A Techno-Economic Appraisal of Green Diesel Generation through Hydrothermal Liquefaction, Leveraging Residual Resources from Seaweed and Fishing Sectors
Abstract
:1. Introduction
2. Methods
2.1. Sequential Hydrothermal Liquefaction (SEQHTL) Process
2.2. Cost–Benefit Data Inputs and Assumptions
2.3. Simulation Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Buxton, B. Oil, budgets, migration, and retirees: Alaska’s 2015–18 recession. Mon. Labor Rev. 2022. Available online: https://www.bls.gov/opub/mlr/2022/article/oil-budgets-migration-and-retirees-alaskas-2015-18-recession.htm (accessed on 7 August 2023).
- U.S. Energy Information Administration. Alaska State Energy Profile. Available online: https://www.eia.gov/state/print.php?sid=AK (accessed on 7 August 2023).
- Tabassum, M.R.; Xia, A.; Murphy, J.D. Potential of seaweed as a feedstock for renewable gaseous fuel production in Ireland. Renew. Sustain. Energy Rev. 2017, 68, 136–146. [Google Scholar] [CrossRef]
- Europe, S. Hidden Champion of the Ocean: Seaweed as a Growth Engine for a Sustainable European Future. Available online: https://www.seaweedeurope.com/wp-content/uploads/2020/10/Seaweed_for_Europe-Hidden_Champion_of_the_ocean-Report.pdf (accessed on 7 August 2023).
- Blue, K. Seaweed Biofuel: A Rocky Road. Available online: https://kelp.blue/2015/04/09/seaweed-biofuel-benefits-challenges/ (accessed on 7 August 2023).
- van den Burg, S.W.; van Duijn, A.P.; Bartelings, H.; van Krimpen, M.M.; Poelman, M. The economic feasibility of seaweed production in the North Sea. Aquac. Econ. Manag. 2016, 20, 235–252. [Google Scholar] [CrossRef]
- Howell, M. A Kelp Farmer’s Guide to Blue Carbon. Available online: https://thefishsite.com/articles/a-kelp-farmers-guide-to-blue-carbon-mckinsey (accessed on 7 August 2023).
- Resource Development Council. Alaska’s Fishing Industry. Available online: https://www.akrdc.org/fisheries (accessed on 7 August 2023).
- McKinley Research Group. The Economic Value of Alaska’s Seafood Industry. Available online: https://www.mcdowellgroup.net/wp-content/uploads/2022/05/mrg_asmi-economic-impacts-report_final.pdf (accessed on 7 August 2023).
- Gegg, P.; Wells, V. The development of seaweed-derived fuels in the UK: An analysis of stakeholder issues and public perceptions. Energy Policy 2019, 133, 110924. [Google Scholar] [CrossRef]
- Araujo, R.; Vázquez-Calderón, F.; Sánchez-López, J.; Costa-Azevedo, I.; Bruhn, A.; Fluch, S. Current Status of the Algae Production Industry in Europe: An Emerging Sector of the Blue Bioeconomy. Front. Mar. Sci. 2021, 7, 626389. [Google Scholar] [CrossRef]
- Kuila, A.; Sharma, V. Principles and Applications of Fermentation Technology; Scrivener Publishing LLC: Beverly, MA, USA, 2018. [Google Scholar]
- Cascais, M.; Monteiro, P.; Pacheco, D.; Cotas, J.; Pereira, L.; Marques, J.C.; Gonçalves, A.M.M. Effects of Heat Treatment Processes: Health Benefits and Risks to the Consumer. Appl. Sci. 2021, 11, 8740. [Google Scholar] [CrossRef]
- Offei, F.; Mensah, M.; Thygesen, A.; Kemausuor, F. Seaweed Bioethanol Production: A Process Selection Review on Hydrolysis and Fermentation. Fermentation 2018, 4, 99. [Google Scholar] [CrossRef]
- López-Hortas, L.; Gannon, L.; Moreira, R.; Chenlo, F.; Domínguez, H.; Torres, M.D. Microwave hydrodiffusion and gravity (MHG) processing of Laminaria ochroleuca brown seaweed. J. Clean. Prod. 2018, 197, 1108–1116. [Google Scholar] [CrossRef]
- World Bank Group. Seaweed Aquaculture for Food Security, Income Generation and Environmental Health in Tropical Developing Countries. Available online: https://documents1.worldbank.org/curated/en/947831469090666344/pdf/107147-WP-REVISED-Seaweed-Aquaculture-Web.pdf (accessed on 7 August 2023).
