Evolution Pattern of Blue–Green Space in New Urban Districts and Its Driving Factors: A Case Study of Zhengdong New District in China
Abstract
:1. Introduction
2. Theoretical Framework and Methods
2.1. Theoretical Framework
2.1.1. Theory of Spatial Pattern: “Patch–Corridor–Matrix” Model
2.1.2. Theory of Driving Mechanism: “Sustainability Prism” Model
2.2. Methods
2.2.1. Land Use Transition Matrix
2.2.2. Landscape Index Analysis
2.2.3. Pearson Correlation Analysis
2.2.4. Geographical Detector Analysis
3. Study Area and Materials
3.1. Study Area
3.2. Data Sources and Pre-Processing
4. Results
4.1. Characteristics of BGS Changes
4.1.1. Quantitative Changes of BGS from 2003 to 2021
4.1.2. Landscape Indices Changes of BGS from 2003 to 2021
4.2. Driving Factors of BGS Changes
5. Discussion
5.1. The Overall Evolution of the “Patch–Corridor–Matrix” Model of BGS
5.2. The Combined Effect of the Four Factors of the “Sustainability Prism” Model
6. Conclusions and Implications
6.1. Conclusions
6.2. Implications
6.2.1. Determining the Optimal Spatial Pattern of the BGS
6.2.2. Assessing the Land Suitability of Undeveloped BGS
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Solin, L.; Feranec, J.; Novacek, J. Land cover changes in small catchments in Slovakia during 1990-2006 and their effects on frequency of flood events. Nat. Hazards 2011, 56, 195–214. [Google Scholar] [CrossRef]
- Hussein, K.; Alkaabi, K.; Ghebreyesus, D.; Liaqat, M.U.; Sharif, H.O. Land use/land cover change along the Eastern Coast of the UAE and its impact on flooding risk. Geomat. Nat. Hazards Risk 2020, 11, 112–130. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.J.; Liu, J.H.; Shao, W.W.; Yu, Y.D.; Zhang, K.; Wang, Y.; Mei, C. Effective Evaluation of Infiltration and Storage Measures in Sponge City Construction: A Case Study of Fenghuang City. Water 2018, 10, 937. [Google Scholar] [CrossRef] [Green Version]
- Sander, H.A.; Zhao, C. Urban green and blue: Who values what and where? Land Use Policy 2015, 42, 194–209. [Google Scholar] [CrossRef]
- European Environment Agency. Green Infrastructure and Territorial Cohesion; Technical Report No. 18/2011; European Environment Agency: Copenhagen, Denmark, 2011. [Google Scholar]
- Jiao, X.X.; Zhao, Z.M.; Li, X.; Wang, Z.F.; Zhang, Y.J. Advances in the blue-green space evaluation index system. Ecohydrology 2023, 16, e2527. [Google Scholar] [CrossRef]
- Yang, G.Y.; Yu, Z.W.; Jorgensen, G.; Vejre, H. How can urban blue-green space be planned for climate adaption in high-latitude cities? A seasonal perspective. Sust. Cities Soc. 2020, 53, 11. [Google Scholar] [CrossRef]
- Beaugeard, E.; Brischoux, F.; Angelier, F. Green infrastructures and ecological corridors shape avian biodiversity in a small French city. Urban Ecosyst. 2021, 24, 549–560. [Google Scholar] [CrossRef]
- Ebi, K.L.; Bowen, K. Green and blue spaces: Crucial for healthy, sustainable urban futures. Lancet 2023, 401, 529–530. [Google Scholar] [CrossRef]
- Nghiem, L.T.P.; Zhang, Y.C.; Oh, R.R.Y.; Chang, C.C.; Tan, C.L.Y.; Shannahan, D.F.; Lin, B.B.; Gaston, K.J.; Fuller, R.A.; Carrasco, L.R. Equity in green and blue spaces availability in Singapore. Landsc. Urban Plan. 2021, 210, 104083. [Google Scholar] [CrossRef]
