Dissolved Carbon Concentrations and Emission Fluxes in Rivers and Lakes of Central Asia (Sayan–Altai Mountain Region, Tyva)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Water Bodies of the Tyva Republic
2.2. Analytical Methods
3. Results
3.1. Major Hydrochemical Parameters
3.2. DIC vs. DOC Concentrations
3.3. Spatial and Seasonal Pattern of pCО2 and fCO2 in Rivers and Lakes
3.4. Testing Potential Drivers of CO2 Concentrations and Fluxes
4. Discussion
4.1. Major Solutes, Dissolved Organic and Inorganic Carbon
4.2. Dissolved C Pattern and CO2 Fluxes: Driving Factors and Comparison with Other Regions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Serikova, S.; Pokrovsky, O.; Laudon, H.; Kritskov, I.; Lim, A.G.; Manasypov, R.M.; Karlsson, J. High carbon emissions from thermokarst lakes of Western Siberia. Nat. Commun. 2019, 10, 1552. [Google Scholar] [CrossRef] [PubMed]
- Krickov, I.; Lim, A.; Shirokova, L.; Korets, M.; Karlsson, J.; Pokrovsky, O. Environmental controllers for carbon emission and concentration patterns in Siberian rivers during different seasons. Sci. Total Environ. 2023, 859, 160202. [Google Scholar] [CrossRef] [PubMed]
- Kirpotin, S.; Antoshkina, O.; Berezin, A.; Elshehawi, S.; Feurdean, A.; Lapshina, E.D.; Pokrovsky, O.S.; Peregon, A.M.; Semenova, N.M.; Tanneberger, F.; et al. Great Vasyugan Mire: How the world’s largest peatland helps addressing the world’s largest problems. Ambio 2021, 50, 2038–2049. [Google Scholar] [CrossRef] [PubMed]
- Chupakov, A.; Pokrovsky, O.; Moreva, O.; Kotova, E.; Vorobyeva, T.Y.; Shirokova, L.S. Export of organic carbon, nutrients and metals by the mid-sized Pechora River to the Arctic Ocean. Chem. Geol. 2023, 632, 121524. [Google Scholar] [CrossRef]
- Stackpoole, S.; Butman, D.; Clow, D.; Verdin, K.; Gaglioti, B.V.; Genet, H.; Striegl, R.G. Inland waters and their role in the carbon cycle of Alaska. Ecol. Appl. 2017, 27, 1403–1420. [Google Scholar] [CrossRef]
- Hutchins, R.; Casas-Ruiz, J.; Prairie, Y.; Del Giorgio, P. Magnitude and drivers of integrated fluvial network greenhouse gas emissions across the boreal landscape in Québec. Water Res. 2020, 173, 115556. [Google Scholar] [CrossRef]
- Pokrovsky, O.; Shirokova, L.; Manasypov, R.; Kirpotin, S.; Kulizhsky, S.; Kolesnichenko, L.; Loiko, S.; Vorobyev, S. Thermokarst lakes of Western Siberia: A complex biogeochemical multidisciplinary approach. Int. J. Environ. Stud. 2014, 71, 733–748. [Google Scholar] [CrossRef]
- Dristi, A.; Xu, Y.J. Large Uncertainties in CO2 Water–Air Outgassing Estimation with Gas Exchange Coefficient KT for a Large Lowland River. Water 2023, 15, 2621. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, L.; Ran, L. Total Organic Carbon Concentration and Export in a Human-Dominated Urban River: A Case Study in the Shenzhen River and Bay Basin. Water 2022, 14, 2102. [Google Scholar] [CrossRef]
- Wang, C.; Xv, Y.; Li, S.; Li, X. Interconnected River–Lake Project Decreased CO2 and CH4 Emission from Urban Rivers. Water 2023, 15, 1986. [Google Scholar] [CrossRef]
- Hastie, A.; Lauerwald, R.; Ciais, P.; Regnier, P. Aquatic carbon fluxes dampen the overall variation of net ecosystem productivity in the Amazon basin: An analysis of the interannual variability in the boundless carbon cycle. Glob. Chang. Biol. 2019, 25, 2094–2111. [Google Scholar] [CrossRef] [PubMed]
- Moyer, R.; Powell, C.; Gordon, D.; Long, J.; Bliss, C. Abundance, distribution, and fluxes of dissolved organic carbon (DOC) in four small sub-tropical rivers of the Tampa Bay Estuary (Florida, USA). Appl. Geochem. 2015, 63, 550–562. [Google Scholar] [CrossRef]
- Soria Reinoso, I.; Alcocer, J.; Sánchez-Carrillo, S.; Garcia-Oliva, F.; Cuevas-Lara, D.; Cortes-Guzman, D.; Oseguera, L.A. The Seasonal Dynamics of Organic and Inorganic Carbon along the Tropical Usumacinta River Basin Mexico. Water 2022, 14, 2703. [Google Scholar] [CrossRef]
- Huang, T.H.; Fu, Y.H.; Pan, P.Y.; Chen, C.T.A. Fluvial carbon fluxes in tropical rivers. Curr. Opin. Environ. Sustain. 2012, 4, 162–169. [Google Scholar] [CrossRef]
- Galy, A.; Yang, Y.; Fang, X. Sequestration of carbon as carbonate in the critical zone: Insights from the Himalayas and Tibetan Plateau. Acta Geochim. 2017, 36, 389–391. [Google Scholar] [CrossRef]
- Emberson, R.; Galy, A.; Hovius, N. Weathering of Reactive Mineral Phases in Landslides Acts as a Source of Carbon Dioxide in Mountain Belts. J. Geophys. Res. Earth Surf. 2018, 123, 2695–2713. [Google Scholar] [CrossRef]
- Ruan, X.; Galy, A. On the significance of periglacial conditions in active mountain belts for chemical weathering processes: Insights from the Chayu area, SE Tibet. Chem. Geol. 2021, 585, 120581. [Google Scholar] [CrossRef]
- Song, C.; Wang, G.; Hu, Z.; Zhang, T.; Huang, K.; Chen, X.; Li, Y. Net ecosystem carbon budget of a grassland ecosystem in central Qinghai-Tibet Plateau: Integrating terrestrial and aquatic carbon fluxes at catchment scale. Agric. For. Meteorol. 2020, 290, 108021. [Google Scholar] [CrossRef]
- Song, C.; Wang, G.; Mao, T.; Huang, K.; Sun, X.; Hu, Z.; Chang, R.; Chen, X.; Raymond, P.A. Spatiotemporal variability and sources of DIC in permafrost catchments of the Yangtze River source region: Insights from stable carbon isotope and water chemistry. Water Resour. Res. 2020, 55, e2019WR025343. [Google Scholar] [CrossRef]
- Wang, L.; Du, Z.; Wei, Z.; Xu, Q.; Feng, Y.; Lin, P.; Lin, J.; Chen, S.; Qiao, Y.; Shi, J.; et al. High methane emissions from thermokarst lakes on the Tibetan Plateau are largely attributed to ebullition fluxes. Sci. Total Environ. 2021, 801, 149692. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, F.; Shan, S.; Ren, P.; Luo, C.; Fu, W.; Sun, S.; Wang, X. Sources and cycling of dissolved organic and inorganic carbon on the northern Qinghai-Tibetan Plateau: Radiocarbon results from Qinghai Lake. Sci. Total Environ. 2022, 851, 158123. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Li, S.L.; Zhu, X.; Jing, L.; Liu, J.; Sen, X.; Sheng, X.; Cong-Qiang, L. Dynamics and fluxes of dissolved carbon under short-term climate variabilities in headwaters of the Changjiang River, draining the Qinghai-Tibet Plateau. J. Hydrol. 2021, 596, 126128. [Google Scholar] [CrossRef]
