Synergistic Piezo-Catalytic Inactivation of Bacteria by Dual-Frequency Ultrasound (120 + 1700 kHz) Using Persulfate and ZnO Nano- and Microparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Bacteria
2.2. Single- and Dual-Frequency Ultrasonication
- 120/1700 kHz/ZnO (50 nm);
- 120/1700 kHz/ZnO (1 μm);
- 120/1700 kHz/ZnO (50 nm)/S2O82−;
- 120/1700 kHz/ZnO (1 μm)/S2O82−.
3. Results and Discussion
3.1. Single-Frequency Piezo-Catalytic Inactivation
3.2. Dual-Frequency Piezo-Catalytic Inactivation and Synergistic Effect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sathishkumar, P.; Mangalaraja, R.V.; Anandan, S. Review on the recent improvements in sonochemical and combined sonochemical oxidation processes—A powerful tool for destruction of environmental contaminants. Ren. Sustain. Energy Rev. 2016, 55, 426–454. [Google Scholar] [CrossRef]
- Ince, N.H. Ultrasound-assisted advanced oxidation processes for water decontamination. Ultrason. Sonochem. 2018, 40, 97–103. [Google Scholar] [CrossRef]
- Matafonova, G.; Batoev, V. Review on low- and high-frequency sonolytic, sonophotolytic and sonophotochemical processes for inactivating pathogenic microorganisms in aqueous media. Water Res. 2019, 166, 115085. [Google Scholar] [CrossRef]
- Yap, H.C.; Pang, Y.L.; Lim, S.; Abdullah, A.Z.; Ong, H.C.; Wu, C.-H. A comprehensive review on state-of-the-art photo-, sono-, and sonophotocatalytic treatments to degrade emerging contaminants. Int. J. Environ. Sci. Technol. 2019, 16, 601–628. [Google Scholar] [CrossRef]
- Dehghani, M.H.; Karri, R.R.; Koduru, J.R.; Manickam, S.; Tyagi, I.; Mubarak, N.M. Recent trends in the applications of sonochemical reactors as an advanced oxidation process for the remediation of microbial hazards associated with water and wastewater: A critical review. Ultrason. Sonochem. 2023, 94, 106302. [Google Scholar] [CrossRef] [PubMed]
- Matafonova, G.; Batoev, V. Dual-frequency ultrasound: Strengths and shortcomings to water treatment and disinfection. Water Res. 2020, 182, 116016. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Mason, T.J. Evaluation of power ultrasonic effects on algae cells at a small pilot scale. Water 2017, 9, 470. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.; Tang, H. Comparison of different bacteria inactivation by a novel continuous-flow ultrasound/chlorination water treatment system in a pilot scale. Water 2019, 11, 258. [Google Scholar] [CrossRef] [Green Version]
- Zou, H.; Wang, L. The disinfection effect of a novel continuous-flow water sterilizing system coupling dual-frequency ultrasound with sodium hypochlorite in pilot scale. Ultrason. Sonochem. 2017, 36, 246–252. [Google Scholar] [CrossRef]
- Alamolhoda, M.; Mokhtari-Dizaji, M.; Barati, A.H.; Hasanzadeh, H. Comparing the in vivo sonodynamic effects of dual- and single-frequency ultrasound in breast adenocarcinoma. J. Med. Ultrason. 2012, 39, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Serpe, L.; Giuntini, F. Sonodynamic antimicrobial chemotherapy: First steps towards a sound approach for microbe inactivation. J. Photochem. Photobiol. B 2015, 150, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Rengeng, L.; Qianyu, Z.; Yuehong, L.; Zhongzhong, P.; Libo, L. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagnosis Photodyn. Ther. 2017, 19, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaei, Z.S.; Rajabi, O.; Nassirli, H.; Noghreiyan, A.V.; Sazgarnia, A. A comparative study on generating hydroxyl radicals by single and two-frequency ultrasound with gold nanoparticles and protoporphyrin IX. Australas. Phys. Eng. Sci. Med. 2019, 42, 1039–1047. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.; Muhammad, A.I.; Ismail, B.B.; Liu, D. Sonodynamic antimicrobial chemotherapy: An emerging alternative strategy for microbial inactivation. Ultrason. Sonochem. 