Evolutionary Characteristics of Daytime and Nocturnal Precipitation Heterogeneity in Gansu Province, Northwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Methods
3. Results and Discussion
3.1. Basic Characteristics of Precipitation
3.2. Spatiotemporal Variation of PCD
3.3. PCP Distribution Pattern
4. Conclusions
- (1)
- Annual precipitation in Gansu province varies greatly, but nocturnal precipitation is generally more dominant, and its proportion is generally positively correlated with the former. The trend in humidification is obvious, and is mainly caused by the increase in the frequency of precipitation; both of these have a stronger performance during the day.
- (2)
- The majority of PCD is located between 0.55 and 0.75, showing a basic distribution pattern for daytime greater than the nocturnal, higher values, and stronger interannual fluctuations in arid areas. The decreasing trend for PCD is very clear and highly consistent, especially in the high-altitude area, and the increase in precipitation in the dry season and the improvement in precipitation uniformity in the wet season play a key role.
- (3)
- PCP often fluctuates slightly around the 39th–41st pentad (mid-late July), but it also illustrates the general rule that the value of daytime is earlier than that of nighttime, and the interannual variability is larger in arid areas. PCP has shown a relatively obvious advance trend in a few regions, and this is because the prominent and complex changes in the monthly precipitation distribution pattern have not been fully reflected.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2023; pp. 4–114. [Google Scholar]
- CMA Climate Change Centre. Blue Book on Climate Change in China (2023); Science Press: Beijing, China, 2023; pp. 1–108. [Google Scholar]
- Dai, A.G. Hydroclimatic trends during 1950–2018 over global land. Clim. Dynam. 2021, 56, 4027–4049. [Google Scholar] [CrossRef]
- Zeng, Z.Z.; Piao, S.L.; Li, L.Z.X.; Wang, T.; Ciais, P.; Lian, X.; Yang, Y.T.; Mao, J.F.; Shi, X.Y.; Myneni, R.B. Natural and managed watersheds show similar responses to recent climate change. J. Clim. 2018, 31, 2633–2650. [Google Scholar] [CrossRef]
- Ficklin, D.L.; Abatzoglou, J.T.; Robeson, S.M.; Null, S.E.; Knouft, J.H. Impact of Earth greening on the terrestrial water cycle. Proc. Natl. Acad. Sci. USA 2018, 115, 8553–8557. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.X.; Zhou, T.J.; Zhang, L.X.; Zou, L.W. Future Intensification of the Water Cycle with an Enhanced Annual Cycle over Global Land Monsoon Regions. J. Clim. 2019, 32, 5437–5452. [Google Scholar] [CrossRef]
- Min, R.Y.; Gu, X.H.; Guan, Y.S.; Zhang, X. Increasing likelihood of global compound hot-dry extremes from temperature and runoff during the past 120 years. J. Hydrol. 2023, 621, 129553. [Google Scholar] [CrossRef]
- Ghanbari, M.; Arabi, M.; Georgescu, M.; Broadbent, A.M. The role of climate change and urban development on compound dry-hot extremes across US cities. Nat. Commun. 2023, 14, 3509. [Google Scholar] [CrossRef]
- Yin, J.B.; Gentine, P.; Slater, L.; Gu, L.; Pokhrel, Y.; Hanasaki, N.; Guo, S.L.; Xiong, L.H.; Schlenker, W. Future socio-ecosystem productivity threatened by compound drought–heatwave events. Nat. Sustain. 2023, 6, 259–272. [Google Scholar] [CrossRef]
