Water Resources Carrying Capacity Based on the DPSIRM Framework: Empirical Evidence from Shiyan City, China
Abstract
:1. Introduction
2. Literature Review
2.1. The Concept of Carrying Capacity
2.2. The Factors Causing Water Resource Overload or Water Shortages
2.3. The Evaluation Method of Water Resources Carrying Capacity
2.4. Research Framework
3. Materials and Methods
3.1. Study Area
3.2. Dataset and Source
3.3. Methods
3.3.1. DPSIRM Framework
Criterion Layer | Indicator Layer | Properties | Calculation Methods | Reference |
---|---|---|---|---|
Driving force (D) | XD1 Per capita GDP (yuan) | Positive | From statistical data | [34,35] |
XD2 density of population | Negative | From statistical data | [34,35] | |
XD3 urbanization rate | Negative | From statistical data | [34,35] | |
Pressure (P) | XP1 Wastewater discharge per unit of industrial output value (t/10,000 CNY) | Negative | Amount of industrial wastewater discharge/industrial output value | [35,36] |
XP2 Household water consumption (10,000 m3) | Negative | From statistical data | [36] | |
XP3 Average annual fertilizer application per unit cultivated land (kg/hm2) | Negative | Amount of fertilizer application/cultivated area | [35,36] | |
Status (S) | XS1 Water resources per capita (m3) | Positive | Amount of regional water resource/regional population | [34,35] |
XS2 Water resources per unit area (m3/hm2) | Positive | Amount of regional water resources/regional land area | [34,35] | |
XS3 Annual precipitation (100 million cubic meters) | Positive | From statistical data | [37] | |
Impact (I) | XI1 Proportion of guaranteed harvest area of drought and flood in cultivated land (%) | Positive | Guaranteed harvest area in drought and flood/cultivated area | [38] |
XI2 Water quality in line with Class I~III standard proportion | Positive | From statistical data | [35] | |
XI3 Forest coverage rate (%) | Positive | From statistical data | [38] | |
Response (R) | XR1 Sewage treatment rate (%) | Positive | From statistical data | [35,36] |
XR2 Length of drainage pipe (km) | Positive | From statistical data | [34] | |
Management (M) | XM1 Green coverage rate of built-up areas (%) | Positive | The annual built-up green cover area/green cover area | [34] |
XM2 Investment in wastewater treatment (10,000 CNY) | Positive | From statistical data | [36] |
3.3.2. Index Weight Determination
- (1)
- Data standardization.
- (2)
- Calculate the entropy of the j-th index.
- (3)
- Calculate information on entropy redundancy.
- (4)
- Calculate the weights of each indicator.
3.3.3. Obstacle Degree Model
4. Results
4.1. Change in Comprehensive Score of Water Resources Carrying Capacity in Shiyan City
4.2. Analysis of Water Resources Carrying Capacity Obstacle Degree
4.2.1. Subsystem Obstacle Degree Analysis
4.2.2. Obstacle Degree Analysis of Each Factor
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vorosmarty, C.J.; Green, P.; Salisbury, J.; Lammers, R.B. Global water resources: Vulnerability from climate change and population growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [PubMed]
- Lv, A.; Han, Y.; Zhu, W.; Zhang, S.; Zhao, W. Risk Assessment of Water Resources Carrying Capacity in China. J. Am. Water Resour. Assoc. 2021, 57, 539–551. [Google Scholar] [CrossRef]
- Yi, L.; Yanzhao, Y.; Huimin, Y.; Zhen, Y. Research methods of water resources carrying capacity: Progress and prospects. J. Resour. Ecol. 2018, 9, 455–460. [Google Scholar] [CrossRef]
- Gunasekara, N.K.; Kazama, S.; Yamazaki, D.; Oki, T. Water Conflict Risk due to Water Resource Availability and Unequal Distribution. Water Resour. Manag. 2014, 28, 169–184. [Google Scholar] [CrossRef]
