Mediterranean region: Drivers and implication for land use and land cover spatial distribution. Landsc. Ecol. 2018, 33, 289–305. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Mbarak, W.K.; Cinicioglu, E.N.; Cinicioglu, O. SPT based determination of undrained shear strength: Regression models and machine learning. Front. Struct. Civ. Eng. 2020, 14, 185–198. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zhao, G.X.; Chen, J.C.; Wang, R.Y.; Gao, M.X. Remote sensing inversion of saline soil salinity based on modified vegetation index in estuary area of Yellow River. Trans. Chin. Soc. Agric. Eng. 2015, 31, 107–114. [Google Scholar]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Akiska, S.; Sayili, I.S.; Demirela, G. Three-dimensional subsurface modeling of mineralization: A case study from the Handeresi (Canakkale, NW Turkey) Pb-Zn-Cu deposit. Turk. J. Earth Sci. 2013, 22, 574–587. [Google Scholar]
- Qiao, P.W.; Lei, M.; Yang, S.C.; Yang, J.; Guo, G.H.; Zhou, X.Y. Comparing ordinary kriging and inverse distance weighting for soil as pollution in Beijing. Environ. Sci. Pollut. Res. 2018, 25, 15597–15608. [Google Scholar] [CrossRef] [PubMed]
- Gabersek, M.; Gosar, M. Geochemistry of urban soil in the industrial town of Maribor, Slovenia. J. Geochem. Explor. 2018, 187, 141–154. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Zhu, S.Q.; Yu, R.P. Saline Soil of China; Science Press: Beijing, China, 1993. [Google Scholar]
- Zhu, W.J.; Han, M.; Kong, X.L.; Li, Y.L.; Kong, F.B.; Rong, J.H. Spatiotemporal characteristics of human activity intensity and its driving factors in the Yellow River Delta from 1990 to 2018. Res. Soil Water Conserv. 2021, 28, 287–292. [Google Scholar]
- Zhang, Z.X.; Zhao, X.L.; Wang, X. Remote Sensing Monitoring of Land Use in China; Planet Map Press: Beijing, China, 2012. [Google Scholar]
- Zhao, X.L.; Zhang, Z.X.; Wang, X.; Zuo, L.J.; Liu, B. Analysis of Chinese cultivated land’s spatial-temporal changes in recent 30 years. Trans. Chin. Soc. Agri. Eng. 2014, 30, 1–11. [Google Scholar]
- Zhao, Y.; Wang, L.; Zhao, H.L.; Chen, X.B. Research status and prospects of saline-alkali land amelioration in the coastal region of China. Chin. Agric. Sci. Bull. 2022, 38, 67–74. [Google Scholar]
- Dasgupta, S.; Hossain, M.M.; Huq, M.; Wheeler, D. Climate change and soil salinity: The case of coastal Bangladesh. AMBIO 2015, 44, 815–826. [Google Scholar] [CrossRef] [Green Version]
- Das, R.S.; Rahman, M.; Sufian, N.P.; Rahman, S.M.A.; Siddique, M.A.M. Assessment of soil salinity in the accreted and non-accreted land and its implication on the agricultural aspects of the Noakhali coastal region, Bangladesh. Heliyon 2020, 6, e04926. [Google Scholar] [CrossRef]
- Xie, X.F.; Pu, L.J.; Shen, G.Y.; Wu, T.; Zhu, M.; Huang, S.H. Dynamics and prediction of soil salinization parameters under the amelioration of heavy coastal saline-alkali land. Acta Pedol. Sin. 2022, 59, 1504–1516. [Google Scholar]
