Simulating the Hydrological Processes under Multiple Land Use/Land Cover and Climate Change Scenarios in the Mahanadi Reservoir Complex, Chhattisgarh, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data Used
2.2. Model Setup
2.3. Criteria for Model Performance Assessments
2.4. Overall Methodology
3. Results and Discussion
3.1. Model Performance
3.2. Influence of LULC Change and Climate Variability on Hydrology under the Real Scenario
3.3. Influence of LULC Change and Climate Variability on Hydrology under the Hypothetical Scenario
3.4. Isolated Influence of LULC on Streamflow, ET
3.5. Isolated Influence of Climate Variability on Streamflow, ET
3.6. The Combined Influence of LULC and Climate Variability on Streamflow, ET
3.7. Influence of Land Use/Land Cover Change Analysis
3.8. Variability and Trend of Precipitation and Temperature Variables
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cook, J.; Oreskes, N.; Doran, P.T.; Anderegg, W.R.L.; Verheggen, B.; Maibach, E.W.; Carlton, J.S.; Lewandowsky, S.; Skuce, A.G.; A Green, S.; et al. Consensus on consensus: A synthesis of consensus estimates on human-caused global warming. Environ. Res. Lett. 2016, 11, 048002. [Google Scholar] [CrossRef]
- Jiménez-Navarro, I.C.; Jimeno-Sáez, P.; López-Ballesteros, A.; Pérez-Sánchez, J.; Senent-Aparicio, J. Impact of Climate Change on the Hydrology of the Forested Watershed That Drains to Lake Erken in Sweden: An Analysis Using SWAT+ and CMIP6 Scenarios. Forests 2021, 12, 1803. [Google Scholar] [CrossRef]
- Kiesel, J.; Gericke, A.; Rathjens, H.; Wetzig, A.; Kakouei, K.; Jähnig, S.C.; Fohrer, N. Climate change impacts on ecologically relevant hydrological indicators in three catchments in three European ecoregions. Ecol. Eng. 2019, 127, 404–416. [Google Scholar] [CrossRef]
- Wu, J.; Yen, H.; Arnold, J.G.; Yang, Y.E.; Cai, X.; White, M.J.; Santhi, C.; Miao, C.; Srinivasan, R. Development of reservoir operation functions in SWAT+ for national environmental assessments. J. Hydrol. 2020, 583, 124556. [Google Scholar] [CrossRef]
- Cerdà, A.; Ackermann, O.; Terol, E.; Rodrigo-Comino, J. Impact of Farmland Abandonment on Water Resources and Soil Conservation in Citrus Plantations in Eastern Spain. Water 2019, 11, 824. [Google Scholar] [CrossRef]
- Cerdà, A.; Rodrigo-Comino, J.; Yakupoğlu, T.; Dindaroğlu, T.; Terol, E.; Mora-Navarro, G.; Arabameri, A.; Radziemska, M.; Novara, A.; Kavian, A.; et al. Tillage Versus No-Tillage. Soil Properties and Hydrology in an Organic Persimmon Farm in Eastern Iberian Peninsula. Water 2020, 12, 1539. [Google Scholar] [CrossRef]
- Zierl, B.; Bugmann, H. Global change impacts on hydrological processes in Alpine catchments. Water Resour. Res. 2005, 41, 1–13. [Google Scholar] [CrossRef]
- Hagg, W.; Braun, L.; Kuhn, M.; Nesgaard, T. Modelling of hydrological response to climate change in glacierized Central Asian catchments. J. Hydrol. 2007, 332, 40–53. [Google Scholar] [CrossRef]
- Merritt, W.S.; Alila, Y.; Barton, M.; Taylor, B.; Cohen, S.; Neilsen, D. Hydrologic response to scenarios of climate change in sub watersheds of the Okanagan basin, British Columbia. J. Hydrol. 2006, 326, 79–108. [Google Scholar] [CrossRef]
- Tan, X.; Liu, S.; Tian, Y.; Zhou, Z.; Wang, Y.; Jiang, J.; Shi, H. Impacts of Climate Change and Land Use/Cover Change on Regional Hydrological Processes: Case of the Guangdong-Hong Kong-Macao Greater Bay Area. Front. Environ. Sci. 2022, 9, 688. [Google Scholar] [CrossRef]
- Kiros, G.; Shetty, A.; Nandagiri, L. Performance Evaluation of SWAT Model for Land Use and Land Cover Changes under different Climatic Conditions: A Review. J. Waste Water Treat. Anal. 2015, 6, 7. [Google Scholar] [CrossRef]
- Deng, Z.; Zhang, X.; Li, D.; Pan, G. Simulation of land use/land cover change and its effects on the hydrological characteristics of the upper reaches of the Hanjiang Basin. Environ. Earth Sci. 2015, 73, 1119–1132. [Google Scholar] [CrossRef]
