Significant Daily CO2 Source–Sink Interchange in an Urbanizing Lake in Southwest China
Abstract
:1. Introduction
2. Methods
2.1. Site Description
2.2. Field Measurements
2.3. Laboratory Analyses
2.3.1. Determination of Anions
2.3.2. Detection of Metabolized Carbon
2.3.3. Eutrophication Evaluation
2.3.4. Calculation of pCO2
2.3.5. Estimation of fCO2
3. Results
3.1. Changes in pCO2
3.2. Variations in fCO2
3.3. Ambient Factors of CO2
4. Discussion
4.1. Changes in the pCO2 Contribution to the Source–Sink Interchange
4.2. Environmental Factors Affecting the Lake pCO2 and fCO2
4.3. Uncertainties in the Current Estimates of the Lake CO2 Escape
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liang, J.; Tang, W.; Zhu, Z.; Li, S.; Wang, K.; Gao, X.; Li, X.; Tang, N.; Lu, L.; Li, X. Spatiotemporal variability and controlling factors of indirect N2O emission in a typical complex watershed. Water Res. 2023, 229, 119515. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, X.; Bu, Q.; Yan, Q.; Wen, L.; Chen, X.; Li, X.; Yan, M.; Jiang, L.; Chen, G.; et al. Land–water transport and sources of nitrogen pollution affecting the structure and function of riverine microbial communities. Environ. Sci. Technol. 2023, 57, 2726–2738. [Google Scholar] [CrossRef]
- Sun, H.; Yu, R.; Liu, X.; Cao, Z.; Li, X.; Zhang, Z.; Wang, J.; Zhuang, S.; Ge, Z.; Zhang, L.; et al. Drivers of spatial and seasonal variations of CO2 and CH4 fluxes at the sediment water interface in a shallow eutrophic lake. Water Res. 2022, 222, 118916. [Google Scholar] [CrossRef]
- Chen, S.; Hu, C.; Cai, W.; Yang, B. Estimating surface pCO2 in the northern Gulf of Mexico: Which remote sensing model to use? Cont. Shelf Res. 2017, 151, 94–110. [Google Scholar] [CrossRef]
- Chen, S.; Hu, C. Environmental controls of surface water pCO2 in different coastal environments: Observations from marine buoys. Cont. Shelf Res. 2019, 183, 73–86. [Google Scholar] [CrossRef]
- Li, X.; Shi, F.; Ma, Y.; Zhao, S.; Wei, J. Significant winter CO2 uptake by saline lakes on the Qinghai-Tibet Plateau. Glob. Change Biol. 2022, 28, 2041–2052. [Google Scholar] [CrossRef]
- Minor, E.C.; Brinkley, G. Alkalinity, pH, and pCO2 in the Laurentian Great Lakes: An initial view of seasonal and inter-annual trends. J. Great Lakes Res. 2022, 48, 502–511. [Google Scholar] [CrossRef]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2014. [Google Scholar]
- Wen, Z.; Song, K.; Shang, Y.; Fang, C.; Li, L.; Lv, L.; Lv, X.; Chen, L. Carbon dioxide emissions from lakes and reservoirs of China: A regional estimate based on the calculated pCO2. Atmos. Environ. 2017, 170, 71–81. [Google Scholar] [CrossRef]
- Yang, R.; Xu, Z.; Liu, S.; Xu, Y.J. Daily pCO2 and CO2 flux variations in a subtropical mesotrophic shallow lake. Water Res. 2019, 153, 29–38. [Google Scholar] [CrossRef]
- Marce, R.; Obrador, B.; Morgui, J.A.; Riera, J.L.; Lopez, P.; Armengol, J. Carbonate weathering as a driver of CO2 supersaturation in lakes. Nat. Geosci. 2015, 8, 107–111. [Google Scholar] [CrossRef]