- White, M.P.; Alcock, I.; Wheeler, B.W.; Depledge, M.H. Would You Be Happier Living in a Greener Urban Area? A Fixed-Effects Analysis of Panel Data. Psychol. Sci. 2013, 24, 920–928. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, P.; Cui, L.Y.; Yang, Y.; Ma, Z.J.; Wang, Y.; Miao, D.H. Study on the spatial variation of China’s territorial ecological space based on the standard deviation ellipse. Front. Environ. Sci. 2022, 10, 16. [Google Scholar] [CrossRef]
- Kuller, M.; Reid, D.J.; Prodanovic, V. Are we planning blue-green infrastructure opportunistically or strategically? Insights from Sydney, Australia. Blue-Green Syst. 2021, 3, 267–280. [Google Scholar] [CrossRef]
- Helming, K.; Perez-Soba, M. Landscape Scenarios and Multifunctionality: Making Land Use Impact Assessment Operational. Ecol. Soc. 2011, 16, 50. [Google Scholar] [CrossRef] [Green Version]
- Pauleit, S.; Ennos, R.; Golding, Y. Modeling the environmental impacts of urban land use and land cover change—A study in Merseyside, UK. Landsc. Urban Plan. 2005, 71, 295–310. [Google Scholar] [CrossRef]
- Nor, A.N.M.; Corstanje, R.; Harris, J.A.; Brewer, T. Impact of rapid urban expansion on green space structure. Ecol. Indic. 2017, 81, 274–284. [Google Scholar] [CrossRef]
- Liu, X.P.; Li, X.; Chen, Y.M.; Tan, Z.Z.; Li, S.Y.; Ai, B. A new landscape index for quantifying urban expansion using multi-temporal remotely sensed data. Landsc. Ecol. 2010, 25, 671–682. [Google Scholar] [CrossRef]
- Masoudi, M.; Tan, P.Y. Multi-year comparison of the effects of spatial pattern of urban green spaces on urban land surface temperature. Landsc. Urban Plan. 2019, 184, 44–58. [Google Scholar] [CrossRef]
- Turner, M.G. Landscape ecology in North America: Past, present, and future. Ecology 2005, 86, 1967–1974. [Google Scholar] [CrossRef] [Green Version]
- Raines, G.L. Description and comparison of geologic maps with FRAGSTATS—A spatial statistics program. Comput. Geosci. 2002, 28, 169–177. [Google Scholar] [CrossRef]
- Wu, J.; Yang, S.; Zhang, X. Interaction Analysis of Urban Blue-Green Space and Built-Up Area Based on Coupling Model-A Case Study of Wuhan Central City. Water 2020, 12, 2185. [Google Scholar] [CrossRef]
- Haaland, C.; van den Bosch, C.K. Challenges and strategies for urban green-space planning in cities undergoing densification: A review. Urban For. Urban Green. 2015, 14, 760–771. [Google Scholar] [CrossRef]
- Wang, D.; Fu, J.Y.; Xie, X.L.; Ding, F.Y.; Jiang, D. Spatiotemporal evolution of urban-agricultural-ecological space in China and its driving mechanism. J. Clean Prod. 2022, 371, 9. [Google Scholar] [CrossRef]
- Hu, Y.F.; Zhang, Y.Z. Spatial-temporal dynamics and driving factor analysis of urban ecological land in Zhuhai city, China. Sci. Rep. 2020, 10, 16174. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Z.; Li, C. Exploring urban green spaces in China: Spatial patterns, driving factors and policy implications. Land Use Policy 2019, 89, 104249. [Google Scholar] [CrossRef]
- Meyfroidt, P.; Lambin, E.F.; Erb, K.H.; Hertel, T.W. Globalization of land use: Distant drivers of land change and geographic displacement of land use. Curr. Opin. Environ. Sustain. 2013, 5, 438–444. [Google Scholar] [CrossRef]
- Ju, X.; Xinhui, J.; Weifeng, L.; Liang, H.; Junran, L.; Lijian, H.; Jingqiao, M. Ecological redline policy may significantly alter urban expansion and affect surface runoff in the Beijing-Tianjin-Hebei megaregion of China. Environ. Res. Lett. 2020, 15, 1040b1. [Google Scholar] [CrossRef]