- Singh, S.K.; Laari, P.B.; Mustak, S.; Srivastava, P.K.; Szabó, S. Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto Int. 2018, 33, 1202–1222. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, S.K.; Singh, V.G.; Dzwairo, B. Investigation of impacts of land use/land cover change on water availability of Tons River Basin, Madhya Pradesh, India. Model. Earth Syst. Environ. 2018, 4, 295–310. [Google Scholar] [CrossRef]
- Gyamfi, C.; Ndambuki, J.M.; Salim, R.W. Hydrological Responses to Land Use/Cover Changes in the Olifants Basin, South Africa. Water 2016, 8, 588. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.P.; Saco, P.; Parsons, T.; Poeppl, R.; Masselink, R.; Cerdà, A. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics? Sci. Total. Environ. 2018, 644, 1557–1572. [Google Scholar] [CrossRef]
- Yuan, Z.; Chu, Y.; Shen, Y. Simulation of surface runoff and sediment yield under different land-use in a Taihang Mountains watershed, North China. Soil Tillage Res. 2015, 153, 7–19. [Google Scholar] [CrossRef]
- Kumar, V.; Kedam, N.; Sharma, K.V.; Mehta, D.J.; Caloiero, T. Advanced Machine Learning Techniques to Improve Hydrological Prediction: A Comparative Analysis of Streamflow Prediction Models. Water 2023, 15, 2572. [Google Scholar] [CrossRef]
- Mehta, D.; Hadvani, J.; Kanthariya, D.; Sonawala, P. Effect of land use land cover change on runoff characteristics using curve number: A GIS and remote sensing approach. Int. J. Hydrol. Sci. Technol. 2023, 16, 1–16. [Google Scholar] [CrossRef]
- Calder, I.R. Assessing the water use of short vegetation and forests: Development of the Hydrological Land Use Change (HYLUC) model. Water Resour. Res. 2003, 39, 1318. [Google Scholar] [CrossRef]
- Amirhossien, F.; Alireza, F.; Kazem, J.; Mohammadbagher, S. A Comparison of ANN and HSPF Models for Runoff Simulation in Balkhichai River Watershed, Iran. Am. J. Clim. Chang. 2015, 04, 203–216. Available online: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=56390&#abstract (accessed on 18 April 2015). [CrossRef]
- Pfannerstill, M.; Guse, B.; Fohrer, N. Smart low flow signature metrics for an improved overall performance evaluation of hydrological models. J. Hydrol. 2014, 510, 447–458. [Google Scholar] [CrossRef]
- Madsen, H. Automatic calibration of a conceptual rainfall–runoff model using multiple objectives. J. Hydrol. 2000, 235, 276–288. [Google Scholar] [CrossRef]
- Shaikh, M.M.; Lodha, P.; Lalwani, P.; Mehta, D. 2022 Climatic projections of Western India using global and regional climate models. Water Pract. Technol. 2022, 17, 1818–1825. [Google Scholar] [CrossRef]
- Mehta, D.J.; Yadav, S.M. Long-term trend analysis of climate variables for arid and semi-arid regions of an Indian State Rajasthan. Int. J. Hydrol. Sci. Technol. 2022, 13, 191–214. [Google Scholar] [CrossRef]
- Jimeno-Sáez, P.; Senent-Aparicio, J.; Pérez-Sánchez, J.; Pulido-Velazquez, D. A Comparison of SWAT and ANN Models for Daily Runoff Simulation in Different Climatic Zones of Peninsular Spain. Water 2018, 10, 192. [Google Scholar] [CrossRef]
- Noori, N.; Kalin, L. Coupling SWAT and ANN models for enhanced daily streamflow prediction. J. Hydrol. 2016, 533, 141–151. [Google Scholar] [CrossRef]
- Lin, B.; Chen, X.; Yao, H.; Chen, Y.; Liu, M.; Gao, L.; James, A. Analyses of landuse change impacts on catchment runoff using different time indicators based on SWAT model. Ecol. Indic. 2015, 58, 55–63. [Google Scholar] [CrossRef]
- Farley, K.A.; Jobbagy, E.G.; Jackson, R.B. Effects of afforestation on water yield: A global synthesis with implications for policy. Glob. Chang. Biol. 2005, 11, 1565–1576. [Google Scholar] [CrossRef]
- Makwana, J.J.; Tiwari, M.K. Hydrological stream flow modelling using soil and water assessment tool (SWAT) and neural networks (NNs) for the Limkheda watershed, Gujarat, India. Model. Earth Syst. Environ. 2017, 3, 635–645. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development 1. JAWRA J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Costa, R.C.A.; Santos, R.M.B.; Fernandes, L.F.S.; de Melo, M.C.; Valera, C.A.; Junior, R.F.D.V.; Silva, M.M.A.P.d.M.; Pacheco, F.A.L.; Pissarra, T.C.T. Hydrologic Response to Land Use and Land Cover Change Scenarios: An Example from the Paraopeba River Basin Based on the SWAT Model. Water 2023, 15, 1451. [Google Scholar] [CrossRef]