- Bao, S.C.; Wang, Q.; Bao, X.H.; Li, M.; Wang, Z.J. Biological treatment of saline-alikali soil by Sulfur-oxidizing bacteria. Bioengineered 2016, 7, 372–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foronda, D.A.; Colinet, G. Combined application of organic amendments and gypsum to reclaim saline-alkali soil. Agriculture 2022, 12, 1049. [Google Scholar] [CrossRef]
- Chi, Y.; Shi, H.H.; Sun, J.K.; Li, J.; Yang, F.; Fu, Z.Y. Spatio-temporal characteristics and main influencing factors of vegetation net primary productivity in the Yellow River Delta in recent 30 years. Acta Ecol. Sin. 2018, 38, 2683–2697. [Google Scholar]
- Guo, R.Y.; Tian, J.; Yang, Z.L.; Yang, Z.K.; Su, W.R.; Liu, W.J. Spatio-temporal variation characteristics of forest net primary productivity in the Yellow River Basin based on Google Earth Engine cloud platorm. Acta Ecol. Sin. 2022, 42, 5437–5445. [Google Scholar]
- Wang, J.; He, H.J.; Dong, J.F.; Guo, B. Spatio-temporal distribution of vegetation net primary productivity in the Yellow River Basin in 2000–2019 and its natural driving factors. J. Desert Res. 2021, 41, 213–222. [Google Scholar]
- Zhang, Z.X.; Song, Y.T.; Zhang, H.Z.; Li, X.J.; Niu, B.B. Spatiotemporal dynamics of soil salinity in the Yellow River Delta under the impacts of hydrology and climate. Chin. J. App. Ecol. 2021, 32, 1393–1405. [Google Scholar]
- Lv, Z.Z.; Liu, G.M.; Yang, J.S.; Liu, H.Q.; Li, J.B. Synthetic evaluation of soil quality of the coastal saline soil in Yellow River Delta area. Agri. Res. Arid Areas 2015, 33, 93–97. [Google Scholar]
- Rodigheri, G.; Fontana, D.C.; Dalmago, G.A.; Schaparini, L.P.; Schirmbeck, J.; Fernandes, J.M.C. Net primary productivity of soybean using different data sources and estimation methods. Rev. Cienc. Agron. 2022, 53, e20217868. [Google Scholar] [CrossRef]
- Ma, J.N.; Zhang, C.; Lv, Y.X.; Gao, L.L.; Yun, W.J.; Zhu, D.H. Cultvated land quality evaluation based on inversion of NPP based on long-term sequence remote sensing data. Trans. Chin. Soc. Agric. Mach. 2019, 50, 202–208. [Google Scholar]
- Guo, X.Y.; Gao, Y.; Zhang, Y.L.; Zhu, Z.H.; Zhang, H.Y. Quality evaluation of cultivated and analysis productivity in Sanjiang Plain based on remote sensing and GIS. J. Northeast Norm. Univ. Philos. Soc. Sci. 2013, 45, 202–208. [Google Scholar]
- Wang, J.Z.; Dong, J.W.; Xiao, T.; Liu, J.Y. Spatio-temporal evolution of saline-alkali cultivated land and its impact on productivity in Hetao Plain of inner Mongolia. Sci. Geogr. Sin. 2020, 39, 827–835. [Google Scholar]
Spectral Index | Expression | Reference |
---|---|---|
Normalized difference vegetation index | (NIR − Red)/(NIR + Red) | [33] |
Difference vegetation index | NIR − Red | |
Enhanced vegetation index | 2.5 × (NIR − Red)/(NIR + 6×Red − 7.5 × Blue + 1) | |
Ratio vegetation index | NIR/Red | |
Soil adjusted vegetation index | (NIR − Red) × 1.5/(NIR + Red + 0.5) | |
Salinity index (SI1) | (Green × Red)0.5 | [34] |
Salinity index (SI2) | (Green2 + Red2 + NIR2)0.5 | |
Salinity index (SI3) | (Green2 × Red2)0.5 | |
Salinity index (SI4) | SWIR1/NIR | |
Salinity index (SI5) | (Red − SWIR1)/(Red + SWIR1) | |
Salinity index (SI6) | (Red × Blue)/Green | |
Salinity index (SI7) | (Red × NIR)/Green |