- Thomas, H.; Gaetan, P.; Roberta, R.; Hugues, B.; Jacques, B.; Xavier, P.; Jean-Baptiste, N.; Manuel, A.M.J.; Stefano, B.; Cendrine, M.; et al. European blue and green infrastructure network strategy vs. the common agricultural policy. Insights from an integrated case study (Couesnon, Brittany). Land Use Policy 2022, 120, 13. [Google Scholar] [CrossRef]
- Forman, R.T.T. Some general principles of landscape and regional ecology. Landsc. Ecol. 2010, 10, 133–142. [Google Scholar] [CrossRef]
- Godschalk, D.R. Land use planning challenges—Coping with conflicts in visions of sustainable development and livable communities. J. Am. Plan. Assoc. 2004, 70, 5–13. [Google Scholar] [CrossRef]
- Forman, R.T.T.; Godron, M. Landscape Ecology; John Wiley: New York, NY, USA, 1986; p. 195. [Google Scholar]
- Zaccarelli, N.; Riitters, K.H.; Petrosillo, I.; Zurlini, G. Indicating disturbance content and context for preserved areas. Ecol. Indic. 2008, 8, 841–853. [Google Scholar] [CrossRef]
- Jiao, S.; Zhang, X.L.; Xu, Y. A review of Chinese land suitability assessment from the rainfall-waterlogging perspective: Evidence from the Su Yu Yuan area. J. Clean Prod. 2017, 144, 100–106. [Google Scholar] [CrossRef]
- Chapin, F.S., Jr.; Kaiser, E.J.; Godschalk, D.R. Urban Land Use Planning; University of Illinois Press: Champaign, IL, USA, 2009; p. 195. [Google Scholar]
- Guan, D.J.; Li, H.F.; Inohae, T.; Su, W.C.; Nagaie, T.; Hokao, K. Modeling urban land use change by the integration of cellular automaton and Markov model. Ecol. Model. 2011, 222, 3761–3772. [Google Scholar] [CrossRef]
- Shen, G.; Yang, X.C.; Jin, Y.X.; Luo, S.; Xu, B.; Zhou, Q.B. Land Use Changes in the Zoige Plateau Based on the Object-Oriented Method and Their Effects on Landscape Patterns. Remote Sens. 2020, 12, 14. [Google Scholar] [CrossRef] [Green Version]
- Uuemaa, E.; Mander, U.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A review. Ecol. Indic. 2013, 28, 100–106. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Q.; Singh, V.P.; Xiao, M.Z. General correlation analysis: A new algorithm and application. Stoch. Environ. Res. Risk Assess. 2015, 29, 665–677. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Chin, C.H.; Lo, M.C. Rural tourism quality of services: Fundamental contributive factors from tourists’ perceptions. Asia Pac. J. Tour. Res. 2017, 22, 465–479. [Google Scholar] [CrossRef] [Green Version]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Meerow, S.; Newell, J.P.; Lindquist, M. Enhancing landscape connectivity through multifunctional green infrastructure corridor modeling and design. Urban For. Urban Green. 2019, 38, 305–317. [Google Scholar] [CrossRef]
- Zhengzhou Water Authority. Zhengzhou Water Chronicle; The Yellow River Water Conservancy Press: Zhengzhou, China, 2015; pp. 138–222. [Google Scholar]
- Coyne, T.; Zurita, M.D.M.; Reid, D.; Prodanovic, V. Culturally inclusive water urban design: A critical history of hydrosocial infrastructures in Southern Sydney, Australia. Blue-Green Syst. 2020, 2, 364–382. [Google Scholar] [CrossRef]
- Zhou, K.J.; Jiao, S.; Han, Z.W.; Liu, Y.C. Assessment of flood regulation service based on source-sink landscape analysis in urbanized watershed. River Research and Applications; Wiley: Hoboken, NJ, USA, 2022. [Google Scholar] [CrossRef]
Year | Land Use Type | Grassland | Cultivated Land | Woodland | Urban Green Space | Wetland | Water | Built-Up Land | Total |