- Marmontel, C.V.F.; Pissarra, T.C.T.; Ranzini, M.; Rodrigues, V.A. Applicability of the SWAT hydrological model in Paraibuna river basin, SP-Brazil. Irriga 2019, 24, 594–609. [Google Scholar] [CrossRef]
- Sheshukov, A.Y.; Douglas-Mankin, K.R.; Sinnathamby, S.; Daggupati, P. Pasture BMP effectiveness using an HRU-based subarea approach in SWAT. J. Environ. Manag. 2016, 166, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Grusson, Y.; Anctil, F.; Sauvage, S.; Pérez, J.M.S. Testing the SWAT Model with Gridded Weather Data of Different Spatial Resolutions. Water 2017, 9, 54. [Google Scholar] [CrossRef]
- DeFries, R.; Eshleman, K.N. Land-use change and hydrologic processes: A major focus for the future. Hydrol. Process. 2004, 18, 2183–2186. [Google Scholar] [CrossRef]
- Kumar, M.; Denis, D.M.; Kundu, A.; Joshi, N.; Suryavanshi, S. Understanding land use/land cover and climate change impacts on hydrological components of Usri watershed, India. Appl. Water Sci. 2022, 12, 39. [Google Scholar] [CrossRef]
- Sulamo, M.A.; Kassa, A.K.; Roba, N.T. Evaluation of the impacts of land use/cover changes on water balance of Bilate watershed, Rift valley basin, Ethiopia. Water Pract. Technol. 2021, 16, 1108–1127. [Google Scholar] [CrossRef]
- Saddique, N.; Mahmood, T.; Bernhofer, C. Quantifying the impacts of land use/land cover change on the water balance in the afforested River Basin, Pakistan. Environ. Earth Sci. 2020, 79, 448. [Google Scholar] [CrossRef]
- Munoth, P.; Goyal, R. Impacts of land use land cover change on runoff and sediment yield of Upper Tapi River Sub-Basin, India. Int. J. River Basin Manag. 2020, 18, 177–189. [Google Scholar] [CrossRef]
- Kumar, N.; Tischbein, B.; Kusche, J.; Beg, M.K.; Bogardi, J.J. Impact of land-use change on the water resources of the Upper Kharun Catchment, Chhattisgarh, India. Reg. Environ. Chang. 2017, 17, 2373–2385. [Google Scholar] [CrossRef]
- Takalaa, W.; Tamamc, D. The effects of land use land cover change on hydrological process of Gilgel Gibe, Omo Gibe Basin, Ethiopia. Int. J. Sci. Eng. Res. 2016, 7, 2020. [Google Scholar]
- Vilaysane, B.; Takara, K.; Luo, P.; Akkharath, I.; Duan, W. Hydrological Stream Flow Modelling for Calibration and Uncertainty Analysis Using SWAT Model in the Xedone River Basin, Lao PDR. Procedia Environ. Sci. 2015, 28, 380–390. [Google Scholar] [CrossRef]
- Murty, P.S.; Pandey, A.; Suryavanshi, S. Application of semi-distributed hydrological model for basin level water balance of the Ken basin of Central India. Hydrol. Process. 2014, 28, 4119–4129. [Google Scholar] [CrossRef]
- Yan, B.; Fang, N.; Zhang, P.; Shi, Z. Impacts of land use change on watershed streamflow and sediment yield: An assessment using hydrologic modelling and partial least squares regression. J. Hydrol. 2013, 484, 26–37. [Google Scholar] [CrossRef]
- Singh, A.; Imtiyaz, M. Application of a Process Based Hydrological Model for Simulating Stream Flow in an Agricultural Watershed of India. In Proceedings of the India Water Week 2012, New Delhi, India, 10–14 April 2012. [Google Scholar]
- Srinivasan, R.; Zhang, X.; Arnold, J. SWAT ungauged: Hydrological budget and crop yield predictions in the Upper Mississippi River Basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Gosain, A.K.; Rao, S.; Basuray, D. Climate Change Impact Assessment on Hydrology of Indian River Basins. Curr. Sci. 2006, 90, 346–353. Available online: http://www.jstor.org/stable/24091868 (accessed on 24 August 2023).
- Paul, M. Impacts of land use and climate changes on hydrological processes in South Dakota Watersheds. Electron. Theses Diss. 2016, 1018. Available online: https://openprairie.sdstate.edu/etd/1018 (accessed on 24 August 2023).