- Li, S.; Luo, J.; Xu, X.J.; Zhang, L.; Ye, C. Hydrological seasonality and nutrient stoichiometry control dissolved organic matter characterization in a headwater stream. Sci. Total Environ. 2022, 807, 150843. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Y.J.; Li, S. Source and quality of dissolved organic matter in streams are reflective to land use/land cover, climate seasonality and pCO2. Environ. Res. 2023, 216, 114608. [Google Scholar] [CrossRef]
- Cole, J.J.; Caraco, N.F.; Kling, G.W.; Kratz, T.K. Carbon dioxide supersaturation in the surface waters of lakes. Science 1994, 265, 1568–1570. [Google Scholar] [CrossRef]
- Raymond, P.A.; Hartmann, J.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; Humborg, C.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef]
- Keller, P.S.; Catalán, N.; von Schiller, D.; Grossart, H.P.; Koschorreck, M.; Obrador, B.; Frassl, M.A.; Karakaya, N.; Barros, N.; Howitt, J.A.; et al. Global CO2 emissions from dry inland waters share common drivers across ecosystems. Nat. Commun. 2020, 11, 2126. [Google Scholar] [CrossRef]
- Abril, G.; Martinez, J.M.; Artigas, L.F.; Moreira-Turcq, P.; Benedetti, M.F.; Vidal, L.; Meziane, T.; Kim, J.H.; Bernardes, M.C.; Savoye, N.; et al. Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 2014, 505, 395–398. [Google Scholar] [CrossRef]
- Li, Q.; Guo, X.; Zhai, W.; Xu, Y.; Dai, M. Partial pressure of CO2 and air-sea CO2 fluxes in the South China Sea: Synthesis of an 18-year dataset. Prog. Oceanogr. 2020, 182, 102272. [Google Scholar] [CrossRef]
- Karim, A.; Dubois, K.; Veize, J. Carbon and oxygen dynamics in the Laurentian Great Lakes: Implications for the CO2 flux from terrestrial aquatic systems to the atmosphere. Chem. Geol. 2011, 281, 133–141. [Google Scholar] [CrossRef]
- Yang, R.; Chen, Y.; Du, J.; Pei, X.; Li, J.; Zou, Z.; Song, H. Daily Variations in pCO2 and fCO2 in a Subtropical Urbanizing Lake. Front. Earth Sci. 2022, 9, 805276. [Google Scholar] [CrossRef]
- Tonetta, D.; Fontes, M.L.S.; Petrucio, M.M. Determining the high variability of pCO2 and pO2 in the littoral zone of a subtropical coastal lake. Acta Limnol. Bras. 2014, 26, 288–295. [Google Scholar] [CrossRef]
- Couturier, M.; Prairie, Y.T.; Paterson, A.M.; Emilson, E.J.S.; del Giorgio, P.A. Long-Term Trends in pCO2 in Lake Surface Water Following Rebrowning. Geophys. Res. Lett. 2022, 49, e2022GL097973. [Google Scholar] [CrossRef]
- Marotta, H.; Duarte, C.M.; Meirelles-Pereira, F.; Bento, L.; Esteves, F.A.; Enrich-Prast, A. Long-term CO2 variability in two shallow tropical lakes experiencing episodic eutrophication and acidification events. Ecosystems 2010, 13, 382–392. [Google Scholar] [CrossRef]
- Xu, Y.J.; Xu, Z.; Yang, R. Rapid daily change in surface water pCO2 and CO2 evasion: A case study in a subtropical eutrophic lake in Southern USA. J. Hydrol. 2019, 570, 486–494. [Google Scholar] [CrossRef]
- Marotta, H.; Duarte, C.M.; Sobek, S.; Enrich-Prast, A. Large CO2 disequilibria in tropical lakes. Glob. Biogeochem. Cycles 2009, 23, GB4022. [Google Scholar] [CrossRef]
- Kosten, S.; Roland, F.; Marques, D.M.L.D.M.; Van Nes, E.H.; Mazzeo, N.; Sternberg, L.S.L.; Scheffer, M.; Cole, J.J. Climate-dependent CO2 emissions from lakes. Glob. Biogeochem. Cycles 2010, 24, GB2007. [Google Scholar] [CrossRef]
- Katkov, E.; Fussmann, G.F. The effect of increasing temperature and pCO2 on experimental pelagic freshwater communities. Limnol. Oceanogr. 2023, 68, S202–S216. [Google Scholar] [CrossRef]