- Milledge, J.J.; Smith, B.; Dyer, P.W.; Harvey, P. Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass. Energies 2014, 7, 7194–7222. [Google Scholar] [CrossRef]
- Álvarez-Viñas, M.; Flórez-Fernández, N.; Torres, M.D.; Domínguez, H. Successful Approaches for a Red Seaweed Biorefinery. Mar. Drugs 2019, 17, 620. [Google Scholar] [CrossRef]
- Milledge, J.J.; Harvey, P.J. Potential process’ hurdles’ in the use of macroalgae as feedstock for biofuel production in the British Isles. J. Chem. Technol. Biotechnol. 2016, 91, 2221–2234. [Google Scholar] [CrossRef]
- Adeniyi, O.M.; Azimov, U.; Burluka, A. Algae biofuel: Current status and future applications. Renew. Sustain. Energy Rev. 2018, 90, 316–335. [Google Scholar] [CrossRef]
- Low, L.L. Future of Alaska’s. Fisheries Resources. In Advances in Seafood Byproducts, Proceedings of the 2nd International Seafood Byproduct Conference, Anchorage, AK, USA, 10–13 November 2002; University of Alaska Fairbanks: Fairbanks, AK, USA, 2002; pp. 83–104. [Google Scholar]
- Watson, J.; Wang, T.; Si, B.; Chen, W.T.; Aierzhati, A.; Zhang, Y. Valorization of hydrothermal liquefaction aqueous phase: Pathways towards commercial viability. Prog. Energy Combust. Sci. 2019, 77, 100819. [Google Scholar] [CrossRef]
- Nazari, L. Hydrothermal Liquefaction of High-Water Content Biomass and Waste Materials for the Production of Biogas and Bio-Crude Oil. Ph.D. Thesis, The University of Western Ontario, London, ON, Canada, 2016. Available online: https://ir.lib.uwo.ca/etd/4069 (accessed on 7 August 2023).
- O’Hara, I.; Kaparaju, P.; Paulose, P.; Plaza, F.; Henderson, C.; Latif, A. Biogas from Sugarcane Project Results and Lessons Learnt. Available online: https://arena.gov.au/assets/2021/05/utilising-biogas-in-sugarcane.pdf (accessed on 7 August 2023).
- Morales-Contreras, B.E.; Flórez-Fernández, M.D.T.N.; Domínguez, H.; Rodríguez-Jasso, R.M.; Ruiz, H.A. Hydrothermal systems to obtain high value-added compounds from macroalgae for bioeconomy and biorefineries. Bioresour. Technol. 2022, 343, 126017. [Google Scholar] [CrossRef] [PubMed]
- Anastasakis, K.; Ross, A.B. Hydrothermal liquefaction of four brown macro-algae commonly found on the UK coasts: An energetic analysis of the process and comparison with bio-chemical conversion methods. Fuel 2015, 139, 546–553. [Google Scholar] [CrossRef]
- He, Y.; Liang, X.; Jazrawi, C.; Montoya, A.; Yuen, A.; Cole, A.J. Continuous hydrothermal liquefaction of macroalgae in the presence of organic co-solvents. Algal. Res. 2016, 17, 185–195. [Google Scholar] [CrossRef]
- Stopha, M. Alaska Kelp Farming the Blue Revolution. Available online: https://www.adfg.alaska.gov/index.cfm?adfg=wildlifenews.view_article&articles_id=949 (accessed on 7 August 2023).
- Stekoll, M.S.; Peeples, T.N.; Raymond, A.E.T. Mariculture research of Macrocystis pyrifera and Saccharina latissima in Southeast Alaska. J. World Aquac. Soc. 2021, 52, 1031–1046. [Google Scholar] [CrossRef]
- Force, A.M.T. Mariculture—The Opportunity. Available online: https://www.adfg.alaska.gov/Static/fishing/pdfs/mariculture/mariculture_opp_for_ak.pdf (accessed on 7 August 2023).
- NOAA. The Economic Importance of Seafood. Available online: https://www.fisheries.noaa.gov/feature-story/economic-importance-seafood (accessed on 7 August 2023).
- Industries, K. Is It Time to Start Eating Algae? Available online: https://kleanindustries.com/resources/environmental-industry-market-analysis-research/is-it-time-to-start-eating-algae/ (accessed on 7 August 2023).