- Lin, P.; Du, Z.; Wang, L.; Liu, J.; Xu, Q.; Du, J.; Jiang, R. Hotspots of riverine greenhouse gas (CH4, CO2, N2O) emissions from Qinghai Lake Basin on the northeast Tibetan Plateau. Sci. Total Environ. 2023, 857 Pt 1, 159373. [Google Scholar] [CrossRef] [PubMed]
- Kokorin, A. (Ed.) Assessment Report: Climate Change and Its Impact on Ecosystems, Population and Economy of the Russian Portion of the Altai-Sayan Ecoregion; WWF Russia: Moscow, Russia, 2011; p. 152. [Google Scholar]
- Golubeva, E.; Kerzhentsev, A.; Koropachinsky, I.; Kurbatskaya, S.S.; Pivovarova, Z.F.; Sedelnikov, V.P.; Surov, A.V.; Tebleeva, U.T.; Khakimov, F.I.; Khudyakov, Y.S. Experiment “Ubsu-Nur”; Part 1; Intellect: Moscow, Russia, 1995; Volume 1, 336p. (In Russian) [Google Scholar]
- Anandhi, A.; Kannan, N. Vulnerability assessment of water resources—Translating a theoretical concept to an operational framework using systems thinking approach in a changing climate: Case study in Ogallala Aquifer. J. Hydrol. 2018, 557, 460–474. [Google Scholar] [CrossRef]
- Joseph, J.; Ghosh, S.; Pathak, A.; Sahai, A. Hydrologic impacts of climate change: Comparisons between hydrological parameter uncertainty and climate model uncertainty. J. Hydrol. 2018, 566, 1–22. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Pandey, B.; Yadav, A.; Saroj, S. Chapter 5—An overview of the potential impacts of global climate change on water resources. In Water Conservation in the Era of Global Climate; Elsevier: Amsterdam, The Netherlands, 2021; pp. 99–120. [Google Scholar] [CrossRef]
- Chen, Y.; Li, B.; Li, Z.; Li, W. Water resource formation and conversion and water security in arid region of Northwest China. J. Geogr. Sci 2016, 26, 939–952. [Google Scholar] [CrossRef]
- Luo, M.; Liu, T.; Meng, F.; Duan, Y.; Bao, A.; Xing, W.; Feng, X.; Maeyer, P.; Frankl, A. Identifying climate change impacts on water resources in Xinjiang, China. Sci. Total Environ. 2019, 676, 613–626. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, Y.; Li, B. Quantifying the effects of climate variability and human activities on runoff for Kaidu River Basin in arid region of northwest China. Theor. Appl. Clim. 2013, 111, 537–545. [Google Scholar] [CrossRef]
- Kirpotin, S.; Callaghan, T.V.; Peregon, A.; Babenko, A.S.; Berman, D.I.; Bulakhova, N.A.; Byzaakay, A.A.; Chernykh, M.T.; Chursin, V.; Interesova, E.A.; et al. Impacts of environmental change on biodiversity and vegetation dynamics in Siberia. Ambio 2021, 50, 1926–1952. [Google Scholar] [CrossRef]
- Callaghan, T.; Shaduyko, O.; Kirpotin, S.; Gordov, E. Siberian environmental change: Synthesis of recent studies and opportunities for networking. Ambio 2021, 50, 2104–2127. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Buendía, E.; Masson-Delmotte, V.; Pörtner, H.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.C.; Diemen, S.V.; et al. IPCC, 2019: Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; p. 896. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Reisinger, A.; Slade, R.; Fradera, R.; Pathak, M.; Khourdajie, A.A.; Belkacemi, M.; van Diemen, R.; Hasija, A.; et al. IPCC, 2022: Summary for Policymakers. In Climate Change 2022: Mitigation of Climate Change. Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2023. [Google Scholar] [CrossRef]
- Zalibekov, Z.G. The arid regions of the world and their dynamics in conditions of modern climatic warming. Arid Ecosyst. 2011, 1, 1–7. [Google Scholar] [CrossRef]
- Kulikov, A.I.; Ubugunov, L.L.; Mangataev, A.T. Global climate change and its impact on ecosystems. Arid Ecosyst. 2014, 4, 135–141. [Google Scholar] [CrossRef]
- Berdugo, M.; Delgado-Baquerizo, M.; Soliveres, S.; Hernández-Clemente, R.; Zhao, Y.; Gaitán, J.J.; Gross, N.; Saiz, H.; Maire, V.; Lehmann, A.; et al. Global ecosystem thresholds driven by aridity. Science 2020, 367, 787–790. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Luo, D.; Dai, A.; Simmonds, I. Increased quasi stationarity and persistence of winter Ural blocking and Eurasian extreme cold events in response to Arctic warming. Part I: Insights from observational analyses. J. Clim. 2017, 30, 3549–3568. [Google Scholar] [CrossRef]
- Mokhov, I.I.; Akperov, M.G.; Prokofyeva, M.A.; Timazhev, A.V.; Lupo, A.R.; Treut, H.L. Blockings in the Northern hemisphere and Euro-Atlantic region: Estimates of changes from reanalysis data and model simulations. Dokl. Earth Sc. 2013, 449, 430–433. [Google Scholar] [CrossRef]
- Watanabe, T.; Matsuyama, H.; Kuzhevskaia, I.; Nechepurenko, O.; Chursin, V.; Zemtsov, V. Long-Term Trends of Extreme Climate Indexes in the Southern Part of Siberia in Comparison with Those of Surrounding Regions. Atmosphere 2023, 14, 1131. [Google Scholar] [CrossRef]
- Kattsov, V.M. (Ed.) The Third Assessment Report on Climate Change and Its Consequences on the Territory of the Russian Federation; Science-Intensive Technologies: St. Petersburg, Russia, 2022; 676p. (In Russian) [Google Scholar]
- Kuular, H.B.O.; Chuldum, A.F.; Hertek, S.B.O.; Namzin, S.A. Spatio-temporal distribution of the spring burnability of the vegetation cover of the Republic of Tyva in 2000–2020. Nat. Resour. Environ. Soc. 2021, 2, 18–22. (In Russian) [Google Scholar] [CrossRef]
- Climate Risk Country Profile: Mongolia (2021): The World Bank Group and the Asian. Available online: https://www.adb.org/sites/default/files/publication/709901/climate-risk-country-profile-mongolia.pdf (accessed on 23 July 2023).