2021, 75, 105591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Qi, H.; Yan, Z.; Gu, Y.; Sun, W.; Zewde, A.A. Sonophotocatalytic inactivation of E. coli using ZnO nanofluids and its mechanism. Ultrason. Sonochem. 2017, 34, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Bayrami, A.; Alioghli, S.; Rahim Pouran, S.; Habibi-Yangjeh, A.; Khataee, A.; Ramesh, S. A facile ultrasonic-aided biosynthesis of ZnO nanoparticles using Vaccinium arctostaphylos L. leaf extract and its antidiabetic, antibacterial, and oxidative activity evaluation. Ultrason. Sonochem. 2019, 55, 57–66. [Google Scholar] [CrossRef]
- Wang, G.; Wu, W.; Zhu, J.-J.; Peng, D. The promise of low-intensity ultrasound: A review on sonosensitizers and sonocatalysts by ultrasonic activation for bacterial killing. Ultrason. Sonochem. 2021, 79, 105781. [Google Scholar] [CrossRef]
- Su, K.; Tan, L.; Liu, X.; Cui, Z.; Zheng, Y.; Li, B.; Han, Y.; Li, Z.; Zhu, S.; Liang, Y.; et al. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping. ACS Nano 2020, 14, 2077–2089. [Google Scholar] [CrossRef]
- Wang, Y.; Sun, Y.; Liu, S.; Zhi, L.; Wang, X. Preparation of sonoactivated TiO2-DVDMS nanocomposite for enhanced antibacterial activity. Ultrason. Sonochem. 2020, 63, 104968. [Google Scholar] [CrossRef]
- Pourhajibagher, M.; Bahador, A. Synergistic biocidal effects of metal oxide nanoparticles-assisted ultrasound irradiation: Antimicrobial sonodynamic therapy against Streptococcus mutans biofilms. Photodiagnosis Photodyn. Ther. 2021, 35, 102432. [Google Scholar] [CrossRef]
- Wu, M.; Zhang, Z.; Liu, Z.; Zhang, J.; Zhang, Y.; Ding, Y.; Huang, T.; Xiang, D.; Wang, Z.; Dai, Y.; et al. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 2021, 37, 101104. [Google Scholar] [CrossRef]
- Xu, Q.; Xiu, W.; Li, Q.; Zhang, Y.; Li, X.; Ding, M.; Yang, D.; Mou, Y.; Dong, H. Emerging nanosonosensitizers augment sonodynamic-mediated antimicrobial therapies. Mater. Today Bio 2023, 19, 100559. [Google Scholar] [CrossRef] [PubMed]
- Ninomiya, K.; Noda, K.; Ogino, C.; Kuroda, S.; Shimizu, N. Enhanced OH radical generation by dual-frequency ultrasound with TiO2 nanoparticles: Its application to targeted sonodynamic therapy. Ultrason. Sonochem. 2014, 21, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Song, J. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246. [Google Scholar] [CrossRef]
- Jiang, Z.; Tan, X.; Huang, Y. Piezoelectric effect enhanced photocatalysis in environmental remediation: State-of-the-art techniques and future scenarios. Sci. Tot. Environ. 2022, 806, 150924. [Google Scholar] [CrossRef]
- Ma, W.; Lv, M.; Cao, F.; Fang, Z.; Feng, Y.; Zhang, G.; Yang, Y.; Liu, H. Synthesis and characterization of ZnO-GO composites with their piezoelectric catalytic and antibacterial properties. J. Environ. Chem. Eng. 2022, 10, 107840. [Google Scholar] [CrossRef]
- Kumar, S.; Sharma, M.; Frömling, T.; Vaish, R. Antibacterial ferroelectric materials: Advancements and future directions. J. Ind. Eng. Chem. 2021, 97, 95–110. [Google Scholar] [CrossRef]
- Zhao, Y.; Low, Z.-X.; Pan, Y.; Zhong, Z.; Gao, G. Universal water disinfection by piezoelectret aluminium oxide-based electroporation and generation of reactive oxygen species. Nano Energy 2021, 92, 106749. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Zhao, G.; Liu, Z.; Cai, Y.; Wang, S.; Shen, C.; Hu, B.; Wang, X. Piezoelectric materials and techniques for environmental pollution remediation. Sci. Total Environ. 2023, 869, 161767. [Google Scholar] [CrossRef]