- NOAA. Seaweed Aquaculture Seaweed Farming, the Fastest-Growing Aquaculture Sector, Can Benefit Farmers, Communities, and the Environment. Available online: https://www.fisheries.noaa.gov/national/aquaculture/seaweed-aquaculture (accessed on 7 August 2023).
- Bonkoski, J. The Feasibility of Pescatourism in Southeast Alaska Assessing the Opportunity for Transformative Tourism. Available online: https://ecotrust.org/wp-content/uploads/PescatourismFeasibilityAssessment_Ecotrust_Aug2019.pdf (accessed on 7 August 2023).
- Stoeva, S.; Tsiouvalas, A.; Humpert, M.; Raspotnik, A.; Mordal, M.H.; Fleener, C. “Blue Fisheries & Aquaculture,” in Fisheries and Aquaculture in Alaska and North Norway AlaskaNor Work Package III. Available online: https://nordopen.nord.no/nord-xmlui/bitstream/handle/11250/3002759/FoURapport8522.pdf?sequence=1&isAllowed=y (accessed on 7 August 2023).
- Bechtel, P.J.; Smiley, S. A Sustainable Future: Fish Processing Byproducts. In Proceedings of the Symposium a Sustainable Future, Fish Processing Byproducts, Portland, OR, USA, 25–26 February 2009. [Google Scholar]
- Vebugopal, V. Valorization of Seafood Processing Discards: Bioconversion and Bio-Refinery Approaches. Front. Sustain. Food Syst. 2021, 5, 611835. [Google Scholar] [CrossRef]
- Baweja, P.; Kumar, S.; Sahoo, D.; Levine, I. Chapter 3—Biology of Seaweeds. In Seaweed in Health and Disease Prevention; Fleurence, J., Levine, I., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 41–106. [Google Scholar] [CrossRef]
- Kite-Powell, H.L.; Ask, E.; Augyte, S.; Bailey, D.; Decker, J.; Goudey, C.A.; Grebe, G.; Li, Y.; Lindell, S.; Manganelli, D.; et al. Estimating production cost for large-scale seaweed farms. Appl. Phycol. 2022, 3, 435–445. [Google Scholar] [CrossRef]
- Raikova, S.; Le, C.D.; Beacham, T.A.; Jenkins, R.W.; Allen, M.J.; Chuck, C.J. Towards a marine biorefinery through the hydrothermal liquefaction of macroalgae native to the United Kingdom. Biomass Bioenergy 2017, 107, 244–253. [Google Scholar] [CrossRef]
- Ross, A.B.; Anastasakis, K.; Kubacki, M.; Jones, J.M. Investigation of the pyrolysis behaviour of brown algae before and after pretreatment using PY-GC/MS and TGA. J. Anal. Appl. Pyrolysis 2009, 85, 3–10. [Google Scholar] [CrossRef]
- Adams, J.; Ross, A.; Anastasakis, K.; Hodgson, E.; Gallagher, J.; Jones, J.; Donnison, I. Seasonal variation in the chemical composition of the bioenergy feedstock Laminaria digitata for thermochemical conversion. Bioresour. Technol. 2011, 102, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Fernandez, J.S.; Chen, S. Sequential Hydrothermal Liquefaction characterization and nutrient recovery assessment. Algal. Res. 2017, 25, 274–284. [Google Scholar] [CrossRef]
- Neveux, N.; Magnusson, M.; Maschmeyer, T.; Nys, R.; Paul, N.A. Comparing the potential production and value of high-energy liquid fuels and protein from marine and freshwater macroalgae. GCB Bioenergy 2014, 7, 673–689. [Google Scholar] [CrossRef]
- Ross, A.B.; Biller, P.; Kubacki, M.L.; Li, H.; Lea-Langton, A.; Jones, J.M. Hydrothermal processing of microalgae using alkali and organic acids. Fuel 2010, 89, 2234–2243. [Google Scholar] [CrossRef]
- Miao, C.; Chakraborty, M.; Chen, S. Impact of reaction conditions on the simultaneous production of polysaccharides and bio-oil from heterotrophically grown Chlorella sorokiniana by a unique sequential hydrothermal liquefaction process. Bioresour. Technol. 2012, 110, 617–627. [Google Scholar] [CrossRef]
- Peterson, A.A.; Vogel, F.; Lachance, R.P.; Froling, M.; Antal, M.J.; Tester, J.W. Thermochemical biofuel production in hydrothermal media: A review of sub- and supercritical water technologies. Energy Environ. Sci. 2008, 1, 32–65. [Google Scholar] [CrossRef]