- Ren, C.; Guo, P.; Li, M.; Li, R. An innovative method for water resources carrying capacity research–metabolic theory of regional water resources. J. Environ. Manag. 2016, 167, 139–146. [Google Scholar] [CrossRef]
- Hartvigsen, G. Carrying Capacity, Concept of. In Encyclopedia of Biodiversity, 2nd ed.; Academic Press: Cambridge, MA, USA, 2013; pp. 695–701. [Google Scholar] [CrossRef]
- Geores, M.E. Human–Environment Relationship: Carrying Capacity. In International Encyclopedia of the Social Behavioral Sciences; Elsevier: Amsterdam, The Netherlands, 2001; pp. 7038–7039. [Google Scholar] [CrossRef]
- Huang, N.S.; Kuang, Y.Q. The carrying capacity of resources and the problems of sustainable development in Guangdong Province. Econ. Geogr. 2000, 20, 52–56. (In Chinese) [Google Scholar]
- Feng, L.H.; Zhang, X.C.; Luo, G.Y. Application of system dynamics in analyzing the carrying capacity of water resources in Yiwu City, China. Math. Comput. Simul. 2008, 79, 269–278. [Google Scholar] [CrossRef]
- Song, X.; Kong, F.; Zhan, C. Assessment of Water Resources Carrying Capacity in Tianjin City of China. Water Resour. Manag. 2010, 25, 857–873. [Google Scholar] [CrossRef]
- Motoshita, M.; Pfister, S.; Finkbeiner, M. Regional Carrying Capacities of Freshwater Consumption-Current Pressure and Its Sources. Environ. Sci. Technol. 2020, 54, 9083–9094. [Google Scholar] [CrossRef]
- Zhang, S.; Xiang, M.; Yang, J.; Fan, W.; Yi, Y. Distributed hierarchical evaluation and carrying capacity models for water resources based on optimal water cycle theory. Ecol. Indic. 2019, 101, 432–443. [Google Scholar] [CrossRef]
- Yang, L.; Wang, L. Comprehensive assessment of urban water resources carrying capacity based on basin unit: A case study of Qingdao, China. Water Supply 2022, 22, 1347–1359. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, M.; Zhou, W.; Zhuang, C.; Ouyang, Z. Evaluating Beijing’s human carrying capacity from the perspective of water resource constraints. J. Environ. Sci. 2010, 22, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Aboelnga, H.T.; El-Naser, H.; Ribbe, L.; Frechen, F.-B. Assessing Water Security in Water-Scarce Cities: Applying the Integrated Urban Water Security Index (IUWSI) in Madaba, Jordan. Water 2020, 12, 1299. [Google Scholar] [CrossRef]
- Bu, J.; Li, C.; Wang, X.; Zhang, Y.; Yang, Z. Assessment and prediction of the water ecological carrying capacity in Changzhou city, China. J. Clean. Prod. 2020, 277, 123988. [Google Scholar] [CrossRef]
- Skoulikidis, N.T. The environmental state of rivers in the Balkans—A review within the DPSIR framework. Sci. Total Environ. 2009, 407, 2501–2516. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Zhang, X.; Dong, W. Fuzzy comprehensive evaluation for safety guarantee system of reclaimed water quality. Procedia Environ. Sci. 2013, 18, 227–235. [Google Scholar] [CrossRef]
- Wang, G.; Xiao, C.; Qi, Z.; Meng, F.; Liang, X. Development tendency analysis for the water resource carrying capacity based on system dynamics model and the improved fuzzy comprehensive evaluation method in the Changchun city, China. Ecol. Indic. 2021, 122, 107232. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Huang, L. Water resources carrying capacity evaluation of a dense city group: A comprehensive water resources carrying capacity evaluation model of Wuhan urban agglomeration. Urban Water J. 2018, 15, 615–625. [Google Scholar] [CrossRef]
- Wang, Y.F.; Sun, K.; Li, L.; Lei, Y.L.; Wu, S.M.; Wang, F.; Luo, J.Y. The optimal allocation and the evaluation of water resources carrying capacity in Shendong mining area. Resour. Policy 2022, 77, 102738. [Google Scholar] [CrossRef]
- Yang, J.F.; Lei, K.; Khu, S.; Meng, W. Assessment of Water Resources Carrying Capacity for Sustainable Development Based on a System Dynamics Model: A Case Study of Tieling City, China. Water Resour. Manag. 2015, 29, 885–899. [Google Scholar] [CrossRef]