- Daraei, H.; Maleki, A.; Mahvi, A.H.; Zandsalimi, Y.; Alaei, L.; Gharibi, F. Synthesis of ZnO nano-sono-catalyst for degradation of reactive dye focusing on energy consumption: Operational parameters influence, modeling, and optimization. Desalin. Water Treat. 2014, 52, 6745–6755. [Google Scholar] [CrossRef]
- Tamboia, G.; Campanini, M.; Vighetto, V.; Racca, L.; Spigarelli, L.; Canavese, G.; Cauda, V. A comparative analysis of low intensity ultrasound effects on living cells: From simulation to experiments. Biomed. Microdev. 2022, 24, 35. [Google Scholar] [CrossRef] [PubMed]
- Porwal, C.; Verma, S.; Chauhan, S.V.; Vaish, R. Bismuth zinc borate- Polyacrylonitrile nanofibers for photo-piezocatalysis. J. Ind. Eng. Chem. 2023, 124, 358–367. [Google Scholar] [CrossRef]
- Porwal, C.; Sharma, M.; Vaish, R.; Chauhan, V.S.; ben Ahmed, S.; Hwang, W.; Park, H.K.B.; Sung, T.H.; Kumar, A. Piezocatalytic dye degradation using Bi2O3-ZnO-B2O3 glass-nanocomposites. J. Mater. Res. Technol. 2022, 21, 2028–2037. [Google Scholar] [CrossRef]
- Garkusheva, N.; Tsenter, I.; Kobunova, E.; Matafonova, G.; Batoev, V. Dual-frequency ultrasonic inactivation of Escherichia coli and Enterococcus faecalis using persulfate: A synergistic effect. Water 2022, 14, 2604. [Google Scholar] [CrossRef]
- Vighetto, V.; Ancona, A.; Racca, L.; Limongi, T.; Troia, A.; Canavese, G.; Cauda, V. The synergistic effect of nanocrystals combined with ultrasound in the generation of reactive oxygen species for biomedical applications. Front. Bioeng. Biotechnol. 2019, 7, 374. [Google Scholar] [CrossRef] [Green Version]
- Mason, T.J.; Cobley, A.J.; Graves, J.E.; Morgan, D. New evidence for the inverse dependence of mechanical and chemical effects on the frequency of ultrasound. Ultrason. Sonochem. 2011, 18, 226–230. [Google Scholar] [CrossRef]
- Hua, I.; Hoffmann, M.R. Optimization of ultrasonic irradiation as an advanced oxidation technology. Environ. Sci. Technol. 1997, 31, 2237–2243. [Google Scholar] [CrossRef]
- Ann, L.C.; Mahmud, S.; Seeni, A.; Bakhori, S.K.M.; Sirelkhatim, A.; Mohamad, D.; Hasan, H. Structural morphology and in vitro toxicity studies of nano- and micro-sized zinc oxide structures. J. Environ. Chem. Eng. 2015, 3, 436–444. [Google Scholar] [CrossRef]
- Jiang, W.; Mashayekhi, H.; Xing, B. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environ. Pollut. 2009, 157, 1619–1625. [Google Scholar] [CrossRef]
- Zhang, X.; Le, M.-Q.; Zahhaf, O.; Capsal, J.-F.; Cottinet, P.-J.; Petit, L. Enhancing dielectric and piezoelectric properties of micro-ZnO/PDMS composite-based dielectrophoresis. Mater. Des. 2020, 192, 108783. [Google Scholar] [CrossRef]
- Li, T.; Li, Y.T.; Qin, W.W.; Zhang, P.P.; Chen, X.Q.; Hu, X.F.; Zhang, W. Piezoelectric size effects in a zinc oxide micropillar. Nanoscale Res. Lett. 2015, 10, 394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, Y.; Chen, J.; Gao, X.; Liu, W.; Che, H.; Liu, B.; Ao, Y. Two birds with one stone: Cobalt-doping induces to enhanced piezoelectric property and persulfate activation ability of ZnO nanorods for efficient water purification. Nano Energy 2023, 107, 108173. [Google Scholar] [CrossRef]
- Adelnia, A.; Mokhtari-Dizaji, M.; Hoseinkhani, S.; Bakhshandeh, M. The effect of dual-frequency ultrasound waves on B16F10 melanoma cells: Sonodynamic therapy using nanoliposomes containing methylene blue. Skin Res. Technol. 2021, 27, 376–384. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Li, S. Combination and simultaneous resonances of gas bubbles oscillating in liquids under dual-frequency acoustic excitation. Ultrason. Sonochem. 2017, 35, 431–439. [Google Scholar] [CrossRef]
- Ye, L.; Zhu, X.; Liu, Y. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution. Ultrason. Sonochem. 2019, 59, 104744. [Google Scholar] [CrossRef]