- Leandro, A.; Pereira, L.; Gonçalves, A.M.M. Diverse applications of marine macroalgae. Mar. Drugs 2020, 18, 17. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Rengasamy, K.R.R.; Mahomoodally, M.F.; Aumeeruddy, M.Z.; Zengin, G.; Xiao, J.; Kim, D.H. Bioactive compounds in seaweeds: An overview of their biological properties and safety. Food Chem. Toxicol. 2020, 135, 111013. [Google Scholar] [CrossRef]
- Bordoloi, A.; Goosen, N.J. A greener alternative using subcritical water extraction to valorize the brown macroalgae Ecklonia maxima for bioactive compounds. J. Appl. Phycol. 2020, 32, 2307–2319. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Wang, X.; Li, N.; Tao, J.; Zheng, W.; Yan, B.; Cui, X.; Cheng, Z.; Chen, G. A Review on the Hydrothermal Treatment of Food Waste: Processing and Applications. Processes 2022, 10, 2439. [Google Scholar] [CrossRef]
- Archer, M.; Jacklin, M. Global at-sea fish processing. A review of current practice, and estimates of the potential volume of byproducts and their nutritional contribution from at-sea processing operations. Cologny: Friends of Ocean Action—The World Economic Forum. Available online: https://www3.weforum.org/docs/WEF_FOA_SFLW_Global_at_sea_fish_processing_report_2022.pdf (accessed on 7 August 2023).
- Stuyahok, V.D.N. Alaska Wind-Diesel Analysis. Available online: https://www.v3energy.com/wp-content/uploads/2007/03/New-Stuyahok-Wind-Diesel-Analysis-V3-Energy-2015-rev.-2.pdf (accessed on 7 August 2023).
- Aljadix. Technology Overview of the Aljadix Process. Available online: https://www.aljadix.com/Products-Technology/Technology/ (accessed on 7 August 2023).
- Conti, F.; Toor, S.S.; Pedersen, T.H.; Seehar, T.H.; Nielsen, A.H.; Rosendahl, L.A. Valorization of animal and human wastes through hydrothermal liquefaction for biocrude production and simultaneous recovery of nutrients. Energy Convers Manag. 2020, 216, 112925. [Google Scholar] [CrossRef]
- Gamble, B. Comprehensive Energy AuditForNew Stuyahok Water Plant. Available online: https://anthc.org/wp-content/uploads/2017/10/New-Stuyahok-Water-Plant-Energy-Audit-Final-Report.pdf (accessed on 7 August 2023).
- Kouhgardi, E.; Zendehboudi, S.; Mohammadzadeh, O.; Lohi, A.; Chatzis, I. Current status and future prospects of biofuel production from brown algae in North America: Progress and challenges. Renew. Sustain. Energy Rev. 2023, 172, 113012. [Google Scholar] [CrossRef]
- USNews. Overview of Chief Ivan Blunka School. Available online: https://www.usnews.com/education/k12/alaska/chief-ivan-blunka-school-615 (accessed on 7 August 2023).
- Company, U. New Stuyahok K-12 School. Available online: https://www.unitcompany.com/project.php?project=28 (accessed on 7 August 2023).
- Alaska. AWA_ACP Bristol Bay Community Profiles. Available online: https://dec.alaska.gov/media/6322/97702-bristolbay.pdf (accessed on 7 August 2023).
- Stantec. New Stuyahok K-12 School: Celebrating Community through Design in Rural Alaska. Available online: https://www.stantec.com/en/projects/united-states-projects/n/new-stuyahok-k12-school (accessed on 7 August 2023).
- Reißmann, D. Hydrothermal Processing of Biogenic Residues in Germany a Technology Assessment Considering Development Paths by 2030. Available online: https://www.dbfz.de/fileadmin/user_upload/Referenzen/DBFZ_Reports/DBFZ_Report_38.pdf (accessed on 7 August 2023).
- IEA. Country Reports 2020 Direct Thermochemical Liquefaction (Canada, New Zealand, United States of America). Available online: https://task34.ieabioenergy.com/wp-content/uploads/sites/3/2021/06/2020_IEA-Bioenergy-Task-34_Country_Report_v1.pdf (accessed on 7 August 2023).