---|---|---|---|---|---|---|---|---|---|
2003–2009 | Cultivated land | 4.10 | 131.52 | 14.97 | 7.62 | 3.55 | 13.28 | 70.72 | 245.76 |
Woodland | 0.00 | 0.32 | 0.00 | 0.13 | 0.00 | 0.00 | 0.46 | 0.91 | |
Wetland | 0.00 | 1.81 | 0.00 | 0.01 | 2.19 | 0.45 | 0.05 | 4.51 | |
Water | 0.54 | 13.04 | 1.74 | 6.17 | 4.24 | 51.65 | 14.41 | 91.79 | |
Built-up land | 0.30 | 6.40 | 1.72 | 3.33 | 0.00 | 2.19 | 38.37 | 52.31 | |
Total | 4.94 | 153.09 | 18.43 | 17.26 | 9.98 | 67.57 | 124.01 | 395.28 | |
2009–2015 | Grassland | 0.92 | 1.63 | 0.11 | 0.10 | 0.00 | 0.07 | 2.11 | 4.94 |
Cultivated land | 2.83 | 80.04 | 17.17 | 7.96 | 0.46 | 9.90 | 34.59 | 152.95 | |
Woodland | 0.34 | 4.85 | 7.20 | 2.07 | 0.00 | 0.54 | 3.42 | 18.42 | |
Urban green space | 0.00 | 1.82 | 0.90 | 12.12 | 0.06 | 1.38 | 0.97 | 17.25 | |
Wetland | 0.00 | 0.70 | 0.04 | 0.03 | 9.23 | 0.00 | 0.00 | 10.00 | |
Water | 0.35 | 6.11 | 3.15 | 2.71 | 0.01 | 45.36 | 9.98 | 67.67 | |
Built-up land | 1.16 | 7.06 | 4.11 | 4.88 | 0.00 | 4.02 | 102.82 | 124.05 | |
Total | 5.60 | 102.21 | 32.68 | 29.87 | 9.76 | 61.27 | 153.89 | 395.28 | |
2015–2021 | Grassland | 0.17 | 1.10 | 0.58 | 0.42 | 0.00 | 0.05 | 3.30 | 5.62 |
Cultivated land | 2.77 | 55.63 | 10.53 | 8.95 | 0.75 | 7.19 | 15.60 | 101.42 | |
Woodland | 1.09 | 5.01 | 15.80 | 3.88 | 0.03 | 0.31 | 6.56 | 32.68 | |
Urban green space | 0.20 | 0.56 | 0.58 | 21.27 | 0.20 | 5.19 | 1.89 | 29.89 | |
Wetland | 0.20 | 5.05 | 0.39 | 0.14 | 1.02 | 2.96 | 0.09 | 9.85 | |
Water | 1.90 | 4.89 | 2.28 | 0.76 | 2.02 | 43.27 | 6.82 | 61.94 | |
Built-up land | 3.57 | 5.60 | 3.30 | 3.68 | 0.04 | 1.40 | 136.29 | 153.88 | |
Total | 9.90 | 77.84 | 33.46 | 39.10 | 4.06 | 60.37 | 170.55 | 395.28 |
Factor | Pearson Correlation Coefficient | Significance (Two-Tailed) | |
---|---|---|---|
Population | GDP | 0.993 ** | 0.001 |
BGS area | −0.988 ** | 0.002 | |
GDP | population | 0.993 ** | 0.001 |
BGS area | −0.978 ** | 0.004 | |
BGS area | population | −0.988 ** | 0.002 |
GDP | −0.978 ** | 0.004 |
Drive Factor | Water Area | Slope | Distance from Major Roads | Elevation | Distance from River Systems | Distance from the Main Urban Area |
---|---|---|---|---|---|---|
q Statistical | 0.23 | 0.09 | 0.11 | 0.16 | 0.10 | 0.24 |
Sig. q | 0.07 | 0.95 | 0.43 | 0.02 | 0.53 | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, Y.; Jiao, S.; Tang, S.; Tang, X.; Yin, J. Evolution Pattern of Blue–Green Space in New Urban Districts and Its Driving Factors: A Case Study of Zhengdong New District in China. Water 2023, 15, 2417. https://doi.org/10.3390/w15132417
Niu Y, Jiao S, Tang S, Tang X, Yin J. Evolution Pattern of Blue–Green Space in New Urban Districts and Its Driving Factors: A Case Study of Zhengdong New District in China. Water. 2023; 15(13):2417. https://doi.org/10.3390/w15132417
Chicago/Turabian StyleNiu, Yanhe, Sheng Jiao, Shaozhen Tang, Xi Tang, and Jingwen Yin. 2023. "Evolution Pattern of Blue–Green Space in New Urban Districts and Its Driving Factors: A Case Study of Zhengdong New District in China" Water 15, no. 13: 2417. https://doi.org/10.3390/w15132417
APA StyleNiu, Y., Jiao, S., Tang, S., Tang, X., & Yin, J. (2023). Evolution Pattern of Blue–Green Space in New Urban Districts and Its Driving Factors: A Case Study of Zhengdong New District in China. Water, 15(13), 2417. https://doi.org/10.3390/w15132417