- Chen, J.; Chang, H. Relative impacts of climate change and land cover change on streamflow using SWAT in the Clackamas River Watershed, USA. J. Water Clim. Chang. 2020, 12, 1454–1470. [Google Scholar] [CrossRef]
- Naz, R.; Ashraf, A.; Van der Tol, C.; Aziz, F. Modeling hydrological response to land use/cover change: Case study of Chirah Watershed (Soan River), Pakistan. Arab. J. Geosci. 2020, 13, 1220. [Google Scholar] [CrossRef]
- Fulaji, B.S. Study of Streamflow Response to Land use Land cover Change in the Nethravathi River Basin, India. Ph.D. Thesis, National Institute of Technology Karnataka, Surathkal, India, 15 November 2015. Available online: https://idr.l1.nitk.ac.in/jspui/handle/123456789/14239 (accessed on 24 August 2023).
- Kumar, M.; Mahato, L.L.; Suryavanshi, S.; Singh, S.K.; Kundu, A.; Dutta, D.; Lal, D. Future prediction of water balance using SWAT and CA-Markov methods under recent climate projections: A case study of the Silwani watershed (Jharkhand), India. Environ. Sci. Pollut. Res. 2022, preprint. [Google Scholar] [CrossRef]
- Hengade, N.; I Eldho, T. Assessment of LULC and climate change on the hydrology of Ashti Catchment, India using VIC model. J. Earth Syst. Sci. 2016, 125, 1623–1634. [Google Scholar] [CrossRef]
- Dadhwal, V.K.; Aggarwal, S.P.; Mishra, N. Hydrological Simulation of Mahanadi River basin and Impact of Land Use/Land Cover Change on Surface Runoff Using a Macro Scale Hydrological Model. In Proceedings of the ISPRS TC VII Symposium –100 Years ISPRS, Vienna, Austria, 5–7 July 2010. [Google Scholar]
- Zhang, L.; Nan, Z.; Yu, W.; Ge, Y. Modeling Land-Use and Land-Cover Change and Hydrological Responses under Consistent Climate Change Scenarios in the Heihe River Basin, China. Water Resour. Manag. 2015, 29, 4701–4717. [Google Scholar] [CrossRef]
- Meenu, R.; Rehana, S.; Mujumdar, P.P. Assessment of hydrologic impacts of climate change in Tunga-Bhadra river basin, India with HEC-HMS and SDSM. Hydrol. Process. 2013, 27, 1572–1589. [Google Scholar] [CrossRef]
- Chen, H.; Tong, S.T.; Yang, H.; Yang, Y.J. Simulating the hydrologic impacts of land-cover and climate changes in a semi-arid watershed. Hydrol. Sci. J. 2015, 60, 1739–1758. [Google Scholar] [CrossRef]
- Belay, T.; Mengistu, D.A. Impacts of land use/land cover and climate changes on soil erosion in Muga watershed, Upper Blue Nile basin (Abay), Ethiopia. Ecol. Process. 2021, 10, 68. [Google Scholar] [CrossRef]
- Dwarakish, G.; Ganasri, B. Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geosci. 2015, 1, 1115691. [Google Scholar] [CrossRef]
- Eini, M.R.; Javadi, S.; Shahdany, M.H.; Kisi, O. Comprehensive assessment and scenario simulation for the future of the hydrological processes in Dez river basin, Iran. Water Supply 2021, 21, 1157–1176. [Google Scholar] [CrossRef]
- Li, H.; Yu, C.; Qin, B.; Li, Y.; Jin, J.; Luo, L.; Wu, Z.; Shi, K.; Zhu, G. Modeling the Effects of Climate Change and Land Use/Land Cover Change on Sediment Yield in a Large Reservoir Basin in the East Asian Monsoonal Region. Water 2022, 14, 2346. [Google Scholar] [CrossRef]
- Preetha, P.; Hasan, M. Scrutinizing the Hydrological Responses of Chennai, India Using Coupled SWAT-FEM Model under Land Use Land Cover and Climate Change Scenarios. Land 2023, 12, 938. [Google Scholar] [CrossRef]
- Setyorini, A.; Khare, D.; Pingale, S.M. Simulating the impact of land use/land cover change and climate variability on watershed hydrology in the Upper Brantas basin, Indonesia. Appl. Geomat. 2017, 9, 191–204. [Google Scholar] [CrossRef]