- Lei, Y.-J.; Zhang, J.; Tian, Y.; Yao, J.; Duan, O.-S.; Zuo, F. Enhanced degradation of total petroleum hydrocarbons in real soil by dual-frequency ultrasound-activated persulfate. Sci. Tot. Environ. 2020, 748, 141414. [Google Scholar] [CrossRef]
- Lei, Y.-J.; Tian, Y.; Sobhani, Z.; Naidu, R.; Fang, C. Synergistic degradation of PFAS in water and soil by dual-frequency ultrasonic activated persulfate. Chem. Eng. J. 2020, 388, 124215. [Google Scholar] [CrossRef]
- Hu, S.-B.; Li, L.; Luo, M.-Y.; Yun, Y.-F.; Chang, C.-T. Aqueous norfloxacin sonocatalytic degradation with multilayer flower-like ZnO in the presence of peroxydisulfate. Ultrason. Sonochem. 2017, 38, 446–454. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Yi, P.; Wang, X.; Gao, H.; Zhang, H. Degradation of Acid Orange 7 by an ultrasound/ZnO-GAC/persulfate process. Sep. Pur. Technol. 2018, 194, 181–187. [Google Scholar] [CrossRef]
- Subramani, A.K.; Rani, P.; Wang, P.-H.; Chen, B.-Y.; Mohan, S.; Chang, C.-T. Performance assessment of the combined treatment for oxytetracycline antibiotics removal by sonocatalysis and degradation using Pseudomonas aeruginosa. J. Environ. Chem. Eng. 2019, 7, 103215. [Google Scholar] [CrossRef]
- Zhang, M.; Tao, H.; Zhai, C.; Yang, J.; Zhou, Y.; Xia, D.; Comodi, G.; Zhu, M. Twin-brush ZnO mesocrystal for the piezo-activation of peroxymonosulfate to remove ibuprofen in water: Performance and mechanism. Appl. Catal. B 2023, 326, 122399. [Google Scholar] [CrossRef]
- Anju, S.G.; Bright Singh, I.S.; Yesodharan, E.P.; Yesodharan, S. Investigations on semiconductor sonocatalysis for the removal of pathological micro-organisms in water. Desalin. Water Treat. 2015, 54, 3161–3168. [Google Scholar] [CrossRef]
- Zhang, J.-Z.; Saggar, J.K.; Zhou, Z.-L.; Hu, B. Different effects of sonoporation on cell morphology and viability. Bosn. J. Basic Med. Sci. 2012, 12, 64–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Chen, L.; Nasir, M.S.; Wu, C.; Guo, B.; Yang, Y. Piezocatalytic removal of water bacteria and organic compounds: A review. Environ. Chem. Lett. 2023, 21, 1075–1092. [Google Scholar] [CrossRef]
Strain | System | ZnO Particle Size | 5-Log Reduction Time, min | Sum of Log Reductions after Single-Frequency Treatment | SC |
---|---|---|---|---|---|
E. coli K-12 | DFUS/ZnO/S2O82− | 50 nm | 25 | 3.8 | 1.3 |
1 μm | 25 | 4.3 | 1.2 | ||
DFUS/ZnO | 50 nm | 90 | 4.4 | 1.2 | |
1 μm | 75 | 4.4 | 1.2 | ||
DFUS/S2O82− | no ZnO | 40 | 2.3 | 2.3 | |
E. faecalis B 4053 | DFUS/ZnO/S2O82− | 50 nm | 100 | 3.3 | 1.5 |
1 μm | 100 | 3.8 | 1.4 | ||
DFUS/ZnO | 50 nm | 180 | 1.7 | 3.0 | |
1 μm | 180 | 1.7 | 2.9 | ||
DFUS/S2O82− | no ZnO | 100 | 2.9 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsenter, I.; Kobunova, E.; Matafonova, G.; Batoev, V. Synergistic Piezo-Catalytic Inactivation of Bacteria by Dual-Frequency Ultrasound (120 + 1700 kHz) Using Persulfate and ZnO Nano- and Microparticles. Water 2023, 15, 2937. https://doi.org/10.3390/w15162937
Tsenter I, Kobunova E, Matafonova G, Batoev V. Synergistic Piezo-Catalytic Inactivation of Bacteria by Dual-Frequency Ultrasound (120 + 1700 kHz) Using Persulfate and ZnO Nano- and Microparticles. Water. 2023; 15(16):2937. https://doi.org/10.3390/w15162937
Chicago/Turabian StyleTsenter, Irina, Elena Kobunova, Galina Matafonova, and Valeriy Batoev. 2023. "Synergistic Piezo-Catalytic Inactivation of Bacteria by Dual-Frequency Ultrasound (120 + 1700 kHz) Using Persulfate and ZnO Nano- and Microparticles" Water 15, no. 16: 2937. https://doi.org/10.3390/w15162937
APA StyleTsenter, I., Kobunova, E., Matafonova, G., & Batoev, V. (2023). Synergistic Piezo-Catalytic Inactivation of Bacteria by Dual-Frequency Ultrasound (120 + 1700 kHz) Using Persulfate and ZnO Nano- and Microparticles. Water, 15(16), 2937. https://doi.org/10.3390/w15162937