- Sun, P.; Zou, Y.F.; Yao, R.; Ma, Z.C.; Bian, Y.J.; Ge, C.H.; Lv, Y.F. Compound and successive events of extreme precipitation and extreme runoff under heatwaves based on CMIP6 models. Sci. Total Environ. 2023, 878, 162980. [Google Scholar] [CrossRef]
- Hu, L.; Zhang, Q.; Wang, G.; Singh, V.P.; Wu, W.H.; Fan, K.K.; Shen, Z.X. Flood disaster risk and socioeconomy in the Yellow River Basin, China. J. Hydrol. Reg. Stud. 2022, 44, 101272. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Sang, Y.F.; Wang, B.; Lutz, A.; Hu, S.; Chen, D.L.; Singh, V.P. Heterogeneity in spatiotemporal variability of High Mountain Asia’s runoff and its underlying mechanisms. Water Resour. Res. 2023, 59, 032721. [Google Scholar] [CrossRef]
- Wang, Q.; Cai, X.T.; Tang, J.Y.; Yang, L.; Wang, J.; Xu, Y.P. Climate feedbacks associated with land-use and land-cover change on hydrological extremes over the Yangtze River Delta Region, China. J. Hydrol. 2023, 623, 129855. [Google Scholar] [CrossRef]
- Shi, W.J.; Wang, M.L.; Liu, Y.T. Crop yield and production responses to climate disasters in China. Sci. Total Environ. 2021, 750, 141147. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Hajat, S.; Zhao, L.; Chen, H.Q.; Cheng, L.L.; Ren, M.; Gu, K.Y.; Ji, J.S.; Liang, W.N.; Huang, C.R. The burden of heatwave-related preterm births and associated human capital losses in China. Nat. Commun. 2022, 13, 7565. [Google Scholar] [CrossRef]
- Sun, Q.H.; Zhang, X.B.; Zwiers, F.; Westra, S.; Alexander, L.V. A Global, Continental, and Regional Analysis of Changes in Extreme Precipitation. J. Clim. 2021, 34, 243–258. [Google Scholar] [CrossRef]
- Zhang, M.; Yu, H.P.; King, A.D.; Wei, Y.; Huang, J.P.; Ren, Y. Greater probability of extreme precipitation under 1.5 °C and 2 °C warming limits over East-Central Asia. Clim. Chang. 2020, 162, 603–619. [Google Scholar] [CrossRef]
- Wei, W.; Zou, S.; Duan, W.L.; Chen, Y.N.; Li, S.; Zhou, Y.Q. Spatiotemporal variability in extreme precipitation and associated large-scale climate mechanisms in Central Asia from 1950 to 2019. J. Hydrol. 2023, 620, 129417. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.S.; Ciais, P.; Peñuelas, J. Decreasing rainfall frequency contributes to earlier leaf onset in northern ecosystems. Nat. Clim. Chang. 2022, 12, 386–392. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2021; pp. 3–1888. [Google Scholar]
- Knutson, T.R.; Zeng, F.R. Model Assessment of Observed Precipitation Trends over Land Regions: Detectable Human Influences and Possible Low Bias in Model Trends. J. Clim. 2018, 31, 4617–4637. [Google Scholar] [CrossRef]
- Benestad, R.E.; Parding, K.M.; Erlandsen, H.B.; Mezghani, A. A simple equation to study changes in rainfall statistics. Environ. Res. Lett. 2019, 14, 084017. [Google Scholar] [CrossRef]
- Pfahl, S.; O’Gorman, P.A.; Fischer, E.M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Berg, P.; Moseley, C.; Haerter, J.O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 2013, 6, 181–185. [Google Scholar] [CrossRef]
- Zhai, P.M.; Zhang, X.B.; Wan, H.; Pan, X.H. Trends in Total Precipitation and Frequency of Daily Precipitation Extremes over China. J. Clim. 2005, 18, 1096–1108. [Google Scholar] [CrossRef]
- Chen, F.R.; Gao, Y.Q. Evaluation of precipitation trends from high-resolution satellite precipitation products over Mainland China. Clim. Dynam. 2018, 51, 3311–3331. [Google Scholar] [CrossRef]