- Song, E.; Park, S.; Kim, H. Upgrading Hydrothermal Carbonization (HTC) Hydrochar from Sewage Sludge. Energies 2019, 12, 2383. [Google Scholar] [CrossRef]
- Wilson, B. Hydrothermal Liquefaction for Conversion of Mixed Plastic Waste to Fuel. Available online: https://eprenewable.com/wp-content/uploads/2020/06/HTL-Process-Description-06192020.pdf (accessed on 7 August 2023).
- Washer, M. Making Biosolids Disappear—The Magic of Hydrothermal Liquefaction. Available online: https://www.merrick.com/wp-content/uploads/2018/05/Making-Biosolids-Disappear.pptx (accessed on 7 August 2023).
- Planning Commission. Lakshadweep Development Report; Academic Foundation: Delhi, India, 2007; Available online: http://164.100.161.239/plans/stateplan/sdr/sdr_lakshadweep.pdf (accessed on 7 August 2023).
- The Energy and Resources Institute. Consultancy Services to Assess the Biomass Availability and Determination of Biomass Price in the Six Districts of Gujarat. Available online: https://gercin.org/wp-content/uploads/2019/09/teri-report.pdf (accessed on 7 August 2023).
- Frederiks, B. Baseline Study on the Biomass Electricity Generation Potential in Guinea Bissau Developed under the GEF Project “Promoting Renewable Energy Investments in the Electricity Sector of Guinea Bissau”. Available online: http://www.ecowrex.org/system/files/200617_baseline_study_on_bioelectricity_in_guinea_bissau.pdf (accessed on 7 August 2023).
- Vanwonterghem, I.; Jensen, P.; Rabaey, K. Temperature and solids retention time control microbial population dynamics and volatile fatty acid production in replicated anaerobic digesters. Sci. Rep. 2015, 5, 8496. [Google Scholar] [CrossRef] [PubMed]
- Paulson, J.S.; Kizha, A.R.; Han, H.-S. Integrating Biomass Conversion Technologies with Recovery Operations In-Woods: Modeling Supply Chain. Logistics 2019, 3, 16. [Google Scholar] [CrossRef]
- Gladstone Regional Council Waste Management and Resource Recovery Strategy Final Report. Available online: https://www.gladstone.qld.gov.au/downloads/file/2411/g3-1-1-1-attach-01-gladstone-regional-council-waste-management-and-resource-recovery-strategy (accessed on 7 August 2023).
- Penke, C.; Özal, G.; Bellot, F.; Moser, L.; Batteiger, V. Performance evaluation of jet fuel production by hydrothermal liquefaction in Europe. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1226, 012058. [Google Scholar] [CrossRef]
- Guo, B.; Hornung, U.; Zhang, S.; Dahmen, N. Techno-Economic Assessment of a Microalgae Biorefinery. Chem. Ing. Tech. 2022, 95, 950–954. [Google Scholar] [CrossRef]
- Guo, B. Hydrothermal Liquefaction within a Microalgae Biorefinery. Ph.D. Thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2019. Available online: https://publikationen.bibliothek.kit.edu/1000105190/56631387 (accessed on 7 August 2023).
- Guan, S. Extracting Phycocyanin from Spirulina and Hydrothermal Liquefaction of Its Residues to Produce Bio-Crude Oil. Ph.D. Thesis, University of Illinois at Urbana-Champaign, Urbana, IL, USA, 2016. Available online: https://core.ac.uk/download/pdf/158315229.pdf (accessed on 7 August 2023).
- Lozano, E.M.; Petersen, S.B.; Paulsen, M.M.; Rosendahl, L.A.; Pedersen, T.H. Techno-economic evaluation of carbon capture via physical absorption from HTL gas phase derived from woody biomass and sewage sludge. Energy Convers. Manag. X 2021, 11, 100089. [Google Scholar] [CrossRef]
- Algae-based Biomass for the Production of Fuels and Chemicals Final Report Alberta Innovates (ABI-14-004) & Emissions Reduction Alberta (B0150002). Available online: https://eralberta.ca/wp-content/uploads/2017/05/B0150002_UofA_Food-Fibre-and-Bio_PUBLIC_Final-Report.pdf (accessed on 7 August 2023).