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Van Donk, E.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef]
- Mladenov, N.; Sommaruga, R.; Morales-Baquero, R.; Laurion, I.; Camarero, L.; Diéguez, M.C.; Camacho, A.; Delgado, A.; Torres, O.; Chen, Z.; et al. Dust inputs and bacteria influence dissolved organic matter in clear alpine lakes. Nat. Commun. 2011, 2, 405. [Google Scholar] [CrossRef]
- Moser, K.A.; Baron, J.S.; Brahney, J.; Oleksy, I.A.; Saros, J.E.; Hundey, E.J.; Sadro, S.A.; Kopáček, J.; Sommaruga, R.; Kainz, M.J.; et al. Mountain lakes: Eyes on global environmental change. Glob. Planet. Chang. 2019, 178, 77–95. [Google Scholar] [CrossRef]
- Rogora, M.; Frate, L.; Carranza, M.L.; Freppaz, M.; Stanisci, A.; Bertani, I.; Bottarin, R.; Brambilla, A.; Canullo, R.; Carbognani, M.; et al. Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Sci. Total Environ. 2018, 624, 1429–1442. [Google Scholar] [CrossRef] [PubMed]
- Tranvik, L.J.; Downing, J.A.; Cotner, J.B.; Loiselle, S.A.; Striegl, R.G.; Ballatore, T.J.; Dillon, P.; Finlay, K.; Fortino, K.; Knoll, L.B.; et al. Lakes and Reservoirs as Regulators of Carbon Cycling and Climate. Limnol. Oceanogr. 2009, 54, 2298–2314. [Google Scholar] [CrossRef]
- Lehner, B.; Doll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- MacDonald, G.; Edwards, T.; Moser, K.; Pienitz, R.; Smol, J. Rapid response of treeline vegetation and lakes to past climate warming. Nature 1993, 361, 243–246. [Google Scholar] [CrossRef]
- Bunting, L.; Leavitt, P.R.; Weidman, R.P.; Vinebrooke, R.D. Regulation of the Nitrogen Biogeochemistry of Mountain Lakes by Subsidies of Terrestrial Dissolved Organic Matter and the Implications for Climate Studies. Limnol. Oceanogr. 2010, 55, 333–345. Available online: http://www.jstor.org/stable/20622883 (accessed on 23 September 2023). [CrossRef]
- Oidup, C.K. Lithium-uranium mineralization of salt lakes and underground springs of Central Tuva. Geospheric. Res. 2018, 3, 22–33. [Google Scholar] [CrossRef]
- Kyzyl, O.M. Hydrogeochemistry of mineral water sources of the Republic of Tyva. Bull. Kurgan State Univ. 2015, 4, 2222–3371. Available online: https://cyberleninka.ru/article/n/gidrogeohimiya-mineralnyh-istochnikov-vod-respubliki-tyva (accessed on 18 March 2023). (In Russian).
- Yu, I.K.; Khvashchevskaya, A.A. Features of the chemical composition of groundwater springs of Western Tuva. Resort Base Nat. Health-Impr. Areas Tuva Adjac. Reg. 2015, 2, 167–173. (In Russian) [Google Scholar]
- Kalnaya, O.I.; Rychkova, O.I.; Ayunova, O.D.; Archimaeva, T.P. Ecological and hydrochemical state of watercourses in the area of Kyzyl (Republic of Tyva). Nat. Resour. Environ. Soc. 2020, 4, 52–60. (In Russian) [Google Scholar]
- Kalnaya, O.I.; Ainova, O.D. Retrospective analysis of the ecological and hydrochemical state of two-dimensional and auxiliary means in the region of Lake Duskhol (Svatikovo), central Tuva. Nat. Resour. Environ. Soc. 2022, 1, 37–47. (In Russian) [Google Scholar]
- Kirova, N.A.; Kalnaya, O.I.; Ayunova, O.D. On the Issue of Hydrochemistry and Biology of Lake Duskhol (Tuva). Izv. AO RGO 2018, 82–88. Available online: https://cyberleninka.ru/article/n/k-voprosu-o-gidrohimii-i-biologii-ozera-dus-hol-tuva. (accessed on 20 March 2023). (In Russian).
- Sambuu, A.; Ayunova, O.; Chupikova, S.; Dugerzhaa, C.S.; Biche-ool, O.E. Water resources of the republic of Tuva and their current state. Int. J. Hydrol. Sci. Technol. 2020, 7, 60–66. (In Russian) [Google Scholar] [CrossRef]
- State Report “On the State and Environmental Protection of the Republic of Tyva in 2019”—Text: Electronic//Ministry of Natural Resources and Ecology of the Republic of Tyva: Official Website. 2019. Available online: https://mpr.rtyva.ru/upload/files/f992a01d-bc33-488f-8f71-ea266cfa02ec.pdf (accessed on 14 February 2023). (In Russian).
- Chupikova, S.A.; Prudnikov, S.D.; Chuldum, A.F. Morphometric analysis of the water intake of relig-Hem (Tuva) using GIS and DDZ. Bull. SGUGiT (Sib. State Geosystem Univ. Technol. Univ.) 2023, 28, 76–88. (In Russian) [Google Scholar]
- Mineeva, L.A.; Arakchaa, K.K.D.; Kyzyl, O.M. Physical and chemical characteristics of mineral waters from the Shumak and Choigan deposits. Bull. Irkutsk. State Univ. Ser. Earth Sci. 2016, 17, 115–134. (In Russian) [Google Scholar]
- Kopylova, Y.G.; Guseva, N.V.; Arakchaa, K.D.; Khvashchevskaya, A.A. Geochemistry of carbon dioxide mineral waters of the Choigan natural complex (northeastern Tuva). Russ. Geol. Geophys. 2014, 55, 1295–1305. [Google Scholar] [CrossRef]
- Sodnam, N.I.; Kashkak, E.S.; Oorzhak, U.S. Physico-chemical review of arzhanov Ovyursky district. Bull. Tuva State Univ. Nat. Agric. Sci. 2019, 2, 52–58. (In Russian) [Google Scholar]
- Klopotova, N.G.; Sidorina, N.G. The current state and study of therapeutic hydromineral resources of Tuva. Resort Base Nat. Health-Impr. Areas Tuva Adjac. Reg. 2013, 1, 16–19. (In Russian) [Google Scholar]
- Szopińska, M.; Szumińska, D.; Polkowska, Ż.; Machowiak, K.; Lehmann, S.; Chmiel, S. The chemistry of river–lake systems in the context of permafrost occurrence (Mongolia, Valley of the Lakes) Part, I. Analysis of ion and trace metal concentrations. Sediment. Geol. 2016, 340, 74–83. [Google Scholar] [CrossRef]
- Kuular, H.B. Climate warming in the Republic of Tyva according to ground observations. Nat. Resour. Environ. Soc. 2021, 1, 62–67. (In Russian) [Google Scholar] [CrossRef]
- Arakchaa, K.D. Prospects for the development of balneoresources of lake Cheder. Nat. Resour. Environ. Soc. 2021, 1, 21–29. Available online: https://cyberleninka.ru/article/n/perspektivy-osvoeniya-balneoresursov-ozera-cheder (accessed on 23 September 2023). (In Russian).