- Deng, H.J.; Pepin, N.C.; Chen, Y.N. Changes of snowfall under warming in the Tibetan Plateau. J. Geophys. Res. Atmos. 2017, 122, 7323–7341. [Google Scholar] [CrossRef]
- Fu, G.B.; Yu, J.J.; Yu, X.B.; Ouyang, R.L.; Zhang, Y.C.; Wang, P.; Liu, W.B.; Min, L.L. Temporal variation of extreme rainfall events in China, 1961–2009. J. Hydrol. 2013, 487, 48–59. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, J.H.; Wang, W.; Ma, P.L.; Lu, G.Y.; Liu, X.Y.; Yu, H.P.; Fang, F. Climatic warming and humidification in the arid region of Northwest China: Multi-scale characteristics and impacts on ecological vegetation. J. Meteorol. Res. 2021, 35, 113–127. [Google Scholar] [CrossRef]
- You, Q.L.; Kang, S.C.; Aguilar, E.; Pepin, N.; Flügel, W.A.; Yan, Y.P.; Xu, Y.W.; Zhang, Y.J.; Huang, J. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961–2003. Clim. Dynam. 2011, 36, 2399–2417. [Google Scholar] [CrossRef]
- Shang, H.; Xu, M.; Zhao, F.; Tijjani, S.B. Spatial and Temporal Variations in Precipitation Amount, Frequency, Intensity, and Persistence in China, 1973–2016. J. Hydrometeorol. 2019, 20, 2215–2227. [Google Scholar] [CrossRef]
- Day, J.A.; Fung, I.; Liu, W.H. Changing character of rainfall in eastern China, 1951–2007. Proc. Natl. Acad. Sci. USA 2018, 115, 2016–2021. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.Q.; Guo, E.L.; Zhao, C.L.; Cao, T.H. Spatial and temporal variations of precipitation concentration and their relationships with large-scale atmospheric circulations across Northeast China. Atmos. Res. 2019, 222, 62–73. [Google Scholar] [CrossRef]
- Du, W.L.; Guo, E.L.; Wang, A.Y.; Tong, Z.J.; Liu, X.P.; Zhang, J.Q.; Guna, A. Spatiotemporal variation in precipitation concentration and its potential relationship with drought under different scenarios in Inner Mongolia, China. Int. J. Climatol. 2022, 42, 7648–7667. [Google Scholar] [CrossRef]
- Xie, Y.Y.; Liu, S.Y.; Fang, H.Y.; Ding, M.H.; Liu, D.F. A study on the precipitation concentration in a Chinese region and its relationship with teleconnections indices. J. Hydrol. 2022, 612, 128203. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, Q.; Liu, K.L. Mutation Characteristics of Precipitation Concentration Spatiotemporal Variation and Its Potential Correlation with Low-Frequency Climate Factors in the LRB Area from 1960 to 2020. Water 2023, 15, 955. [Google Scholar] [CrossRef]
- Du, M.; Huang, S.Z.; Leng, G.Y.; Huang, Q.; Guo, Y.; Jiang, J.H. Multi-timescale-based precipitation concentration dynamics and their asymmetric impacts on dry and wet conditions in a changing environment. Atmos. Res. 2023, 291, 106821. [Google Scholar] [CrossRef]
- Cui, H.; Jiang, S.H.; Ren, L.L.; Xiao, W.H.; Yuan, F.; Wang, M.H.; Wei, L.Y. Dynamics and potential synchronization of regional precipitation concentration and drought-flood abrupt alternation under the influence of reservoir climate. J. Hydrol. Reg. Stud. 2022, 42, 101147. [Google Scholar] [CrossRef]
- Deng, H.J.; Pepin, N.C.; Chen, Y.N.; Guo, B.; Zhang, S.H.; Zhang, Y.Q.; Chen, X.W.; Gao, L.; Liu, M.B.; Chen, Y. Dynamics of Diurnal Precipitation Differences and Their Spatial Variations in China. J. Appl. Meteorol. Clim. 2022, 61, 1015–1027. [Google Scholar] [CrossRef]