- Pandey, B.K.; Khare, D.; Kawasaki, A.; Meshesha, T.W. Integrated approach to simulate hydrological responses to land use dynamics and climate change scenarios employing scoring method in upper Narmada basin, India. J. Hydrol. 2021, 598, 126429. [Google Scholar] [CrossRef]
- Mensah, J.K.; Ofosu, E.A.; Yidana, S.M.; Akpoti, K.; Kabo-Bah, A.T. Integrated modeling of hydrological processes and groundwater recharge based on land use land cover, and climate changes: A systematic review. Environ. Adv. 2022, 8, 100224. [Google Scholar] [CrossRef]
- Wu, F.; Zhan, J.; Su, H.; Yan, H.; Ma, E. Scenario-Based Impact Assessment of Land Use/Cover and Climate Changes on Watershed Hydrology in Heihe River Basin of Northwest China. Adv. Meteorol. 2015, 2015, 410198. [Google Scholar] [CrossRef]
- Sahu, R.T.; Verma, M.K.; Ahmad, I. Impact of long-distance interaction indicator (monsoon indices) on spatio-temporal variability of precipitation over the Mahanadi River basin. Water Resour. Res. 2023, 59, e2022WR033805. [Google Scholar] [CrossRef]
- Sahu, R.T.; Verma, S.; Kumar, K.; Verma, M.K.; Ahmad, I. Testing some grouping methods to achieve a low error quantile estimate for high resolution (0.25° × 0.25°) precipitation data. J. Phys. Conf. Ser. 2022, 2273, 012017. [Google Scholar] [CrossRef]
- Sahu, R.T.; Verma, M.K.; Ahmad, I. Characterization of precipitation in the subdivisions of the Mahanadi River basin, India. Acta Sci. Agric. 2021, 5, 50–61. [Google Scholar] [CrossRef]
- Sahu, R.T.; Verma, M.K.; Ahmad, I. Some non-uniformity patterns spread over the lower Mahanadi River Basin, India. Geocarto Int. 2021, 37, 8792–8814. [Google Scholar] [CrossRef]
- Verma, S.; Sahu, R.T.; Prasad, A.D.; Verma, M.K. Development of an optimal operating policy of multi-reservoir systems in Mahanadi Reservoir Project Complex, Chhattisgarh. J. Phys. Conf. Ser. 2022, 2273, 012020. [Google Scholar] [CrossRef]
- Verma, S.; Verma, M.K.; Prasad, A.D.; Mehta, D.J.; Islam, M.N. Modeling of uncertainty in the estimation of hydrograph components in conjunction with the SUFI-2 optimization algorithm by using multiple objective functions. Model. Earth Syst. Environ. 2023, 1–19. [Google Scholar] [CrossRef]
- Sahu, R.T.; Verma, S.; Verma, M.K.; Ahmad, I. Characterizing spatiotemporal properties of precipitation in the middle Mahanadi subdivision, India during 1901–2017. Acta Geophys. 2023, 1–16. [Google Scholar] [CrossRef]
- Verma, S.; Prasad, A.D.; Verma, M.K. Optimizing Multi-reservoir Systems with the Aid of Genetic Algorithm: Mahanadi Reservoir Project Complex, Chhattisgarh. In Applied Geography and Geoinformatics for Sustainable Development: Proceedings of ICGGS; Springer International Publishing: Cham, Switzerland, 2022; pp. 35–49. [Google Scholar] [CrossRef]
- Verma, S.; Sahu, R.; Prasad, A.; Verma, M. Reservoir operation optimization using ant colony optimization a case study of mahanadi reservoir project complex Chhattisgarh-India. LARHYSS J. 2023, 73–93. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.D.; Van Griensven, A.; Van Liew, M.W.; et al. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Williams, J.R.; Izaurralde, R.C.; Steglich, E.M. Agricultural policy/environmental extender model. Theor. Doc. 2008, 604, 2008–2017. [Google Scholar]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011; Volume 406, pp. 1–647.