- Ramirez, J.A.; Rainey, T.J. Comparative techno-economic analysis of biofuel production through gasification, thermal liquefaction and pyrolysis of sugarcane bagasse. J. Clean. Prod. 2019, 229, 513–527. [Google Scholar] [CrossRef]
- Colt, S. True Cost of Electricity in Rural Alaska and True Cost of Bulk Fuel in Rural Alaska. Available online: https://iseralaska.org/static/legacy_publication_links/2016_10_26-TrueCostElectricityFuelRuralAK.pdf (accessed on 7 August 2023).
- Mo, W.; Soh, L.; Werber, J.R.; Elimelech, M.; Zimmerman, J.B. Application of membrane dewatering for algal biofuel. Algal. Res. 2015, 11, 1–12. [Google Scholar] [CrossRef]
- Loumoti, M.; Vasvari, F.P. Consequences of CLO Portfolio Constraints. Available online: https://coller.tau.ac.il/sites/coller-english.tau.ac.il/files/media_server/Recanati/management/conferences/accounting/2018/pdf/LV_Equity_MAY%20draft.pdf (accessed on 7 August 2023).
- Gwilliam, K. Transport Project Appraisal at the World Bank. Proceedings of the TRANSTALK Seminar on Appraisal Methods for Transport Projects. June 2000. Available online: http://www.worldbank.org/transport/pol_econ/ea_docs/brussels.pdf] (accessed on 7 August 2023).
- Camco. Solar Renewable Potential in North London—Work Stream 2: Market Testing—Analysis of Finance and Delivery Options. Available online: https://haringeyclimateforum.org/wp-content/uploads/2020/10/solar_renewable_potential_north_london.pdf (accessed on 7 August 2023).
- CRS. Overview of the Federal Tax System in 2022. Available online: https://sgp.fas.org/crs/misc/R45145.pdf (accessed on 7 August 2023).
- Forbes. Alaska Income Tax Calculator 2021. Available online: https://www.forbes.com/advisor/income-tax-calculator/alaska/ (accessed on 7 August 2023).
- Weidner, B. How to Calculate MACRS Depreciation. Available online: https://www.fastcapital360.com/blog/macrs-depreciation-calculations/ (accessed on 7 August 2023).
- AccountingTools. MACRS Depreciation Definition. Available online: https://www.accountingtools.com/articles/what-is-macrs-depreciation.html (accessed on 7 August 2023).
- Chen, P.H.; Quinn, J.C. Microalgae to biofuels through hydrothermal liquefaction: Open-source techno-economic analysis and life cycle assessment. Appl. Energy 2021, 289, 116613. [Google Scholar] [CrossRef]
- Song, B.; Lin, R.; Lam, C.H.; Wu, H.; Tsui, T.-H.; Yu, Y. Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques. Renew. Sustain. Energy Rev. 2021, 135, 110370. [Google Scholar] [CrossRef]
- Trinh, J.; Harahap, F.; Fagerström, A.; Hansson, J. What Are the Policy Impacts on Renewable Jet Fuel in Sweden? Energies 2021, 14, 7194. [Google Scholar] [CrossRef]
- Okoro, O.V.; Banson, A.N.; Zhang, H. Circumventing Unintended Impacts of Waste N95 Facemask Generated during the COVID-19 Pandemic: A Conceptual Design Approach. ChemEngineering 2020, 4, 54. [Google Scholar] [CrossRef]
- Barreiro, D.L.; Beck, M.; Hornung, U.; Ronsse, F.; Kruse, A.; Prins, W. Suitability of hydrothermal liquefaction as a conversion route to produce biofuels from macroalgae. Algal. Res. 2015, 11, 234–241. [Google Scholar] [CrossRef]
- Energy, U.S.D.; Jones, S.; Zhu, Y.; Anderson, D.; Hallen, R.; Elliott, D.; Schmidt, A.; Albrecht, K.; Hart, T.; Butcher, M.; et al. Process Desing and Economics for the Conversion of Algal Biomass to Hydrocarbons: Whole Algae Hydrothermal Liquefaction and Upgrading. Available online: https://www.energy.gov/eere/bioenergy/articles/whole-algae-hydrothermal-liquefaction (accessed on 7 August 2023).
- Bach, Q.V.; Valcuende-Sillero, M.; Tran, K.Q.; Skjermo, J. Fast hydrothermal liquefaction of a Norwegian macro-alga: Screening tests. Algal. Res. 2014, 6, 271–276. [Google Scholar] [CrossRef]
- Department of Energy. Cost of Electrolytic Hydrogen Production with Existing Technology. Available online: https://www.hydrogen.energy.gov/pdfs/20004-cost-electrolytic-hydrogen-production.pdf (accessed on 7 August 2023).