- Hu, G.Z.; Zeng, W.H.; Yao, R.H.; Xie, Y.X.; Liang, S. An integrated assessment system for the carrying capacity of the water environment based on system dynamics. J. Environ. Manag. 2021, 295, 113045. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, N.; Shang, J.; Zhang, J. Sustainable utilization of water resources in China: A system dynamics model. J. Clean. Prod. 2017, 142, 613–625. [Google Scholar] [CrossRef]
- Weng, X.R.; Long, X.J.; Ye, Y.; Peng, F. Study on Water Resource Carrying Capacity of Chongqing City by DPSIR Coupling Model. J. Water Resour. Res. 2020, 9, 189–201. [Google Scholar] [CrossRef]
- Wu, F.; Zhuang, Z.; Liu, H.L.; Shiau, Y.C. Evaluation of water resources carrying capacity using principal component analysis: An empirical study in Huai’an, Jiangsu, China. Water 2021, 13, 2587. [Google Scholar] [CrossRef]
- Yang, Z.; Song, J.; Cheng, D.; Xia, J.; Li, Q.; Ahamad, M.I. Comprehensive evaluation and scenario simulation for the water resources carrying capacity in Xi’an city, China. J. Environ. Manag. 2019, 230, 221–233. [Google Scholar] [CrossRef]
- Yang, J.L.; Yang, P.; Zhang, S.Q.; Wang, W.Y.; Cai, W.; Hu, S. Evaluation of water resource carrying capacity in the middle reaches of the Yangtze River Basin using the variable fuzzy-based method. Environ. Sci. Pollut. Res. 2023, 30, 30572–30587. [Google Scholar] [CrossRef] [PubMed]
- Borja, A.; Galparsoro, I.; Solaun, O.; Muxika, I.; Tello, E.M.; Uriarte, A.; Valencia, V. The European Water Framework Directive and the DPSIR, a methodological approach to assess the risk of failing to achieve good ecological status. Estuar. Coast. Shelf Sci. 2006, 66, 84–96. [Google Scholar] [CrossRef]
- Sun, S.; Wang, Y.; Liu, J.; Cai, H.; Wu, P.; Geng, Q.; Xu, L. Sustainability assessment of regional water resources under the DPSIR framework. J. Hydrol. 2016, 532, 140–148. [Google Scholar] [CrossRef]
- Vannevel, R. Using DPSIR and balances to support water governance. Water 2018, 10, 118. [Google Scholar] [CrossRef]
- Gari, S.R.; Newton, A.; Icely, J.D. A review of the application and evolution of the DPSIR framework with an emphasis on coastal social-ecological systems. Ocean Coast. Manag. 2015, 103, 63–77. [Google Scholar] [CrossRef]
- Jago-on, K.A.B.; Kaneko, S.; Fujikura, R.; Fujiwara, A.; Imai, T.; Matsumoto, T.; Zhang, J.; Tanikawa, H.; Tanaka, K.; Lee, B.; et al. Urbanization and subsurface environmental issues: An attempt at DPSIR model application in Asian cities. Sci. Total Environ. 2009, 407, 3089–3104. [Google Scholar] [CrossRef] [PubMed]
- Chai, N.; Zhou, W. The DPSIRM—Grey cloud clustering method for evaluating the water environment carrying capacity of Yangtze River economic Belt. Ecol. Indic. 2022, 136, 108722. [Google Scholar] [CrossRef]
- Wang, J.; Mu, X.; Chen, S.; Liu, W.; Wang, Z.; Dong, Z. Dynamic evaluation of water resources carrying capacity of the Dianchi Lake Basin in 2005–2015, based on DSPERM framework model and simulated annealing-projection pursuit model. Reg. Sustain. 2021, 2, 189–201. [Google Scholar] [CrossRef]
- Long, X.; Wu, S.; Wang, J.; Wu, P.; Wang, Z. Urban water environment carrying capacity based on VPOSR-coefficient of variation-grey correlation model: A case of Beijing, China. Ecol. Indic. 2022, 138, 108863. [Google Scholar] [CrossRef]
- Hazbavi, Z.; Sadeghi, S.H.; Gholamalifard, M.; Davudirad, A.A. Watershed health assessment using the pressure–state–response (PSR) framework. Land Degrad. Dev. 2020, 31, 3–19. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, J.; Zhang, B. Comprehensive evaluation of the water resource carrying capacity based on DPSIRM. J. Nat. Resour. 2017, 32, 484–493. (In Chinese) [Google Scholar]