- Sabine, C.L.; Feely, R.A.; Gruber, N.; Key, R.M.; Lee, K.; Bullister, J.L.; Wanninkhof, R.; Wong, C.S.; Wallace, D.W.R.; Tilbrook, B.; et al. The oceanic sink for anthropogenic CO2. Science 2004, 305, 367–371. [Google Scholar] [CrossRef]
- Yan, H.; Yu, K.; Shi, Q.; Lin, Z.; Zhao, M.; Tao, S.; Liu, G.; Zhang, H. Air-sea CO2 fluxes and spatial distribution of seawater pCO2 in Yongle Atoll, northern-central South China Sea. Cont. Shelf Res. 2018, 165, 71–77. [Google Scholar] [CrossRef]
- Jia, J.; Sun, K.; Lü, S.; Li, M.; Wang, Y.; Yu, G.; Gao, Y. Determining whether Qinghai–Tibet Plateau waterbodies have acted like carbon sinks or sources over the past 20 years. Sci. Bull. 2022, 67, 2345–2357. [Google Scholar] [CrossRef]
- Crawford, J.T.; Loken, L.C.; Stanley, E.H.; Stets, E.G.; Dornblaser, M.M.; Striegl, R.G. Basin scale controls on CO2 and CH4 emissions from the Upper Mississippi River. Geophys. Res. Lett. 2016, 43, 1973–1979. [Google Scholar] [CrossRef]
- Liu, S.; Lu, X.X.; Xia, X.; Yang, X.; Ran, L. Hydrological and geomorphological control on CO2 outgassing from low-gradient large rivers: An example of the Yangtze River system. J. Hydrol. 2017, 550, 26–41. [Google Scholar] [CrossRef]
- Wang, L.; Mei, W.; Yin, Q.; Guan, Y.; Le, Y.; Fu, X. The variability in CO2 fluxes at different time scales in natural and reclaimed wetlands in the Yangtze River estuary and their key influencing factors. Sci. Total Environ. 2021, 799, 149441. [Google Scholar] [CrossRef]
- Richey, J.E.; Melack, J.M.; Aufdenkampe, A.K.; Ballester, V.M.; Hess, L.L. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 2022, 416, 617–620. [Google Scholar] [CrossRef]
- Gu, B.; Schelske, C.L.; Coveney, M.F. Low carbon dioxide partial pressure in a productive subtropical lake. Aquat. Sci. 2011, 73, 317–330. [Google Scholar] [CrossRef]
- Telmer, K.; Veizer, J. Carbon fluxes, pCO2, and substrate weathering in a large northern river basin, Canada: Carbon isotope perspectives. Chem. Geol. 1999, 159, 61–86. [Google Scholar] [CrossRef]
- The National Environmental Protection Agency (NEPA); The Editorial Board of Water and Wastewater Monitoring/Analysis Methods (EB). The Monitoring and Analysis Methods of Water and Wastewater, 4th ed.; China Environmental Science Press: Beijing, China, 2002. [Google Scholar]
- Cole, J.J.; Caraco, N.F. Atmospheric exchange of carbon dioxide in a low-wind oligotrophic lake measured by the addition of SF6. Limnol. Oceanogr. 1998, 43, 647–656. [Google Scholar] [CrossRef]
- Yao, G.; Gao, Q.; Wang, Z.; Huang, X.; He, T.; Zhang, Y.; Jiao, S.; Ding, J. Dynamics of CO2 partial pressure and CO2 outgassing in the lower reaches of the Xijiang River, a subtropical monsoon river in China. Sci. Total Environ. 2007, 376, 255–266. [Google Scholar] [CrossRef]
- Abril, G.; Bouillon, S.; Darchambeau, F.; Teodoru, C.R.; Marwick, T.R.; Tamooh, F.; Ochieng Omengo, F.; Geeraert, N.; Deirmendjian, L.; Polsenaere, P.; et al. Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters. Biogeosciences 2015, 12, 67–78. [Google Scholar] [CrossRef]
- Cai, W.J.; Wang, Y. The chemistry, flux, and sources of carbon dioxide in the estuarine waters of the Satilla and Altamaha Rivers, Georgia. Limnol. Oceanogr. 1998, 43, 657–668. [Google Scholar] [CrossRef]