Depth of Soil Layer (cm) | Sample Size | Min (g/kg) | Max (g/kg) | Average (g/kg) | Median (g/kg) | Variance | Standard Deviation | Kurtosis | Skewness | Coefficient of Variation |
---|---|---|---|---|---|---|---|---|---|---|
2.50 | 720 | 0.76 | 55.98 | 3.56 | 1.74 | 44.97 | 6.71 | 28.78 | 5.12 | 1.88 |
7.50 | 720 | 0.76 | 40.57 | 2.95 | 2.03 | 13.63 | 3.69 | 40.68 | 5.63 | 1.25 |
15.00 | 720 | 0.76 | 33.09 | 3.00 | 2.27 | 8.88 | 2.98 | 38.07 | 5.37 | 0.99 |
22.50 | 720 | 0.76 | 29.29 | 3.13 | 2.45 | 6.80 | 2.61 | 29.36 | 4.52 | 0.83 |
plow layer | 720 | 0.76 | 37.53 | 3.16 | 2.16 | 13.59 | 3.69 | 30.56 | 4.94 | 1.17 |
Year | Type | 2019 | 2001–2019 | ||||||
---|---|---|---|---|---|---|---|---|---|
Grassland/km2 | Cultivated Land/km2 | Construction Land/km2 | Woodland/km2 | Water Area/km2 | Mudflats/km2 | Change/km2 | Change (% of Total Area) | ||
2001 | Grassland | 23.87 | 85.13 | 30.87 | 0.08 | 26.41 | 42.59 | −87.82 | −30.83 |
Cultivated land | 29.66 | 18006.31 | 1914.59 | 0.97 | 537.20 | 252.77 | −2004.51 | −9.67 | |
Construction land | 0.29 | 323.88 | 3370.83 | 0.04 | 195.98 | 123.90 | 1840.71 | +45.98 | |
Woodland | 0.00 | 2.38 | 0.26 | 0.45 | 0.00 | 0.00 | −0.92 | −50.80 | |
Water area | 0.97 | 147.26 | 113.18 | 0.02 | 941.18 | 238.67 | 1197.92 | +82.43 | |
Mudflats | 9.67 | 168.80 | 432.83 | \ | 929.08 | 1772.68 | −888.42 | −26.67 |
Salinization Degree | Soil Salt Content (g/kg) | Area (km2) | Proportion (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2001 | 2005 | 2011 | 2015 | 2019 | 2001 | 2005 | 2011 | 2015 | 2019 | ||
Non salinization | <0.1 | 337.64 | 169.56 | 494.48 | 232.60 | 27.86 | 1.63 | 0.83 | 2.51 | 1.23 | 0.15 |
Mild salinization | 0.1–0.2 | 4567.23 | 4215.51 | 4237.21 | 5023.18 | 7149.28 | 22.04 | 20.63 | 21.48 | 26.47 | 38.19 |
Moderate salinization | 0.2–0.4 | 4614.43 | 3552.67 | 4469.16 | 6069.45 | 7289.96 | 22.27 | 17.38 | 22.65 | 31.98 | 38.94 |
Severe salinization | 0.4–0.6 | 4038.99 | 4019.65 | 5352.03 | 3676.43 | 1921.91 | 19.49 | 19.67 | 27.13 | 19.37 | 10.27 |
Saline soil | >0.6 | 7165.80 | 8480.89 | 5177.61 | 3975.10 | 2330.56 | 34.58 | 41.50 | 26.24 | 20.95 | 12.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Gao, M.; Xu, Z.; Wang, J.; Bi, M. Temporal and Spatial Characteristics of Soil Salinization and Its Impact on Cultivated Land Productivity in the BOHAI Rim Region. Water 2023, 15, 2368. https://doi.org/10.3390/w15132368
Song Y, Gao M, Xu Z, Wang J, Bi M. Temporal and Spatial Characteristics of Soil Salinization and Its Impact on Cultivated Land Productivity in the BOHAI Rim Region. Water. 2023; 15(13):2368. https://doi.org/10.3390/w15132368
Chicago/Turabian StyleSong, Ying, Mingxiu Gao, Zexin Xu, Jiafan Wang, and Meizhen Bi. 2023. "Temporal and Spatial Characteristics of Soil Salinization and Its Impact on Cultivated Land Productivity in the BOHAI Rim Region" Water 15, no. 13: 2368. https://doi.org/10.3390/w15132368
APA StyleSong, Y., Gao, M., Xu, Z., Wang, J., & Bi, M. (2023). Temporal and Spatial Characteristics of Soil Salinization and Its Impact on Cultivated Land Productivity in the BOHAI Rim Region. Water, 15(13), 2368. https://doi.org/10.3390/w15132368