Indicator | Information Entropy e | Information Utility Value d | Weight Coefficient w |
---|---|---|---|
MMS_D1 | 0.8854 | 0.1146 | 5.90% |
NMMS_D2 | 0.7822 | 0.2178 | 11.20% |
NMMS_D3 | 0.8522 | 0.1478 | 7.60% |
NMMS_P1 | 0.9059 | 0.0941 | 4.84% |
NMMS_P2 | 0.8889 | 0.1111 | 5.71% |
NMMS_P3 | 0.8307 | 0.1693 | 8.71% |
MMS_S1 | 0.9437 | 0.0563 | 2.89% |
MMS_S2 | 0.9456 | 0.0544 | 2.80% |
MMS_S3 | 0.9064 | 0.0936 | 4.81% |
MMS_I1 | 0.8663 | 0.1337 | 6.87% |
MMS_I2 | 0.9387 | 0.0613 | 3.15% |
MMS_I3 | 0.9477 | 0.0523 | 2.69% |
MMS_R1 | 0.9163 | 0.0837 | 4.31% |
MMS_R2 | 0.9007 | 0.0993 | 5.11% |
MMS_M1 | 0.8322 | 0.1678 | 8.63% |
MMS_M2 | 0.7128 | 0.2872 | 14.77% |
Year | M Subsystem U Value | R Subsystem U Value | II Subsystem U Value | S Subsystem U Value | P Subsystem U Value | D Subsystem U Value |
---|---|---|---|---|---|---|
2011 | 0.1149 | 0.3117 (I) | 0.0861 | 0.1056 | 0.2043 (II) | 0.1775 (III) |
2012 | 0.2343 (I) | 0.2329 (II) | 0.0618 | 0.0978 | 0.1975 (III) | 0.1757 |
2013 | 0.2533 (I) | 0.1987 (II) | 0.1028 | 0.0964 | 0.1757 | 0.1731 |
2014 | 0.2639 (I) | 0.1695 (III) | 0.0944 | 0.1264 | 0.1606 | 0.1852 (II) |
2015 | 0.2592 (I) | 0.1713 (III) | 0.0834 | 0.1283 | 0.1621 | 0.1957 (II) |
2016 | 0.2212 (II) | 0.0542 | 0.0727 | 0.2117 (III) | 0.1900 | 0.2502 (I) |
2017 | 0.2361 (II) | 0.1080 | 0.1492 | 0.0000 | 0.2173 (III) | 0.2894 (I) |
2018 | 0.1672 | 0.0679 | 0.1993 (III) | 0.2690 (I) | 0.0890 | 0.2077 (II) |
2019 | 0.1963 (III) | 0.0429 | 0.1997 | 0.2418 (I) | 0.0838 | 0.2356 (II) |
2020 | 0.3081 (I) | 0.0301 | 0.2687 (II) | 0.0390 | 0.1224 | 0.2317 (III) |
2021 | 0.3342 (I) | 0.0000 | 0.2658 (II) | 0.0370 | 0.1942 (III) | 0.1689 |
Year | Category | No. 1 Obstacle | No. 2 Obstacle | No. 3 Obstacle |
---|---|---|---|---|
2011 | obstacle factors | R2 | R1 | P3 |
obstacle degree | 0.1691 | 0.1426 | 0.1169 | |
2012 | obstacle factors | R2 | M2 | P3 |
obstacle degree | 0.1437 | 0.1403 | 0.1301 | |
2013 | obstacle factors | M2 | R2 | P3 |
obstacle degree | 0.1631 | 0.1339 | 0.1212 | |
2014 | obstacle factors | M2 | P3 | D2 |
obstacle degree | 01715 | 0.1127 | 0.1101 | |
2015 | obstacle factors | M2 | R1 | P3 |
obstacle degree | 0.1640 | 0.1237 | 0.1133 | |
2016 | obstacle factors | D2 | P3 | M2 |
obstacle degree | 0.1452 | 0.1233 | 0.1142 | |
2017 | obstacle factors | M2 | D2 | P3 |
obstacle degree | 0.2325 | 0.1679 | 0.1230 | |
2018 | obstacle factors | M2 | I1 | S3 |
obstacle degree | 0.1638 | 0.1454 | 0.1232 | |
2019 | obstacle factors | M2 | I1 | S3 |
obstacle degree | 0.1963 | 0.1623 | 0.1201 | |
2020 | obstacle factors | M2 | I1 | P2 |
obstacle degree | 0.3063 | 0.2490 | 0.1224 | |
2021 | obstacle factors | M2 | I1 | P2 |
obstacle degree | 0.3240 | 0.2658 | 0.1627 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, W.; Zhu, J.; Zeng, X.; You, Y.; Li, X.; Wu, J. Water Resources Carrying Capacity Based on the DPSIRM Framework: Empirical Evidence from Shiyan City, China. Water 2023, 15, 3060. https://doi.org/10.3390/w15173060
Cheng W, Zhu J, Zeng X, You Y, Li X, Wu J. Water Resources Carrying Capacity Based on the DPSIRM Framework: Empirical Evidence from Shiyan City, China. Water. 2023; 15(17):3060. https://doi.org/10.3390/w15173060
Chicago/Turabian StyleCheng, Wenming, Jing Zhu, Xiaochun Zeng, Yuan You, Xuetao Li, and Jun Wu. 2023. "Water Resources Carrying Capacity Based on the DPSIRM Framework: Empirical Evidence from Shiyan City, China" Water 15, no. 17: 3060. https://doi.org/10.3390/w15173060
APA StyleCheng, W., Zhu, J., Zeng, X., You, Y., Li, X., & Wu, J. (2023). Water Resources Carrying Capacity Based on the DPSIRM Framework: Empirical Evidence from Shiyan City, China. Water, 15(17), 3060. https://doi.org/10.3390/w15173060