- Zhu, S.X.; Liu, C.T.; Cao, J.; Lavigne, T. Diurnal Precipitation Features over Complex Terrains along the Yangtze River in China Based on Long-Term TRMM and GPM Radar Products. Remote Sens. 2023, 15, 3451. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, Y.G.; Zhou, G.B.; Zhu, Y.; Liu, C.; Liu, Y. Diurnal variations of rainfall affected by complex topography based on high-density observation in Chongqing over southwest China. Theor. Appl. Climatol. 2022, 148, 1373–1394. [Google Scholar] [CrossRef]
- Zhang, L.J.; Qian, Y.F. Annual distribution features of precipitation in China and their interannual variations. Acta Meteorol. Sin. 2003, 17, 146–163. [Google Scholar]
- Gerardo, N.G. Comparison of the behavior of the precipitation concentration index on global and local scale. Theor. Appl. Climatol. 2020, 139, 631–638. [Google Scholar]
- Huang, Y.; Wang, H.; Xiao, W.H.; Chen, L.H.; Yang, H. Spatiotemporal characteristics of precipitation concentration and the possible links of precipitation to monsoons in China from 1960 to 2015. Theor. Appl. Climatol. 2019, 138, 135–152. [Google Scholar] [CrossRef]
- Li, C.; Zhang, H.B.; Singh, V.P.; Fan, J.J.; Wei, X.W.; Yang, J.T.; Wei, X.C. Investigating variations of precipitation concentration in the transitional zone between Qinling Mountains and Loess Plateau in China: Implications for regional impacts of AO and WPSH. PLoS ONE 2020, 15, e0238709. [Google Scholar] [CrossRef] [PubMed]
Station | Elevation /m | Average Annual Precipitation/mm | Precipitation Amount | Precipitation Frequency | ||||
---|---|---|---|---|---|---|---|---|
Nocturnal | Daytime | Daily | Nocturnal | Daytime | Daily | |||
Wushaoling | 3045 | 397.5 | 0.50 *** | 0.54 *** | 0.59 *** | 0.59 *** | 0.56 *** | 0.61 *** |
Hezuo | 2910 | 525.2 | 0.42 ** | 0.41 ** | 0.50 *** | 0.42 ** | 0.57 *** | 0.50 *** |
Yongchang | 1977 | 208.4 | 0.39 ** | 0.45 *** | 0.50 *** | 0.43 ** | 0.46 *** | 0.46 *** |
Maqu | 3471 | 578.3 | 0.34 * | 0.53 *** | 0.49 *** | 0.53 *** | 0.62 *** | 0.56 *** |
Jiuquan | 1477 | 91.4 | 0.29 * | 0.31 * | 0.35 * | 0.43 ** | 0.46 *** | 0.47 *** |
Wuwei | 1532 | 168.5 | 0.39 ** | 0.33 * | 0.39 ** | 0.32 * | 0.36 ** | |
Huajialing | 2451 | 460.7 | 0.41 ** | 0.33 * | 0.53 *** | 0.52 *** | ||
Gaotai | 1332 | 111.2 | 0.27 * | 0.35 * | 0.54 *** | 0.51 *** | ||
Minxian | 2315 | 561.5 | 0.30 * | 0.32 * | 0.33 * | 0.44 ** | ||
Zhangye | 1461 | 129.8 | 0.38 ** | 0.41 ** | 0.43 ** | |||
Linxia | 1917 | 500.1 | 0.32 * | 0.45 *** | 0.38 ** | |||
Yuzhong | 1874 | 373.9 | 0.33 * | 0.38 ** | 0.39 ** | |||
Minqin | 1368 | 116.9 | 0.29 * | 0.39 ** | 0.35 * | |||
Xifeng | 1421 | 538.5 | 0.28 * | 0.41 ** | 0.34 * | |||
Huanxian | 1256 | 419.4 | 0.37 ** | 0.30 * | 0.30 * | |||
Kongtong | 1347 | 494.4 | 0.31 * | 0.30 * | 0.28 * | |||
Gaolan | 1669 | 250.9 | 0.36 ** | 0.39 ** | ||||
Lintao | 1894 | 503.9 | 0.34 * | 0.29 * | ||||
Jingtai | 1631 | 189.4 | 0.33 * | |||||
Maiji | 1085 | 512.4 | 0.28 * | |||||
Mazongshan | 1770 | 69.1 | ||||||
Jingyuan | 1398 | 227.4 | ||||||
Wudu | 1079 | 468.3 |
Station | Elevation/m | Nocturnal | Daytime | Daily |
---|---|---|---|---|
Wushaoling | 3045 | y = −0.0056x + 11.925 R2 = 0.45 *** | y = −0.0038x + 8.312 R2 = 0.35 *** | y = −0.0046x + 9.786 R2 = 0.43 *** |
Huajialing | 2451 | y = −0.0045x + 9.568 R2 = 0.34 *** | y = −0.0043x + 9.199 R2 = 0.28 *** | y = −0.0042x + 8.954 R2 = 0.35 *** |
Hezuo | 2910 | y = −0.0045x + 9.605 R2 = 0.30 *** | y = −0.0027x + 6.031 R2 = 0.29 *** | y = −0.0038x + 8.249 R2 = 0.35 *** |