- Cole, J.J.; Caraco, N.F. Carbon in catchments: Connecting terrestrial carbon losses with aquatic metabolism. Mar. Freshw. Res. 2001, 52, 101–110. [Google Scholar] [CrossRef]
- Weiss, R.F. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Res. Oceanogr. Abstr. 1970, 17, 721–735. [Google Scholar] [CrossRef]
- Jahne, B.; Heinz, G.; Dietrich, W. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. Oceans. 1987, 92, 10767–10776. [Google Scholar] [CrossRef]
- Guérin, F.; Abril, G.; Serça, D.; Delon, C.; Richard, S.; Delmas, R.; Tremblay, A.; Varfalvy, L. Gas transfer velocities of CO2 and CH4 in a tropical reservoir and its river downstream. J. Mar. Sys. 2007, 66, 161–172. [Google Scholar] [CrossRef]
- Yoon, T.K.; Jin, H.; Begum, M.S.; Kang, N.; Park, J.H. CO2 outgassing from an urbanized river system fueled by wastewater treatment plant effluents. Environ. Sci. Technol. 2017, 51, 10459–10467. [Google Scholar] [CrossRef]
- Yu, B. Ecological effects of new-type urbanization in China. Renew. Sustain. Energy Rev. 2021, 135, 110239. [Google Scholar] [CrossRef]
- Li, S.; Luo, J.; Wu, D.; Xu, Y.J. Carbon and nutrients as indictors of daily fluctuations of pCO2 and CO2 flux in a river draining a rapidly urbanizing area. Ecol. Indic. 2020, 109, 105821. [Google Scholar] [CrossRef]
- Alin, S.R.; Johnson, T.C. Carbon cycling in large lakes of the world: A synthesis of production, burial, and lake-atmosphere exchange estimates. Glob. Biogeochem. Cycles 2007, 21, GB3002. [Google Scholar] [CrossRef]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.J.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef]
- Schelske, C.L. Comment on the origin of the fluid mud layer in Lake Apopka, Florida. Limnol. Oceanogr. 2006, 51, 2472–2480. [Google Scholar] [CrossRef]
- Mcdonald, C.P.; Stets, E.G.; Striegl, R.G.; Butman, D. Inorganic carbon loading as a primary driver of dissolved carbon dioxide concentrations in the lakes and reservoirs of the contiguous United States. Glob. Biogeochem. Cycles 2013, 27, 285–295. [Google Scholar] [CrossRef]
- Li, S.; Ni, M.; Mao, R.; Bush, R.T. Riverine CO2 supersaturation and outgassing in a subtropical monsoonal mountainous area (three gorges reservoir region) of China. J. Hydrol. 2018, 558, 460–469. [Google Scholar] [CrossRef]
- Li, J.; Pei, J.; Fang, C.; Li, B.; Nie, M. Opposing seasonal temperature dependencies of CO2 and CH4 emissions from wetlands. Glob. Change Biol. 2015, 29, 1133–1143. [Google Scholar] [CrossRef]
- Li, Y.; Yang, X.; Han, P.; Xue, L.; Zhang, L. Controlling mechanisms of surface partial pressure of CO2 in Jiaozhou Bay during summer and the influence of heavy rain. J. Mar. Syst. 2017, 173, 49–59. [Google Scholar] [CrossRef]
- Morales-Pineda, M.; Cózar, A.; Laiz, I.; Úbeda, B.; Gálvez, J.Á. Daily, biweekly, and seasonal temporal scales of pCO2 variability in two stratified Mediterranean reservoirs. J. Geophys. Res. Biogeosci. 2014, 119, 509–520. [Google Scholar] [CrossRef]
- Shao, C.L.; Chen, J.Q.; Stepien, C.A.; Chu, H.S.; Ouyang, Z.T.; Bridgeman, T.B.; Czajkowski, K.P.; Becker, R.H.; John, R. Diurnal to annual changes in latent, sensible heat, and CO2 fluxes over a Laurentian Great Lake: A case study in Western Lake Erie. J. Geophys. Res. Biogeosci. 2015, 120, 1587–1604. [Google Scholar] [CrossRef]
