Water Quality Modeling and Monitoring
Author Contributions
Conflicts of Interest
References
- Juwana, I.; Rahardyan, N.A.; Permadi, D.A.; Sutadian, A.D. Uncertainty and Sensitivity Analysis of the Effective Implementation of Water Quality Improvement Programs for Citarum River, West Java, Indonesia. Water 2022, 14, 4077. [Google Scholar] [CrossRef]
- Schussler, J.C.; Perez, M.A.; Whitman, J.B.; Cetin, B. Field-Monitoring Sediment Basin Performance during Highway Construction. Water 2022, 14, 3858. [Google Scholar] [CrossRef]
- Gilliam, F.S.; Hardin, J.W.; Williams, J.A.; Lackaye, R.L. The University of West Florida Campus Ecosystem Study: Spatial and Temporal Variation in Water Quality at Thompson Bayou. Water 2022, 14, 2916. [Google Scholar] [CrossRef]
- Guo, Y.; Deng, R.; Li, J.; Hua, Z.; Wang, J.; Zhang, R.; Liang, Y.; Tang, Y. Remote Sensing Retrieval of Total Nitrogen in the Pearl River Delta Based on Landsat8. Water 2022, 14, 3710. [Google Scholar] [CrossRef]
- Masoud, A.A. On the Retrieval of the Water Quality Parameters from Sentinel-3/2 and Landsat-8 OLI in the Nile Delta Coastal and Inland Waters. Water 2022, 14, 593. [Google Scholar] [CrossRef]
- Poletaeva, V.I.; Pastukhov, M.V.; Dolgikh, P.G. Trace Element Compositions and Water Quality Assessment in the Angara River Source (Baikal Region, Russia). Water 2022, 14, 3564. [Google Scholar] [CrossRef]
- Rocha, M.J.; Silva, F.; Rocha, E. Annual Evaluation of 17 Oestrogenic Endocrine Disruptors and Hazard Indexes in the Douro River Estuary—The Atlantic Discharge of the Highest-Flow River of Southwestern Europe. Water 2022, 14, 2046. [Google Scholar] [CrossRef]
- El Osta, M.; Masoud, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia. Water 2022, 14, 483. [Google Scholar] [CrossRef]
- Jeon, M.; Guerra, H.B.; Choi, H.; Kim, L.-H. Long-Term Monitoring of an Urban Stormwater Infiltration Trench in South Korea with Assessment Using the Analytic Hierarchy Process. Water 2022, 14, 3529. [Google Scholar] [CrossRef]
- Juncosa, R.; Cereijo, J.L.; Vázquez, R. Physicochemical Parameters in the Generation of Turbidity Episodes in a Water Supply Distribution System. Water 2022, 14, 3383. [Google Scholar] [CrossRef]
- Anwar, S.; Khalil, B.; Seddik, M.; Eltahan, A.; Saadi, A.E. An Evaluation of Trous-Based Record Extension Techniques for Water Quality Record Extension. Water 2022, 14, 2264. [Google Scholar] [CrossRef]
- Lencha, S.M.; Ulsido, M.D.; Tränckner, J. Estimating Point and Nonpoint Source Pollutant Flux by Integrating Various Models, a Case Study of the Lake Hawassa Watershed in Ethiopia’s Rift Valley Basin. Water 2022, 14, 1569. [Google Scholar] [CrossRef]
- Qi, S.; He, M.; Bai, Z.; Ding, Z.; Sandhu, P.; Zhou, Y.; Namadi, P.; Tom, B.; Hoang, R.; Anderson, J. Multi-Location Emulation of a Process-Based Salinity Model Using Machine Learning. Water 2022, 14, 2030. [Google Scholar] [CrossRef]
- Grendaitė, D.; Stonevičius, E. Machine Learning Algorithms for Biophysical Classification of Lithuanian Lakes Based on Remote Sensing Data. Water 2022, 14, 1732. [Google Scholar] [CrossRef]
- Shamsuddin, I.I.S.; Othman, Z.; Sani, N.S. Water Quality Index Classification Based on Machine Learning: A Case from the Langat River Basin Model. Water 2022, 14, 2939. [Google Scholar] [CrossRef]
- Lemaire, G.G.; Carnohan, S.A.; Grand, S.; Mazel, V.; Bjerg, P.L.; McKnight, U.S. Data-Driven System Dynamics Model for Simulating Water Quantity and Quality in Peri-Urban Streams. Water 2021, 13, 3002. [Google Scholar] [CrossRef]
- dos Santos, G.M.A.D.A.; Neves, A.A.; de Queiroz, M.E.L.R.; de Queiroz, V.T.; Ribeiro, C.A.A.S.; Reis, E.L.; Paiva, A.C.P.; de Carvalho, J.R.; da Silva, S.F.; Juvanhol, R.S.; et al. Potential Risk of Agrochemical Leaching in Areas of Edaphoclimatic Suitability for Coffee Cultivation. Water 2022, 14, 1515. [Google Scholar] [CrossRef]
- Kim, J.; Kwak, J.; Ahn, J.M.; Kim, H.; Jeon, J.; Kim, K. Oscillation Flow Dam Operation Method for Algal Bloom Mitigation. Water 2022, 14, 1315. [Google Scholar] [CrossRef]
- Sokáč, M.; Velísková, Y. Impact of Sediment Layer on Longitudinal Dispersion in Sewer Systems. Water 2021, 13, 3168. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Hu, J.; Sharma, S. Water Quality Modeling and Monitoring. Water 2023, 15, 3216. https://doi.org/10.3390/w15183216
Fang X, Hu J, Sharma S. Water Quality Modeling and Monitoring. Water. 2023; 15(18):3216. https://doi.org/10.3390/w15183216
Chicago/Turabian StyleFang, Xing, Jiangyong Hu, and Suresh Sharma. 2023. "Water Quality Modeling and Monitoring" Water 15, no. 18: 3216. https://doi.org/10.3390/w15183216
APA StyleFang, X., Hu, J., & Sharma, S. (2023). Water Quality Modeling and Monitoring. Water, 15(18), 3216. https://doi.org/10.3390/w15183216