- Dubovik, D.S.; Yakutin, M.V. The use of Earth remote sensing data in monitoring of small lakes of the Ubsunur basin (Tyva). Interexpo Geo-Sib. 2016, 4, 74–78. [Google Scholar]
- Johnson, M.S.; Billett, M.F.; Dinsmore, K.J.; Wallin, M.B.; Dyson, K.E.; Jassal, R.S. Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems—Method and applications. Ecohydrology 2010, 3, 68–78. [Google Scholar] [CrossRef]
- Kuhn, M.; Lundin, E.J.; Giesler, R.; Johansson, M.; Karlsson, J. Emissions from thaw ponds largely offset the carbon sink of northern permafrost wetlands. Sci. Rep. 2018, 8, 9535. [Google Scholar] [CrossRef] [PubMed]
- Lim, A.; Kritskov, I.; Vorobyev, S.; Korets, M.; Kopysov, S.; Shirokova, L.S.; Karlsson, J.; Pokrovsky, O.S. Carbon emission and export from the Ket River, western Siberia. Biogeosciences 2022, 19, 5859–5877. [Google Scholar] [CrossRef]
- Krickov, I.; Serikova, S.; Pokrovsky, O.; Vorobyev, S.N.; Lim, A.G.; Siewert, M.B.; Karlsson, J. Sizable carbon emission from the floodplain of Ob River. Ecol. Indic. 2021, 131, 108164. [Google Scholar] [CrossRef]
- Vorobyev, S.N.; Karlsson, J.; Kolesnichenko, Y.Y.; Korets, M.A.; Pokrovsky, O.S. Fluvial carbon dioxide emission from the Lena River basin during the spring flood. Biogeosciences 2021, 18, 4919–4936. [Google Scholar] [CrossRef]
- Zabelina, S.; Shirokova, L.; Klimov, S.; Chupakov, A.; Lim, A.; Polishchuk, Y.M.; Polishchuk, V.Y.; Bogdanov, A.N.; Muratov, I.N.; Guerin, F.; et al. Carbon emission from thermokarst lakes in NE European tundra. Limnol. Oceanogr. 2020, 66, S216–S230. [Google Scholar] [CrossRef]
- Drozdova, O.Y.; Ilina, S.M.; Anokhina, N.A.; Zavgorodnyaya, Y.A.; Demin, V.V.; Lapitskiy, S.A. Organic Matter Transformation in the Conjugate Series of Surface Water in Northern Karelia. Water Resour. 2019, 46, 52–58. [Google Scholar] [CrossRef]
- Ilina, S.M.; Drozdova, O.Y.; Lapitskiy, S.A.; Alekhin, Y.V.; Demin, V.; Zavgorodnyaya, Y.; Shirokova, L.; Viers, J.; Pokrovsky, O.S. Size fractionation and optical properties of dissolved organic matter in the continuum soil solution-bog-river and terminal lake of a boreal watershed. Org. Geochem. 2014, 66, 14–24. [Google Scholar] [CrossRef]
- Jaffé, R.; Boyer, J.N.; Lu, X.; Maie, N.; Yang, C.; Scully, N.M.; Mock, S. Source characterization of dissolved organic matter in a subtropical mangrove-dominated estuary by fluorescence analysis. Mar. Chem. 2004, 84, 195–210. [Google Scholar] [CrossRef]
- Battin, T.J. Dissolved organic materials and its optical properties in a blackwater tributary of the upper Orinoco River, Venezuela. Org. Geochem. 1998, 28, 561–569. [Google Scholar] [CrossRef]
- Li, M.; Peng, C.; Wang, M.; Xue, W.; Zhang, K.; Wang, K.; Shi, G.; Zhu, Q. The carbon flux of global rivers: A re-evaluation of amount and spatial patterns. Ecol. Indic. 2017, 80, 40–51. [Google Scholar] [CrossRef]
- Cole, J.J.; Prairie, Y.T.; Caraco, N.F.; McDowell, W.H.; Tranvik, L.J.; Striegl, R.G.; Duarte, C.M.; Kortelainen, P.; Downing, J.A.; Middelburg, J.J.; et al. Plumbing the Global Carbon Cycle: Integrating Inland Waters into the Terrestrial Carbon Budget. Ecosystems 2007, 10, 172–185. [Google Scholar] [CrossRef]
- Raymond, P.; Hartmann, J.; Lauerwald, R.; Lauerwald, R.; Sobek, S.; McDonald, C.; Hoover, M.; Butman, D.; Striegl, R.; Mayorga, E.; et al. Global carbon dioxide emissions from inland waters. Nature 2013, 503, 355–359. [Google Scholar] [CrossRef] [PubMed]
- Kirpotin, S.N.; Kvasnikova, Z.N.; Potapova, S.A.; Volkova, I.I.; Volkov, I.V.; Pyak, A.I.; Byzaakay, A.A.; Kolesnichenko, L.G.; Lushchaeva, I.V.; Khovalyg, A.O.; et al. Pilot Studies of the Unique Highland Palsa Mire in Western Sayan (Tuva Republic, Russian Federation). Atmosphere 2022, 13, 32. [Google Scholar] [CrossRef]
- Pokrovsky, O.S.; Viers, J.; Dupre, B.; Chabaux, F.; Gaillardet, J.; Audry, S.; Prokushkin, A.S.; Shirokova, L.S.; Kirpotin, S.N.; Lapitsky, S.A.; et al. Biogeochemistry of carbon, major and trace elements in watersheds of Northern Eurasia drained to the Arctic Ocean: The change of fluxes, sources and mechanisms under the climate warming prospective. Comptes Rendus Geosci. 2012, 344, 663–677. [Google Scholar] [CrossRef]
- Krickov, I.; Lim, A.G.; Loiko, S.V.; Vorobyev, S.N.; Shevchenko, V.P.; Dara, O.M.; Gordeev, V.V.; Pokrovsky, O.S. Major and trace elements in suspended matter of western Siberian rivers: First assessment across permafrost zones and landscape parameters of watersheds. Geochim. Cosmochim. Acta 2020, 269, 429–450. [Google Scholar] [CrossRef]
- Bagard, M.L.; Chabaux, F.; Stille, P.; Rihs, S.; Pokrovsky, O.S.; Viers, J.; Dupré, B.; Prokushkin, A.S.; Schmitt, A.D. Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas. Geochim. Cosmochim. Acta 2011, 75, 3335–3357. [Google Scholar] [CrossRef]