- Podgrajsek, E.; Sahlée, E.; Rutgersson, A. Diel cycle of lake-air CO2 flux from a shallow lake and the impact of waterside convection on the transfer velocity. J. Geophys. Res. Biogeosci. 2015, 120, 29–38. [Google Scholar] [CrossRef]
- Reis, P.C.J.; Barbosa, F.A.R. Diurnal sampling reveals significant variation in CO2 emission from a tropical productive lake. Braz. J. Biol. 2014, 74, 113–119. [Google Scholar] [CrossRef]
- Morin, T.H.; Rey-Sanchez, A.C.; Vogel, C.S.; Matheny, A.M.; Kenny, W.T.; Bohrer, G. Carbon dioxide emissions from an oligotrophic temperate lake: An eddy covariance approach. Ecol. Eng. 2018, 114, 25–33. [Google Scholar] [CrossRef]
- Wilson-McNeal, A.; Hird, C.; Hobbs, C.; Nielson, C.; Smith, K.E.; Wilson, R.W.; Lewis, C. Fluctuating seawater pCO2/pH induces opposing interactions with copper toxicity for two intertidal invertebrates. Sci. Total Environ. 2020, 748, 141370. [Google Scholar] [CrossRef]
- Ran, L.S.; Lu, X.X.; Yang, H.; Li, L.Y.; Yu, R.H.; Sun, H.G.; Han, J.T. CO2 outgassing from the Yellow River network and its implications for riverine carbon cycle. J. Geophys. Res. Biogeosci. 2015, 120, 1334–1347. [Google Scholar] [CrossRef]
- Spafford, L.; Risk, D. Spatiotemporal variability in Lake-Atmosphere net CO2 exchange in the Littoral Zone of an oligotrophic Lake. J. Geophy. Res. Biogeosci. 2018, 123, 1260–1276. [Google Scholar] [CrossRef]
- Liu, H.P.; Zhang, Q.Y.; Katul, G.G.; Cole, J.J.; Chapin, F.S.; MacIntyre, S. Large CO2 effluxes at night and during synoptic weather events significantly contribute to CO2 emissions from a reservoir. Environ. Res. Lett. 2016, 11, 8. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the global carbon cycle: Integrating inland waters into the terrestrial carbon budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef]
- Maberly, S.C.; Barker, P.A.; Stott, A.W.; De Ville, M.M. Catchment productivity controls CO2 emissions from lakes. Nat. Clim. Change 2013, 3, 391–394. [Google Scholar] [CrossRef]
- Ni, M.; Li, S.; Luo, J.; Lu, X. CO2 partial pressure and CO2 degassing in the Daning River of the upper Yangtze River, China. J. Hydrol. 2019, 569, 483–494. [Google Scholar] [CrossRef]
- Watras, C.J.; Morrison, K.A.; Crawford, J.T.; McDonald, C.P.; Oliver, S.K.; Hanson, P.C. Diel cycles in the fluorescence of dissolved organic matter indystrophic Wisconsin seepage lakes: Implications for carbon turnover. Limnol. Oceanogr. 2015, 60, 482–496. [Google Scholar] [CrossRef]
- Natchimuthu, S.; Sundgren, I.; Gålfalk, M.; Klemedtsson, L.; Bastviken, D. Spatiotemporal variability of lake pCO2 and CO2 fluxes in a hemiboreal catchment. J. Geophys. Res. Biogeosci. 2017, 122, 30–49. [Google Scholar] [CrossRef]
- Schelker, J.; Singer, G.A.; Ulseth, A.J.; Hengsberger, S.; Battin, T.J. CO2 evasion from a steep, high gradient stream network: Importance of seasonal and diurnal variation in aquatic pCO2 and gas transfer. Limnol. Oceanogr. 2016, 61, 1826–1838. [Google Scholar] [CrossRef]