- Chaube, U.C.; Suryavanshi, S.; Nurzaman, L.; Pandey, A. Synthesis of flow series of tributaries in Upper Betwa basin. Int. J. Environ. Sci. 2011, 1, 1459. [Google Scholar]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- LeGates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” Measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Arnold, J.G.; Van Liew, M.W.; Bingner, R.L.; Harmel, R.D.; Veith, T.L. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and water quality models: Performance measures and evaluation criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef]
- Rose, S.; Peters, N.E. Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): A comparative hydrological approach. Hydrol. Process. 2001, 15, 1441–1457. [Google Scholar] [CrossRef]
- Kim, Y.; Engel, B.A.; Lim, K.J.; Larson, V.; Duncan, B. Runoff impacts of land-use change in Indian River Lagoon watershed. J. Hydrol. Eng. 2002, 7, 245–251. [Google Scholar] [CrossRef]
- Huang, H.; Cheng, S.; Wen, J.; Lee, J. Effect of growing watershed imperviousness on hydrograph parameters and peak discharge. Hydrol. Process. 2008, 22, 2075–2085. [Google Scholar] [CrossRef]
- Wang, G.; Yang, H.; Wang, L.; Xu, Z.; Xue, B. Using the SWAT model to assess impacts of land use changes on runoff generation in headwaters. Hydrol. Process. 2014, 28, 1032–1042. [Google Scholar] [CrossRef]
- Wang, R.; Kalin, L.; Kuang, W.; Tian, H. Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama. Hydrol. Process. 2014, 28, 5530–5546. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, Y.; Liu, G.; Chen, L. Impact of land-use change on hydrological processes in the Maying River basin, China. Sci. China Ser. D Earth Sci. 2006, 49, 1098–1110. [Google Scholar] [CrossRef]
- Choi, W.; Deal, B.M. Assessing hydrological impact of potential land use change through hydrological and land use change modeling for the Kishwaukee River basin (USA). J. Environ. Manag. 2008, 88, 1119–1130. [Google Scholar] [CrossRef]
References | The Study Area (River Basin/Watershed) | Model Utilization |
---|---|---|
Kumar et al. [37] | Usri, India | Quantification of LULC change under different scenarios |
Sulamo et al. [38] | Bilate, Ethiopia | LULC change and impact analysis on hydrological components |
Saddique et al. [39] | Jhelum, Pakistan | Spatio-temporal LULC change analysis during 2001–2018 |
Munoth and Goyal [40] | The upper part of Tapi, India | Runoff and sediment yield estimation using different land uses |
Kumar et al. [37] | Tons, India | Simulate the impacts of LULC changes on hydrological responses |
Kumar et al. [41] | Upper Kharun Catchment (UKC), India | LULC impact assessment on water resources |
Takalaa and Tamamc [42] | Gilgel gibe, Ethiopia | Simulate the hydrological response during 1987–2010 |
Vilaysane et al. [43] | Xedone, Japan | Check the model’s efficiency and suitability to simulate stream flow |
Murty et al. [44] | Ken, India | Quantifying the hydrological response |
Yan et al. [45] | Upper Du, China | LULC change quantification on streamflow |
Singh and Imtiyaz [46] | Eastern Nagwa, India | Simulate monthly runoff |
Srinivasan et al. [47] | The upper portion of the Mississippi, USA | Estimate the hydrological budget and crop water availability |
Gosain et al. [48] | Ganga, Cavery, Godavari, Krishna, and Mahanadi River basins out of 12 major river basins | Stream flow processes |
Paul [49] | South Dakota Watersheds | Assessing the effects of climate and land use changes on the hydrology of South Dakota’s watersheds through the utilization of the Soil and Water Assessment Tool (SWAT). |
Chen and Chang [50] | Clackamas River Watershed, USA | To comprehend the effects of changes in climate and land cover over time and space on hydrological processes. |
Naz et al. [51] | Chirah Watershed, Soan River, Pakistan | To evaluate how changes in land use and land cover (LULC) affect the hydrological processes within the watershed by employing the Soil and Water Assessment Tool (SWAT). |
Fulaji [52] | Nethravathi River Basin, India | The Soil and Water Assessment Tool (SWAT) was employed to develop a hydrological model for analyzing the impact of changes in land use and land cover on the flow of streams within the Nethravathi basin. |
Kumar et al. [53] | Silwani watershed in Jharkhand, India | To project the future water balance of the Silwani watershed in Jharkhand, India, considering the integrated impacts of land use changes and climate variations. This will be achieved by utilizing the Soil and Water Assessment Tool (SWAT) in combination with Cellular Automata (CA) Markov models. |