- Manasypov, R.M.; Vorobyev, S.N.; Loiko, S.V.; Kritzkov, I.V.; Kirpotin, S.N.; Kulizhsky, S.P.; Kolesnichenko, L.G.; Zemtsov, V.A.; Sinkinov, V.V.; Pokrovsky, O.S.; et al. Seasonal dynamics of organic carbon and metals in thermokarst lakes from the discontinuous permafrost zone of western Siberia. Biogeosciences 2015, 12, 3009–3028. [Google Scholar] [CrossRef]
- Frey, K.E.; McClelland, J.W. Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol. Process. 2009, 23, 169–182. [Google Scholar] [CrossRef]
- Calabrese, S.; Parolari, A.J.; Porporato, A. Hydrologic Transport of Dissolved Inorganic Carbon and Its Control on Chemical Weathering. J. Geophys. Res. Earth Surf. 2017, 122, 2016–2032. [Google Scholar] [CrossRef]
- Park, S.; Joe, K.S.; Han, S.H.; Kim, H.S. Characteristics of dissolved organic carbon in the leachate from Moonam Sanitary Landfill. Environ. Technol. 1999, 20, 419–424. [Google Scholar] [CrossRef]
- Hutchins, R.H.S.; Aukes, P.; Schiff, S.L.; Dittmar, T.; Prairie, Y.T.; del Giorgio, P.A. The optical, chemical, and molecular dissolved organic matter succession along a boreal soil-stream-river continuum. J. Geophys. Res. Biogeosci. 2017, 122, 2892–2908. [Google Scholar] [CrossRef]
- Shirokova, L.S.; Pokrovsky, O.S.; Kirpotin, S.N.; Desmukh, C.; Pokrovsky, B.G.; Audry, S.; Viers, J. Biogeochemistry of organic carbon, CO2, CH4, and trace elements in thermokarst water bodies in discontinuous permafrost zones of Western Siberia. Biogeochemistry 2013, 113, 573–593. [Google Scholar] [CrossRef]
- Payandi-Rolland, D.; Shirokova, L.S.; Nakhle, P.; Tesfa, M.; Abdou, A.; Causserand, C.; Lartiges, B.; Rols, J.-L.; Guerin, F.; Benezeth, P.; et al. Aerobic release and biodegradation of dissolved organic matter from frozen peat: Effects of temperature and heterotrophic bacteria. Chem. Geol. 2020, 536, 119448. [Google Scholar] [CrossRef]
- Payandi-Rolland, D.; Shirokova, L.S.; Lariux, J.; Bénézeth, P.; Pokrovsky, O.S. Laboratory growth capacity of an invasive cyanobacterium (Microcystis aeruginosa) on organic substrates from surface waters of permafrost peatlands. Environ. Sci. Process. Impacts 2023, 25, 659–669. [Google Scholar] [CrossRef]
- Jia, J.; Sun, K.; Lu, S.; Li, M.; Wang, Y.; Yu, G.; Gao, Y. Determining whether Qinghai–Tibet Plateau waterbodies have acted like carbon sinks or sources over the past 20 years. Sci. Bull. 2022, 67, 2345–2357. [Google Scholar] [CrossRef] [PubMed]
- Wang, L. In-situ measurement on air–water flux of CH4, CO2 and their carbon stable isotope in lakes of northeast Tibetan Plateau. Adv. Clim. Chang. Res. 2022, 13, 279–289. [Google Scholar] [CrossRef]
- Yu, C.; Li, Y.; Jin, H.; Ma, Q.; Yu, Z.; Shi, K.; Li, X.; Chen, G. Organic versus Inorganic Carbon Exports from Glacier and Permafrost Watersheds in Qinghai–Tibet Plateau. Aquat. Geochem. 2021, 27, 283–296. [Google Scholar] [CrossRef]
- Maurischat, P.; Lehnert, L.; Zerres, H.D.V.; Tran, T.V.; Kalbitz, K.; Rinnan, Å.; Li, X.G.; Dorji, T.; Guggenberger, G. The glacial–terrestrial–fluvial pathway: A multiparametrical analysis of spatiotemporal dissolved organic matter variation in three catchments of Lake Nam Co, Tibetan Plateau. Sci. Total Environ. 2022, 838, 156542. [Google Scholar] [CrossRef]
- Jin, Z.D.; You, C.F.; Wang, Y.; Shi, Y. Hydrological and solute budgets of Lake Qinghai, the largest lake on the Tibetan Plateau. Quat. Int. 2010, 218, 151–156. [Google Scholar] [CrossRef]
- Xie, J.X.; Li, Y.; Zhai, C.X.; Li, C.; Lan, Z. CO2 absorption by alkaline soils and its implication to the global carbon cycle. Environ. Geol. 2009, 56, 953–961. [Google Scholar] [CrossRef]
- Golubyatnikov, L.; Kurganova, I.N.; de Gerenyu, V.L. Estimation of C-CO2 balance of natural steppe ecosystems: Khakassia and Tuva (Eastern Siberia, Russia) case studies. IOP Conf. Ser. Earth Environ. Sci. 2020, 606, 012013. [Google Scholar] [CrossRef]
- Karlsson, J.; Serikova, S.; Rocher-Ros, G.; Denfeld, B.; Vorobyev, S.N.; Pokrovsky, O.S. Carbon emission from Western Siberian inland waters. Nat. Commun. 2021, 12, 825. [Google Scholar] [CrossRef] [PubMed]
- Karabaeva, L. Surface Water Resources of the USSR: Hydrological Knowledge. Angaro-Yenisei District. Question 1. Yenisei; Hydrometeoizdat: Leningrad, Russia, 1973; Volume 16, p. 823. [Google Scholar]
- State Report on the State and Environmental Protection of the Republic of Tyva in 2018. Available online: http://docs.cntd.ru/document/561543920 (accessed on 25 December 2022).
- Grebneva, V.A. Geography of the Tuva ASSR; Tuvan Book Publishing House: Gaithersburg, MD, USA, 1972; Volume 2, 132p. [Google Scholar]
- Ochur-ool, A.O. Ecological and Geochemical State of the Landscapes of the Khemchik Basin (Western Tyva). Ph.D. Thesis, Candidate of Geographical Sciences, Kyzyl-Tomsk, Russia, 2016; 175p. Available online: https://vital.lib.tsu.ru/vital/access/services/Download/vtls:000563256/SOURCE1 (accessed on 18 June 2023).