Maqu | 3471 | y = −0.0034x + 7.387 R2 = 0.29 *** | y = −0.0033x + 7.183 R2 = 0.32 *** | y = −0.0033x + 7.227 R2 = 0.34 *** |
Gaotai | 1332 | y = −0.0053x + 11.192 R2 = 0.20 *** | y = −0.0048x + 10.186 R2 = 0.22 *** | y = −0.0052x + 10.932 R2 = 0.31 *** |
Minxian | 2315 | y = −0.0023x + 5.170 R2 = 0.15 ** | y = −0.0023x + 5.239 R2 = 0.28 *** | y = −0.0022x + 4.989 R2 = 0.24 *** |
Yongchang | 1977 | y = −0.0032x + 7.115 R2 = 0.18 ** | y = −0.0034x + 7.449 R2 = 0.22 *** | y = −0.0032x + 7.117 R2 = 0.22 *** |
Mazongshan | 1770 | y = −0.0053x + 11.200 R2 = 0.17 ** | y = −0.0042x + 9.092 R2 = 0.23 *** | y = −0.0045x + 9.703 R2 = 0.25 *** |
Jiuquan | 1477 | y = −0.0065x + 13.658 R2 = 0.28 *** | y = −0.0040x + 8.667 R2 = 0.19 ** | y = −0.0050x + 10.656 R2 = 0.25 *** |
Zhangye | 1461 | y = −0.0029x + 6.480 R2 = 0.14 ** | y = −0.0034x + 7.488 R2 = 0.23 *** | y = −0.0033x + 7.163 R2 = 0.22 *** |
Month | Mean Percentage | Nocturnal | Daytime | Daily |
---|---|---|---|---|
January | 0.9% | y = 0.0002x − 0.352 R2 = 0.090 * | y = 0.0003x − 0.505 R2 = 0.155 ** | y = 0.0002x − 0.417 R2 = 0.147 ** |
February | 1.2% | y = 0.0004x − 0.716 R2 = 0.245 *** | y = 0.0005x − 0.899 R2 = 0.159 ** | y = 0.0004x − 0.760 R2 = 0.282 *** |
March | 2.6% | y = 0.0005x − 1.041 R2 = 0.117 * | y = 0.0007x − 1.282 R2 = 0.184 ** | y = 0.0006x − 1.110 R2 = 0.164 ** |
April | 5.8% | y = 0.0008x − 1.548 R2 = 0.055 | y = 0.0008x − 1.508 R2 = 0.080 * | y = 0.0007x − 1.422 R2 = 0.075 * |
May | 11.6% | y = 0.0007x − 1.336 R2 = 0.020 | y = 0.0002x − 0.190 R2 = 0.001 | y = 0.0005x − 0.879 R2 = 0.013 |
June | 14.5% | y = −0.0003x + 0.755 R2 = 0.004 | y = −0.00001x + 0.170 R2 = 0.000 | y = −0.0001x + 0.350 R2 = 0.001 |
July | 20.2% | y = −0.0002x + 0.529 R2 = 0.001 | y = −0.0007x + 1.542 R2 = 0.012 | y = −0.0004x + 1.065 R2 = 0.006 |
August | 19.8% | y = −0.0022x + 4.530 R2 = 0.079 * | y = −0.0020x + 4.137 R2 = 0.076 * | y = −0.0020x + 4.156 R2 = 0.102 * |
September | 14.4% | y = −0.0013x + 2.656 R2 = 0.051 | y = −0.0006x + 1.408 R2 = 0.017 | y = −0.0010x + 2.165 R2 = 0.053 |
October | 7.0% | y = 0.0007x − 1.378 R2 = 0.037 | y = 0.0003x − 0.617 R2 = 0.016 | y = 0.0005x − 0.983 R2 = 0.045 |
November | 1.5% | y = 0.0005x − 1.011 R2 = 0.161 ** | y = 0.0005x − 0.990 R2 = 0.172 ** | y = 0.0005x − 0.990 R2 = 0.210 *** |
December | 0.5% | y = 0.00005x − 0.087 R2 = 0.014 | y = 0.0001x − 0.266 R2 = 0.048 | y = 0.0001x − 0.177 R2 = 0.045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Wang, S.; Zhao, C.; Yao, S.; Li, H. Evolutionary Characteristics of Daytime and Nocturnal Precipitation Heterogeneity in Gansu Province, Northwest China. Water 2023, 15, 3353. https://doi.org/10.3390/w15193353
Li Q, Wang S, Zhao C, Yao S, Li H. Evolutionary Characteristics of Daytime and Nocturnal Precipitation Heterogeneity in Gansu Province, Northwest China. Water. 2023; 15(19):3353. https://doi.org/10.3390/w15193353
Chicago/Turabian StyleLi, Qingfeng, Shengxia Wang, Chuancheng Zhao, Shuxia Yao, and Hongyuan Li. 2023. "Evolutionary Characteristics of Daytime and Nocturnal Precipitation Heterogeneity in Gansu Province, Northwest China" Water 15, no. 19: 3353. https://doi.org/10.3390/w15193353
APA StyleLi, Q., Wang, S., Zhao, C., Yao, S., & Li, H. (2023). Evolutionary Characteristics of Daytime and Nocturnal Precipitation Heterogeneity in Gansu Province, Northwest China. Water, 15(19), 3353. https://doi.org/10.3390/w15193353