Hengade and Eldho [54] | The Ashti catchment constitutes a sub-catchment within the broader basin of the Godavari River. | Evaluate the impact of changes in land use and land cover (LULC) on the hydrology of a watershed concerning climate change. |
Dadhwal et al. [55] | Mahanadi River Basin Orissa, India | The hydrology of the Mahanadi River basin in India was simulated using the Variable Infiltration Capacity (VIC) macro-scale hydrological model. |
Zhang et al. [56] | Heihe River Basin (HRB), China | This research examined the effects of consistent climate change scenarios (A1B and B1) on land-use and land-cover change (LUCC) as well as hydrological responses within the Heihe River Basin (HRB). |
Meenu et al. [57] | Tunga-Bhadra River Basin, India | This research assesses the effects of potential climate change scenarios on the hydrological conditions within the Tunga-Bhadra River’s upstream catchment area, located before the Tungabhadra dam. |
Chen et al. [58] | Lower Virgin River (LVR) Watershed, Nevada, USA | This study employs a cellular model to investigate how alterations in climate and land cover affect the hydrology of the semi-arid Lower Virgin River (LVR) watershed, situated upstream of Lake Mead in Nevada, USA. |
Belayand Mengistu [59] | Muga watershed, Ethiopia | This study focused on evaluating soil erosion within the Muga watershed of the Upper Blue Nile Basin (Abay), considering both past and projected future climate conditions and changes in land use and land cover (LULC). |
Dwarakish and Ganasri [60] | - | To assess the effects of alterations in land use on hydrology and to appraise diverse methods of scenario modeling. |
Eini et al. [61] | Dez River Basin, Iran | The impact of changes in land use and land cover (LULC) due to climate change on streamflow and sediment yield has been assessed in the Dez River Basin, located in the southwestern region of Iran. |
Li et al. [62] | Xin’anjiang Reservoir Basin (XRB), China | This study focuses on analyzing how alterations in both climate patterns and land use/land cover affect hydrological processes and sediment yield within the Xin’anjiang Reservoir Basin (XRB), located in southeastern China. |
Preetha and Hasan [63] | River catchments, Chennai, India | In this research, a combined simulation model of SWAT-FEM was utilized to assess how changes in land use, land cover, and climate scenarios could affect water resources within river catchments situated in Chennai, India. |
Setyorini et al. [64] | Upper Brantas River Basin, Indonesia | In this research, the effects of changes in land use/land cover (LULC) and variations in climate on hydrological processes were evaluated and modeled. By employing the Soil and Water Assessment Tool (SWAT) to simulate these processes within the Upper Brantas River Basin, situated in Indonesia. |
Pandey et al. [65] | Upper Narmada Basin, India | This study shows how to model hydrological reactions in the Upper Narmada Basin in India by taking into account the changing dynamics of the LULC and possible climate changes. |
Mensah et al. [66] | - | The objective of this systematic review was to evaluate the effectiveness of the integrated modeling approach in analyzing hydrological processes and groundwater recharge, considering the influence of LULC and climate change. |
Wu et al. [67] | Heihe River Basin (HRB), China | This study assessed the effects of possible shifts in climate and land use on the hydrology of the Heihe River Basin in Northwestern China by incorporating SWAT and a downscaling model. |
Data Type | Descriptions | Years/Periods | Sources |
---|---|---|---|
Digital elevation model (DEM) | Shutter Radar Topographic Mission (SRTM) of (30 m resolution) | - | (https://www.opentopography.org/ accessed on 10 September 2022) |
Land use maps | (30 m resolution) | 1985, 1995, 2005 and 2014 | Landsat-8 images, USGS Earth Explorer |
Soil map | Raster resolution (1:50,000) | - | National Bureau of Soil Survey-Land Use Planning, Nagpur (NBSS-LUP) |
Weather data | Daily basis | 1985–2020 | Indian Meteorological Department, Pune, India |
Hydrological data | Monthly discharge at the reservoir site | 1985–2020 | Mahanadi Reservoir Project complex in Rudri division, Dhamtari, Chhattisgarh |