- Makarieva, O.M.; Nesterova, N.V.; Yampolsky, G.P.; Kudymova, E.Y.; Ostashov, A.A.; Kolupaeva, A.D. The Oenc is a maximum category of aqueducts of versatile observation and unexplored mountain river Khemchik (Republic of Tyva) based on mathematical modeling methods. Eng. Surv. 2019, XIII, 36–51. [Google Scholar] [CrossRef]
- State Water Register: Alash River. Available online: https://textual.ru/gvr/index.php?card=212139 (accessed on 15 August 2023).
- State Water Register: Ak-Sug River. Available online: https://textual.ru/gvr/index.php?card=211467 (accessed on 17 August 2023).
- Potapova, S.A. Analysis of the physical and geographical conditions of the Ak-Sug river basin as a stage of monitoring vulnerable ecosystems of the Republic of Tuva/Geographical studies of Siberia and the Altai-Sayan transboundary region. In Proceedings of the International Scientific and Practical Conference, Veliky Novgorod, Russia, 28–29 June 2021; pp. 423–434. [Google Scholar]
- Chadan River: According to the State Water Register. Available online: http://www.textual.ru/gvr/index.php?card=212241 (accessed on 20 August 2023).
- Khayan, A.B. Geoecological state of the Durgen river. Ecology of Southern Siberia and adjacent territories. In Proceedings of the Conference “Ecological Siberia and the Limit of Territories”; 2014; pp. 154–155. Available online: https://www.elibrary.ru/item.asp?id=23627503 (accessed on 4 February 2023).
- Nazyn, C.D. The first information about the algae of the Torgalyg River (Tuva, Russia). Resort Base Nat. Health-Improv. Areas Tuva Adjac. Reg. 2013, 189–192. (In Russian) [Google Scholar]
- State Water Register: Anyyak-Chyrgaki River. Available online: https://textual.ru/gvr/index.php?card=212216 (accessed on 14 December 2021).
- State Water Register: Biche-Bayan-Kol River. Available online: https://textual.ru/gvr/index.php?card=212200 (accessed on 14 December 2021).
- Alash Plateau: The Great Soviet Encyclopedia. Available online: https://bio.1sept.ru/article.php?ID=200203204 (accessed on 18 August 2023).
- Shilkrot, G.S.; Kretova, S.P.; Smirnova, E.V. Ecosystem of Lake Ubsu-Nur potential and water quality. Informational problems of studying the biosphere. Pushchino 1990, 236–303. [Google Scholar]
- Protected Areas of Russia: Lake Tore-Khol. Available online: http://oopt.aari.ru/oopt/%D0%9E%D0%B7%D0%B5%D1%80%D0%BE%D0%A2%D0%BE%D1%80%D0%B5-%D0%A5%D0%BE%D0%BB%D1%8C (accessed on 20 December 2021).
- Protected Areas of Russia: Lake Cheder. Available online: http://oopt.aari.ru/oopt/%D0%9E%D0%B7%D0%B5%D1%80%D0%BE-%D0%A7%D0%B5%D0%B4%D0%B5%D1%80 (accessed on 16 August 2023).
- Erdynieva, L.S. Use of Natural and Ecological Resources of Lake Cheder. The World of Science, Culture, Enlightenment 2010. pp. 312–315. Available online: https://cyberleninka.ru/article/n/ispolzovanie-prirodno-ekologicheskih-resursov-ozera-cheder (accessed on 20 May 2023).
Name | Flow Velocity m/s | Depth (m) | Length (km) | Average Discharge, m3/c | Catchment Area (km²) | Height at the Samp-Ling Point, m | Average Catchment Height (m) | Slope of the Riverbed (m/km) | Location |
---|---|---|---|---|---|---|---|---|---|
Yenisei | 0.25–2.6 | 2–3 | 3487 | 1020 | 102,806 | 650 | 1196 | 16.8 | Ulug-Khem basin |
Big Yenisei | 1.4–2.4 | 1.5–4 | 605 | 594 | 57,766 | 630 | 1448 | 3.1 | Todzhin-skaya basin; Kyzyl basin |
Small Yenisei | 1.8–2.3 | 1–2.4 | 563 | 411 | 36,395 | 636 | 1555 | 2.8 | Sangilen Highlands; Ulugh-Khem basin |
Tes-Hem | 1.1–2.1 | 1–2.1 | 757 | 55.6 | 18,430 | 1067 | 1842 | 7.9 | East Tannu-Ola |
Hem-chik | - | 0.75–2 | 320 | 102 | 3268 | 850 | 1923 | 14.4 | Shapshal ridge; Khemchik basin |
Alash | 0.43 | 0.30–2 | 172 | 4741 | 920 | 2063 | 9.2 | Alash Plateau | |
Ak—Sug | 0.31 | 0.25–1 | 160 | 14 | 997.4 | 1150 | 1966 | 26.8 | Alash Plateau |
Chadan | - | - | 98 | - | 881.5 | 800 | 1567 | 28.8 | West Tannu-Ola |
Durgen | 0.54 | 0.66–1 | 93 | - | 121.7 | 1200 | 1751 | 42.3 | The northern slope of East Tannu-Ola |
Chaa-Hol | 0.28 | 0.5–2 | 90 | - | 320.3 | 540 | 1694 | 43.1 | The northern slope of the western Tannu-Ola |
Huule (Torgalyg) | - | 0.4–2 | 53 | - | 1090 | 535 | 1273 | 30.9 | The northern slope of the Eastern Tannu-Ola; The Central Tuva basin |
Anyyak-Chyrgaki | 0.173 | 0.2–2 | 52 | - | 1859 | 800 | 1519 | 13.9 | West Tannu-Ola |
Dyttyg-Hem | - | 0.2–0.8 | 34 | - | 426.9 | 1250 | 1710 | 36.3 | Southern slope of East Tannu-Ola |