- Golub, M.; Desai, A.R.; McKinley, G.A.; Remucal, C.K.; Stanley, E.H. Large uncertainty in estimating pCO2 from carbonate equilibria in lakes. J. Geophy. Res. Biogeosci. 2017, 122, 2909–2924. [Google Scholar] [CrossRef]
- Peter, H.; Singer, G.A.; Preiler, C.; Chifflard, P.; Steniczka, G.; Battin, T.J. Scales and drivers of temporal pCO2 dynamics in an Alpine stream. J. Geophys. Res. Biogeosci. 2014, 119, 1078–1091. [Google Scholar] [CrossRef]
- Jin, X. Lake Environment in China; Ocean Press: Beijing, China, 1995. [Google Scholar]
Time/ CST | twater/ °C | pH/ NU | EC/ μs cm−1 | TDS/ mg L−1 | TPC/ cm | FNU/ NTU | DO/ mg L−1 | Chla/ mg m−3 |
---|---|---|---|---|---|---|---|---|
7:00 | 23.87 ± 5.43 a | 7.97 ± 0.34 b | 482.36 ± 20.60 a | 240.45 ± 9.93 a | 39.00 ± 14.93 a | 22.48 ± 8.46 a | 4.87 ± 2.09 b | 22.46 ± 9.81 ab |
10:00 | 24.95 ± 5.63 a | 8.19 ± 0.43 ab | 482.55 ± 17.82 a | 240.18 ± 9.13 a | 40.09 ± 13.60 a | 21.76 ± 8.15 a | 6.43 ± 2.37 b | 23.78 ± 11.14 a |
14:00 | 27.26 ± 6.94 a | 8.33 ± 0.32 ab | 482.73 ± 18.17 a | 241.18 ± 9.83 a | 43.68 ± 11.89 a | 20.33 ± 6.81 a | 7.02 ± 1.54 ab | 18.12 ± 8.90 b |
17:00 | 27.55 ± 7.18 a | 8.48 ± 0.25 a | 478.18 ± 20.50 a | 238.91 ± 10.77 a | 42.86 ± 10.59 a | 20.05 ± 5.64 a | 8.60 ± 1.41 a | 22.96 ± 15.63 a |
Parameters | Means | TLI (j) | Wj | Wj × TLI (j) | TLI (∑) |
---|---|---|---|---|---|
Chla (mg m−3) | 21.83 | 58.48 | 0.3261 | 19.07 | 63.52 |
TP (mg L−1) | 0.13 | 61.46 | 0.2301 | 14.14 | |
TN (mg L−1) | 2.23 | 68.12 | 0.2192 | 14.93 | |
TPC (m) | 0.41 | 68.48 | 0.2246 | 15.38 |
R-Squared | pCO2 (y1 = b0 × eb1 x) | fCO2 (y2 = b0′x + b1′) | ||||
---|---|---|---|---|---|---|
b0 | b1 | R2 | b0′ | b1′ | R2 | |
9 January 2020 | 303.6 | −0.83 | 0.611 | −16.50 | −10.5 | 0.661 |
1 April 2020 | 866.2 | −3.26 | 0.816 | −72.30 | 16.9 | 0.713 |
20 April 2020 | 2546 | −1.88 | 0.833 | −160.8 | 137 | 0.790 |
5 May 2020 | 2620 | −2.89 | 0.954 | −187.9 | 123 | 0.952 |
19 May 2020 | 1430 | −2.28 | 0.860 | −159.7 | 92.3 | 0.780 |
5 June 2020 | 1022 | −1.50 | 0.585 | −71.40 | 46.4 | 0.568 |
23 June 2020 | 10639 | −4.22 | 0.985 | −582.5 | 410 | 0.947 |
12 July 2020 | 2228 | −3.71 | 0.989 | −144.3 | 73.4 | 0.912 |
27 July 2020 | 992.9 | −2.58 | 0.916 | −72.50 | 26.3 | 0.896 |
14 August 2020 | 9868 | −5.05 | 0.995 | −429.3 | 277 | 0.953 |
6 September 2020 | 7862 | −4.03 | 0.917 | −360.6 | 257 | 0.978 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, R.; Chen, Y.; Li, D.; Qiu, Y.; Lu, K.; Liu, S.; Song, H. Significant Daily CO2 Source–Sink Interchange in an Urbanizing Lake in Southwest China. Water 2023, 15, 3365. https://doi.org/10.3390/w15193365
Yang R, Chen Y, Li D, Qiu Y, Lu K, Liu S, Song H. Significant Daily CO2 Source–Sink Interchange in an Urbanizing Lake in Southwest China. Water. 2023; 15(19):3365. https://doi.org/10.3390/w15193365
Chicago/Turabian StyleYang, Rongjie, Yingying Chen, Di Li, Yuling Qiu, Kezhu Lu, Shiliang Liu, and Huixing Song. 2023. "Significant Daily CO2 Source–Sink Interchange in an Urbanizing Lake in Southwest China" Water 15, no. 19: 3365. https://doi.org/10.3390/w15193365
APA StyleYang, R., Chen, Y., Li, D., Qiu, Y., Lu, K., Liu, S., & Song, H. (2023). Significant Daily CO2 Source–Sink Interchange in an Urbanizing Lake in Southwest China. Water, 15(19), 3365. https://doi.org/10.3390/w15193365