Climatic Condition | Scenario Used | Land Use | Duration (Rainfall, Tmax., Tmin.) |
---|---|---|---|
C1 | S1 | 1985 | 1985–1996 |
S2 | 1995 | 1985–1996 | |
S3 | 2005 | 1985–1996 | |
S4 | 2014 | 1985–1996 | |
C2 | S5 | 1985 | 1997–2008 |
S6 | 1995 | 1997–2008 | |
S7 | 2005 | 1997–2008 | |
S8 | 2014 | 1997–2008 | |
C3 | S9 | 1985 | 2009–2020 |
S10 | 1995 | 2009–2020 | |
S11 | 2005 | 2009–2020 | |
S12 | 2014 | 2009–2020 |
Parameters | Methods | Descriptions | Parameter Range | Fitted Value | |
---|---|---|---|---|---|
Initial | Final | ||||
CN2 | Relative | Curve number | −0.30 | 0.30 | 0.36 |
ALPHA_BF | Replace | Base flow alpha factor | 0 | 1 | 0.56 |
GW_DELAY | Replace | Groundwater delay | 40 | 480 | 242.12 |
GWQMN | Absolute | Shallow aquifer threshold depth of water | 0 | 4500 | 1.01 |
GW_REVAP | Replace | Groundwater “Revap” coefficient | 0.03 | 0.3 | 0.15 |
ESCO | Replace | Evaporation soil compensation factor | 0.02 | 1 | 0.90 |
CH_N2 | Replace | Manning’s roughness | 0 | 0.3 | −0.08 |
CH_K2 | Replace | Effective hydraulic conductivity | 5 | 130 | 122.15 |
ALPHA_BNK | Replace | Base flow alpha factor for bank storage | 0 | 1 | 0.009 |
SOL_AWC | Relative | Available water capacity | −0.25 | 0.25 | 0.10 |
SOL_K | Relative | Soil hydraulic conductivity | −0.8 | 0.8 | −0.05 |
SOL_BD | Relative | The density of soil mass | −0.5 | 0.7 | 0.80 |
HRU_SLP | Relative | Slope steepness | 0 | 0.2 | 0.06 |
OV_N | Relative | Overland Manning’s roughness | 0.05 | 35 | −0.15 |
SLSUBBSN | Relative | Slope length | 0 | 0.2 | 0.02 |
Statistical Indices | LULC Scenarios | |||||
---|---|---|---|---|---|---|
Criteria for Satisfactory | 1985 | 1995 | 2005 | 2014 | ||
p-factor | Calibration | >0.7 | 0.91 | 0.92 | 0.88 | 0.88 |
Validation | 0.98 | 1.00 | 0.86 | 1.00 | ||
r-factor | Calibration | <1.5 | 1.01 | 1.00 | 1.09 | 1.07 |
Validation | 1.20 | 0.85 | 0.87 | 0.93 | ||
R2 | Calibration | >0.5 | 0.86 | 0.84 | 0.88 | 0.85 |
Validation | 0.82 | 0.82 | 0.82 | 0.81 | ||
NSE | Calibration | >0.5 | 0.85 | 0.83 | 0.85 | 0.83 |
Validation | 0.72 | 0.74 | 0.74 | 0.75 | ||
RSR | Calibration | ≤0.7 | 0.39 | 0.42 | 0.39 | 0.41 |
Validation | 0.69 | 0.52 | 0.51 | 0.50 | ||
PBIAS | Calibration | <±25 | 1.90 | 2.90 | 8.40 | 4.30 |
Validation | 6.10 | 2.90 | 1.20 | 3.80 |
LULC Classes | Area 1985 (%) | Area 1995 (%) | RoC (%) | Area 1995 (%) | Area 2005 (%) | RoC (%) | Area 2005 (%) | Area 2014 (%) | RoC (%) |
---|---|---|---|---|---|---|---|---|---|
FRSD | 45.36 | 43.74 | −3.57 | 43.74 | 43.20 | −1.23 | 43.20 | 42.07 | −2.61 |
AGRR | 38.95 | 39.83 | 2.26 | 39.83 | 40.44 | 1.53 | 40.44 | 42.73 | 5.66 |
URBN | 0.25 | 0.29 | 1.00 | 0.29 | 0.32 | 10.34 | 0.32 | 0.46 | 43.75 |
FRST | 3.72 | 4.11 | 10.48 | 4.11 | 4.14 | 0.72 | 4.14 | 5.01 | 21.01 |
RNGB | 2.92 | 3.28 | 12.32 | 3.28 | 3.16 | −3.65 | 3.16 | 1.80 | −43.03 |
BARR | 0.60 | 0.63 | 5.00 | 0.63 | 0.66 | 4.76 | 0.66 | 0.9 | 36.36 |
AGRL | 1.06 | 0.92 | −13.20 | 0.92 | 0.92 | 0.00 | 0.92 | 4.87 | 81.07 |
WATR | 3.07 | 3.08 | 2.28 | 3.08 | 3.10 | 0.64 | 3.10 | 3.67 | 18.38 |
FRSE | 4.07 | 4.07 | 0.00 | 4.07 | 4.07 | 0.00 | 4.07 | 6.74 | 65.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Verma, S.; Verma, M.K.; Prasad, A.D.; Mehta, D.; Azamathulla, H.M.; Muttil, N.; Rathnayake, U. Simulating the Hydrological Processes under Multiple Land Use/Land Cover and Climate Change Scenarios in the Mahanadi Reservoir Complex, Chhattisgarh, India. Water 2023, 15, 3068. https://doi.org/10.3390/w15173068
Verma S, Verma MK, Prasad AD, Mehta D, Azamathulla HM, Muttil N, Rathnayake U. Simulating the Hydrological Processes under Multiple Land Use/Land Cover and Climate Change Scenarios in the Mahanadi Reservoir Complex, Chhattisgarh, India. Water. 2023; 15(17):3068. https://doi.org/10.3390/w15173068
Chicago/Turabian StyleVerma, Shashikant, Mani Kant Verma, A. D. Prasad, Darshan Mehta, Hazi Md Azamathulla, Nitin Muttil, and Upaka Rathnayake. 2023. "Simulating the Hydrological Processes under Multiple Land Use/Land Cover and Climate Change Scenarios in the Mahanadi Reservoir Complex, Chhattisgarh, India" Water 15, no. 17: 3068. https://doi.org/10.3390/w15173068
APA StyleVerma, S., Verma, M. K., Prasad, A. D., Mehta, D., Azamathulla, H. M., Muttil, N., & Rathnayake, U. (2023). Simulating the Hydrological Processes under Multiple Land Use/Land Cover and Climate Change Scenarios in the Mahanadi Reservoir Complex, Chhattisgarh, India. Water, 15(17), 3068. https://doi.org/10.3390/w15173068