Biche-Bayan-Kol | 0.34 | 0.3–0.8 | 32 | - | 15.3 | 750 | 1222 | 26.0 | Uyuk Ridge |
Adyr-khem | 0.17 | 0.5–2 | 8.25 | - | 8.25 | 1850 | 2076 | 66.2 | Alash Plateau |
Name | Depth (m) | Water Mirror Area, km² | Type | Height (m) | Location |
---|---|---|---|---|---|
Tore-Khol | 6–8 (max. 40 m) | 68.8 | Freshwater | 1148 | Ubsunur basin |
Chagytai | 17 | 28.6 | Freshwater lake | 1005 | The foot of the northern slope of the Tannu-Ola ridge |
Cheder | 1.5–2 | 4.3 | Salt lake | 706 | South of the Tuva basin, a drainless depression |
Thermokarst 1 | 4 | 0.3 | Thermokarst lake | 1850 | Alash Plateau |
Thermokarst 2 | 5 | 0.1 | Thermokarst lake | 1850 | Alash Plateau |
Rivers | Average | Median |
---|---|---|
Large rivers | ||
Yenisei | 689 | 578 |
Big Yenisei | 860 | 587 |
Small Yenisei | 790 | 571 |
Tes-Khem | 672 | 609 |
Khemchik | 705 | 715 |
Alash | 563 | 502 |
Small rivers | ||
Ak—Sug | 809 | 552 |
Chadan | 1470 | 1112 |
Durgen | 739.5 | 493 |
Chaa-Hol | 778 | 729 |
Huule (Torgalyg) | 1133 | 1003 |
Anyyak-Chyrgaki | 909 | 932 |
Dyttyg-Hem | 840 | 660 |
Biche-Bayan-Kol | 743 | 743 |
Adyr-Khem | 2043 | 2105 |
Lakes | ||
Tore-Khol | 332 | 337 |
Chagytai | 504 | 535 |
Cheder | 321 | 292 |
Thermokarst lake 1 | 754 | 705 |
Thermokarst lake 2 | 694 | 806 |
Autumn | Winter | Spring | Summer | Average Value | Median | Standard Deviation | |
---|---|---|---|---|---|---|---|
Large rivers | |||||||
Yenisei | 0.10 | 0.39 | 0.06 | 0.08 | 0.16 | 0.09 | 0.15 |
Big Yenisei | 0.22 | 0.11 | 0.09 | 0.14 | 0.11 | 0.07 | |
Small Yenisei | 0.19 | 0.71 | 0.03 | 0.12 | 0.26 | 0.15 | 0.31 |
Tes-Khem | 0.42 | 0.16 | 0.10 | 0.10 | 0.19 | 0.13 | 0.15 |
Khemchik | 0.19 | 0.35 | 0.00 | 0.08 | 0.16 | 0.14 | 0.15 |
Alash | 0.07 | 0.10 | 0.00 | −0.02 | 0.04 | 0.03 | 0.06 |
Small rivers | |||||||
Ak—Sug | 0.10 | 5.60 | 0.04 | 0.11 | 1.46 | 0.10 | 2.76 |
Chadan | 12.11 | 0.01 | 0.13 | 4.08 | 0.13 | 6.95 | |
Durgen | 0.20 | 0.25 | 0.00 | 0.02 | 0.12 | 0.11 | 0.13 |
Chaa-Hol | 0.31 | 0.04 | 0.15 | 0.17 | 0.15 | 0.14 | |
Huule (Torgalyg) | 0.14 | 0.15 | 0.05 | 0.45 | 0.20 | 0.15 | 0.17 |
Anyyak-Chyrgaki | 1.89 | 0.06 | 0.33 | 0.76 | 0.33 | 0.99 | |
Dyttyg-Hem | 0.51 | 0.12 | 0.03 | 0.22 | 0.12 | 0.26 | |
Biche-Bayan-Kol | |||||||
Adyr-Khem | 3.58 | 0.48 | 0.16 | −0.06 | 1.04 | 0.32 | 1.71 |
Lakes | |||||||
Tore-Khol | 0.03 | 0.02 | 0.07 | 0.11 | 0.06 | 0.05 | 0.04 |
Chagytai | 0.16 | 0.01 | 0.11 | 0.00 | 0.07 | 0.06 | 0.08 |
Cheder | 0.07 | 0.09 | 0.05 | −0.04 | 0.04 | 0.06 | 0.06 |
Thermokarst lake 1 | 0.09 | 0.06 | 0.04 | 0.06 | 0.06 | 0.02 | |
Thermokarst lake 2 | 0.13 | 0.02 | 0.06 | 0.07 | 0.06 | 0.06 |
All Objects | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | E.C. | Twater | pH | O2 | pCO2 | TBC | DIC | DOC | SUVA254 | E2:E3 | E254:E436 | SR | fCO2 |
Sarea | 0.03 | 0.16 | 0.23 | 0.23 | −0.18 | −0.29 | −0.07 | −0.46 | −0.2 | −0.05 | −0.41 | −0.14 | −0.16 |
E.C. | 0.05 | 0.76 | 0.25 | −0.24 | −0.01 | 0.95 | 0.23 | −0.75 | 0.72 | −0.48 | 0.85 | −0.06 | |
Twater | −0.26 | −0.69 | −0.12 | 0.02 | 0.19 | 0.11 | 0.01 | −0.37 | 0.12 | −0.11 | −0.33 | ||
pH | 0.54 | −0.33 | 0.09 | 0.70 | −0.01 | −0.77 | 0.71 | −0.58 | 0.61 | −0.04 | |||
O2 | −0.13 | −0.16 | 0.06 | −0.28 | −0.42 | 0.53 | −0.46 | 0.25 | 0.09 | ||||
pCO2 | 0.00 | −0.24 | −0.28 | 0.29 | −0.07 | 0.01 | −0.15 | 0.85 | |||||
TBC | 0.14 | 0.33 | 0.09 | −0.03 | 0.22 | −0.16 | 0.05 | ||||||
DIC | 0.26 | −0.72 | 0.64 | −0.44 | 0.75 | −0.08 | |||||||
DOC | 0.25 | 0.03 | 0.69 | 0.21 | −0.23 | ||||||||
SUVA254 | −0.61 | 0.81 | −0.56 | 0.08 | |||||||||
E2:E3 | −0.51 | 0.75 | 0.21 | ||||||||||
E254:E436 | −0.39 | −0.16 | |||||||||||
SR | 0.06 | ||||||||||||
Rivers | |||||||||||||
E.C. | Twater | pH | O2 | pCO2 | TBC | DIC | DOC | SUVA254 | E2:E3 | E254:E436 | SR | fCO2 | |
Sarea | 0.22 | 0.38 | 0.17 | 0.02 | −0.46 | −0.23 | 0.18 | 0.08 | −0.06 | −0.04 | 0.05 | −0.06 | −0.40 |
E.C. | −0.16 | 0.79 | 0.54 | −0.05 | −0.11 | 0.88 | −0.21 | −0.77 | 0.42 | −0.53 | 0.34 | −0.04 | |
Twater | −0.37 | −0.71 | −0.19 | 0.16 | 0.06 | 0.11 | 0.18 | −0.72 | 0.28 | −0.46 | −0.36 | ||
pH | 0.67 | −0.23 | −0.18 | 0.65 | −0.18 | −0.78 | 0.61 | −0.55 | 0.46 | −0.09 | |||
O2 | −0.07 | −0.26 | 0.16 | −0.16 | −0.48 | 0.74 | −0.44 | 0.66 | 0.06 | ||||
pCO2 | 0.22 | −0.05 | −0.30 | 0.16 | 0.17 | −0.20 | 0.17 | 0.93 | |||||
TBC | 0.02 | 0.32 | 0.17 | −0.17 | 0.28 | −0.40 | 0.12 | ||||||
DIC | −0.11 | −0.68 | 0.14 | −0.39 | 0.08 | −0.08 | |||||||