Description | Average Energy Cost |
---|---|
Electricity | 0.61 USD/kWh |
Diesel | 1.722 USD/L |
Assumption | Value | Source |
---|---|---|
Size of plant | 50,000 kg per day | [63,64,65,66,67] |
Annual days of operation | 250 days per year | [68,69,70,71,72] |
Cost of hydrothermal liquefaction capital | USD 13,250,000 | [73,74] |
Labor cost | USD 200,000 per year | [75,76,77] |
Maintenance cost | USD 420,000 per year | [78,79,80] |
Energy cost per kWh | 0.61 USD/kWh | [57,81] |
Energy amount required per kg raw material | 0.35 kWh/kg | [82] |
Discount rate(s) | 9% | 12% is the minimum internal rate of return typically used for any private infrastructure project subject to formal economic evaluation [83,84]; and 6% is conventionally used for publicly funded projects [85]. |
Federal tax rate | 21% | In the US, corporate taxable income is subject to a flat rate of 21% [86]. |
Alaska State tax rate | 9.4% | Alaska imposes a corporate income tax on business income, with rates of 9.4% for taxable income brackets at or above USD 222,000 [87]. |
Tax depreciation system | 7-year MACRS | The 7-year modified accelerated cost recovery system (MACRS) depreciation is a federal income tax convention that benefits businesses by helping them plan for the decline in value of, among others, agricultural machinery and equipment over a given period [88,89]. |
Lifetime | 30 years | [90,91,92,93] |
Kelp | ||
Kelp cost per unit | 200 USD/dry t | [39] |
Yield of alginate | 15% | [51] |
Yield from kelp (% ash-free dry weight) | 21% | [94] |
Fishing Waste | ||
Fishing waste cost per unit | 0 USD/kg | |
Yield from seafood waste (% ash-free dry weight) | 55% | [56] |
Upgrading | ||
Yield from hydrotreating | 98% | [95,96] |
Hydrogen consumption | 0.043 kg H2/kg biocrude | [95,96] |
Cost of hydrogen gas | 5 USD/kg | [97] |
Price of alginate | 236 USD/t | [58] |
Kelp Only | Fishing Waste and Kelp (50:50) | Fishing Waste and Kelp (70:30) | |
---|---|---|---|
Bio-oil (t/year) | 2625 | 4750 | 5600 |
Diesel equivalent produced (t/year) | 2573 | 4655 | 5488 |
Alginate (t/year) | 1875 | 938 | 563 |
Net present value, NPV (M USD) | −23.6 | −5.5 | +1.71 |
Strengths | Weaknesses |
|
|
Opportunities | Threats |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales-Asensio, E.; Segredo-Morales, E.; Gómez-Marín, N.; Pulido-Alonso, A.; Sierra, C. A Techno-Economic Appraisal of Green Diesel Generation through Hydrothermal Liquefaction, Leveraging Residual Resources from Seaweed and Fishing Sectors. Water 2023, 15, 3061. https://doi.org/10.3390/w15173061
Rosales-Asensio E, Segredo-Morales E, Gómez-Marín N, Pulido-Alonso A, Sierra C. A Techno-Economic Appraisal of Green Diesel Generation through Hydrothermal Liquefaction, Leveraging Residual Resources from Seaweed and Fishing Sectors. Water. 2023; 15(17):3061. https://doi.org/10.3390/w15173061
Chicago/Turabian StyleRosales-Asensio, Enrique, Elisabet Segredo-Morales, Natalia Gómez-Marín, Antonio Pulido-Alonso, and Carlos Sierra. 2023. "A Techno-Economic Appraisal of Green Diesel Generation through Hydrothermal Liquefaction, Leveraging Residual Resources from Seaweed and Fishing Sectors" Water 15, no. 17: 3061. https://doi.org/10.3390/w15173061
APA StyleRosales-Asensio, E., Segredo-Morales, E., Gómez-Marín, N., Pulido-Alonso, A., & Sierra, C. (2023). A Techno-Economic Appraisal of Green Diesel Generation through Hydrothermal Liquefaction, Leveraging Residual Resources from Seaweed and Fishing Sectors. Water, 15(17), 3061. https://doi.org/10.3390/w15173061