DOC | 0.45 | −0.27 | 0.89 | −0.54 | −0.24 | ||||||||
SUVA254 | −0.36 | 0.75 | −0.39 | 0.11 | |||||||||
E2:E3 | −0.49 | 0.65 | 0.33 | ||||||||||
E254:E436 | −0.58 | −0.20 | |||||||||||
SR | 0.28 | ||||||||||||
Lakes | |||||||||||||
E.C. | Twater | pH | O2 | pCO2 | TBC | DIC | DOC | SUVA254 | E2:E3 | E254:E436 | SR | fCO2 | |
Sarea | 0.95 | 0.58 | 0.72 | 0.11 | −0.31 | 0.19 | 0.92 | −0.32 | −0.93 | −0.53 | −0.83 | 0.98 | 0.17 |
E.C. | 0.56 | 0.75 | 0.17 | −0.38 | 0.41 | 0.99 | −0.15 | −0.87 | −0.25 | −0.77 | 0.92 | 0.07 | |
Twater | −0.07 | −0.51 | 0.19 | −0.38 | 0.57 | −0.29 | −0.45 | −0.14 | −0.41 | 0.46 | −0.53 | ||
pH | 0.59 | −0.54 | 0.65 | 0.71 | 0.16 | −0.68 | −0.28 | −0.53 | 0.75 | 0.55 | |||
O2 | −0.92 | 0.54 | 0.14 | 0.20 | −0.35 | −0.03 | −0.30 | 0.18 | 0.16 | ||||
pCO2 | −0.46 | −0.35 | 0.05 | 0.59 | 0.08 | 0.57 | −0.36 | 0.10 | |||||
TBC | 0.45 | 0.34 | −0.19 | 0.39 | −0.16 | 0.26 | 0.36 | ||||||
DIC | −0.17 | −0.84 | −0.19 | −0.76 | 0.90 | 0.05 | |||||||
DOC | 0.48 | 0.68 | 0.67 | −0.42 | 0.02 | ||||||||
SUVA254 | 0.58 | 0.96 | −0.94 | −0.06 | |||||||||
E2:E3 | 0.59 | −0.59 | −0.42 | ||||||||||
E254:E436 | −0.89 | −0.02 | |||||||||||
SR | 0.28 |
Sites | Period | pCO2 (ppmv) | fCO2 (g C m−2 d−1) | DOC (mg L−1) | DIC (mg L−1) | Reference |
---|---|---|---|---|---|---|
All | Annual cycle | 1495 ± 577 | 0.46 ± 1.6 | 3.7 ± 2.9 | 29 ± 24 | This study |
Rivers | Annual cycle | 929 ± 611 | 0.60 ± 1.9 | 2.7 ± 1.7 | 24.6 ± 12 | This study |
Lakes | Annual cycle | 385 ± 123 | 0.06 ± 0.05 | 7.2 ± 3.8 | 78 ± 35 | This study |
Thermokarst lakes | Annual cycle | 724 ± 368 | 0.067 ± 0.038 | 8 ± 1.6 | 5 ± 1.6 | This study |
Fenghuoshan catchment, China | Annual cycle | 1260 ± 145 | 6.3 ± 0.9 | 17.9 ± 5.5 | 33 ± 3 | [19] |
Thermokarst lakes, China | June–September | 9.5 ± 5.7 | 38 ± 35 | [96] | ||
The NamCo basin and source area of Yellow River (SAID) | July 2015 (melting of glacier) | 2.3 ± 1.3 | 11.3 ± 10.6 | [97] | ||
Yangtze River source region | Biweekly from May to October | 1086 ± 275 | 2.8 ± 0.6 | 24.4 ± 1.9 | [18] | |
Qinghai Lake and the inflowing rivers | 23 May 2021 | 1.0 ± 0.6 | 13.3 ± 7.7 | [21] | ||
Three catchments within the Nam Co watershed | June/July 2018, May 2019 and September 2019 | 2.4 ± 0.3 | 8.8 ± 5.5 | [98] | ||
76 lakes, Western Siberia Lowland | May–June, August–October | 1044 ± 1540 | 1.7 ± 1.7 | 16 ± 10 | 0.7 ± 0.8 | [1] |
Lena upstream of Kirenga | 29 May to 17 June 2016 | 714 ± 22 | 0.85 ± 0.06 | 13.9 ± 1.4 | 20.0 ± 1.2 | [74] |
Southwestern and northeastern regions of the QTP (70 lakes, four rivers and one reservoir on the QTP) | 20-year period (i.e., from the 2000s to the 2020s) | 0.3 ± 0.2 | [95] | |||
Two saline lakes (Qinghai Lake and Hala Lake) in the Tibetan Plateau | Continuously measured on 20, 23 October 2018 | 13.1 ± 0.4 | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Byzaakay, A.A.; Kolesnichenko, L.G.; Kolesnichenko, I.I.; Khovalyg, A.O.; Raudina, T.V.; Prokushkin, A.S.; Lushchaeva, I.V.; Kvasnikova, Z.N.; Vorobyev, S.N.; Pokrovsky, O.S.; et al. Dissolved Carbon Concentrations and Emission Fluxes in Rivers and Lakes of Central Asia (Sayan–Altai Mountain Region, Tyva). Water 2023, 15, 3411. https://doi.org/10.3390/w15193411
Byzaakay AA, Kolesnichenko LG, Kolesnichenko II, Khovalyg AO, Raudina TV, Prokushkin AS, Lushchaeva IV, Kvasnikova ZN, Vorobyev SN, Pokrovsky OS, et al. Dissolved Carbon Concentrations and Emission Fluxes in Rivers and Lakes of Central Asia (Sayan–Altai Mountain Region, Tyva). Water. 2023; 15(19):3411. https://doi.org/10.3390/w15193411
Chicago/Turabian StyleByzaakay, Arisiya A., Larisa G. Kolesnichenko, Iury Ia. Kolesnichenko, Aldynay O. Khovalyg, Tatyana V. Raudina, Anatoly S. Prokushkin, Inna V. Lushchaeva, Zoia N. Kvasnikova, Sergey N. Vorobyev, Oleg S. Pokrovsky, and et al. 2023. "Dissolved Carbon Concentrations and Emission Fluxes in Rivers and Lakes of Central Asia (Sayan–Altai Mountain Region, Tyva)" Water 15, no. 19: 3411. https://doi.org/10.3390/w15193411
APA StyleByzaakay, A. A., Kolesnichenko, L. G., Kolesnichenko, I. I., Khovalyg, A. O., Raudina, T. V., Prokushkin, A. S., Lushchaeva, I. V., Kvasnikova, Z. N., Vorobyev, S. N., Pokrovsky, O. S., & Kirpotin, S. (2023). Dissolved Carbon Concentrations and Emission Fluxes in Rivers and Lakes of Central Asia (Sayan–Altai Mountain Region, Tyva). Water, 15(19), 3411. https://doi.org/10.3390/w15193411