Design and Development of a Pilot-Scale Industrial Wastewater Treatment System with Plant Biomass and EDTA
Abstract
:1. Introduction
2. Materials and Methods
- Only E. crassipes 50 g of biomass
- E. crassipes with EDTA 5 g mixed with the 45 g biomass EC1
- E. crassipes with EDTA 10 g mixed with the 40 g of biomass EC2
- Co: initial concentration of Cr (VI) (mg/L)
- Cf: final concentration (VI) (mg/L)
- V: volume (mL)
- Kth: Thomas constant (mL/mg∗min)
- q: adsorption capacity (mg/g)
- M: mass of biomass in column (g)
- Q: design flow rate (mL/min)
- Tb: breakthrough time (min)
- Co: initial concentration of Cr (VI) (mg/L)
- Cf: final concentration (VI) (mg/L)
- V: volume (mL)
- q: adsorption capacity (mg/g)
- M: mass of biomass in column (g)
- Q: design flow rate (mL/min)
- Tb: breakthrough time (min)
- = Area m2
- Vb = Volume of biomass mg/L
- Relations of densities
- Radio of process mL
3. Results
- q: Adsorption capacity
- Co: 0.4 mg/mL
- CF: 0.06 mg/mL
- M: 45 g
- Tb: break time 94 min
- Q: 15 Flow mL/min
- ε: 0.7
- V: Volume occupied 68 mL
- qEC1: 16 mg/g
- Final concentration = 1 mg/L
- Initial concentration = 1000 mg/L
- Kf = 1.1 cm/min
- V = water to be treated 80,000 mL
- T = treatment time 1250 min
- = 0.7
- = 3.3 mL
- mL
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, L.; Liu, K.; Yu, J.; Han, H.; Chen, Q.; Chen, C. Design of online monitoring system for heavy metal mercury in industrial wastewater based on ZigBee wireless network. Desalination Water Treat. 2021, 239, 31–40. [Google Scholar] [CrossRef]
- Sayago, U.F.C. Diseño y evaluación de un biosistema de tratamiento a escala piloto de aguas de curtiembres a través de la Eichhornia crassipes. Rev. Colomb. Biotecnol. 2016, 18, 74–81. [Google Scholar] [CrossRef]
- Pourshahabi, S.; Rakhshandehroo, G.; Talebbeydokhti, N.; Nikoo, M.R.; Masoumi, F. Handling uncertainty in optimal design of reservoir water quality monitoring systems. Environ. Pollut. 2020, 266, 115211. [Google Scholar] [CrossRef]
- Hicran, K.A.Y.A.; Güneş, E.; Aydin, N. Characterisation of aluminium industrial wastewater and investigation of recovery alternatives. Environ. Res. Technol. 2022, 5, 249–256. [Google Scholar]
- Carreño Sayago, U.F.; Granada Torres, C.A. Design, Development, and Evaluation of a Laboratory-Scale Phytoremediation System Using Eichhornia crassipes for the Treatment of Chromium-Contaminated Waters. Tecciencia 2017, 12, 7–14. [Google Scholar] [CrossRef]
- Castro Fernández, M.F.; Cárdenas Manosalva, I.R.; Colmenares Quintero, R.F.; Montenegro Marín, C.E.; Diaz Cuesta, Y.E.; Escobar Mahecha, D.; Pérez Vásquez, P.A. Multitemporal Total Coliforms and Escherichia coli Analysis in the Middle Bogotá River Basin, 2007–2019. Sustainability 2022, 14, 1769. [Google Scholar] [CrossRef]
- Carreño-Sayago, U.F.; Rodríguez-Parra, C. Eichhornia crassipes (Mart.) Sols: An integrated phytoremediation and bioenergy system. Rev. Chapingo Ser. Cienc. For. 2019, 25, 399–411. [Google Scholar]
- Wang, R.; Deng, L.; Fan, X.; Li, K.; Lu, H.; Li, W. Removal of heavy metal ion cobalt (II) from wastewater via adsorption method using microcrystalline cellulose–magnesium hydroxide. Int. J. Biol. Macromol. 2021, 189, 607–617. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, H.; Shao, J.; Chen, Y.; Zhang, S.; Chen, H. Multifunctional carboxymethyl cellulose sodium encapsulated phosphorus-enriched biochar composites: Multistage adsorption of heavy metals and controllable release of soil fertilization. Chem. Eng. J. 2023, 453, 139809. [Google Scholar] [CrossRef]
- Sun, Z.; Yin, Y.; An, Y.; Deng, C.; Wei, Z.; Jiang, Z.; Duan, X.; Xu, X.; Chen, J. A novel modified carboxymethyl cellulose hydrogel adsorbent for efficient removal of poisonous metals from wastewater: Performance and mechanism. J. Environ. Chem. Eng. 2022, 10, 108179. [Google Scholar] [CrossRef]
- Fouda-Mbanga, B.G.; Prabakaran, E.; Pillay, K. Carbohydrate biopolymers, lignin based adsorbents for removal of heavy metals (Cd2+, Pb2+, Zn2+) from wastewater, regeneration and reuse for spent adsorbents including latent fingerprint detection: A review. Biotechnol. Rep. 2021, 30, e00609. [Google Scholar] [CrossRef]
- Dawoud MM, A.; Hegazy, M.M.; Helew, W.K.; Saleh, H.M. Overview of environmental pollution and clean management of heavy metals and radionuclides by using microcrystalline cellulose. J. Nucl. Energy Sci. Power Gener. Technol. 2021, 3. [Google Scholar]
- Banza, M.; Rutto, H. Continuous fixed-bed column study and adsorption modeling removal of Ni2+, Cu2+, Zn2+ and Cd2+ ions from synthetic acid mine drainage by nanocomposite cellulose hydrogel. J. Environ. Sci. Health Part A 2022, 57, 117–129. [Google Scholar] [CrossRef] [PubMed]
- Akter, M.; Bhattacharjee, M.; Dhar, A.K.; Rahman FB, A.; Haque, S.; Rashid, T.U.; Kabir, S.F. Cellulose-based hydrogels for wastewater treatment: A concise review. Gels 2021, 7, 30. [Google Scholar] [CrossRef]
- Fang, M.; Chu, W.F.; Cui, J.; Jin, G.P.; Tian, C. Adsorption application of Rb+ on hydrogels of hydroxypropyl cellulose/polyvinyl alcohol/reduced graphene oxide encapsulating potassium cobalt hexacyanoferrate. Appl. Organomet. Chem. 2022, 36, e6827. [Google Scholar] [CrossRef]
- Santos, T.J.; Paggiaro, J.; Pimentel, H.D.C.S.; dos Santos Pereira, A.K.; Cavallini, G.S.; Pereira, D.H. Computational study of the interaction of heavy metal ions, Cd (II), Hg (II), and Pb (II) on lignin matrices. J. Mol. Graph. Model. 2022, 111, 108080. [Google Scholar] [CrossRef] [PubMed]
- Reshmy, R.; Thomas, D.; Philip, E.; Paul, S.A.; Madhavan, A.; Sindhu, R.; Binod, P.; Pugazhendhi, A.; Sirohi, R.; Tarafdar, A.; et al. Potential of nanocellulose for wastewater treatment. Chemosphere 2021, 281, 130738. [Google Scholar]
- Sayago, U.F.C. Design of a sustainable development process between phytoremediation and production of bioethanol with Eichhornia crassipes. Environ. Monit. Assess. 2019, 191, 221. [Google Scholar] [CrossRef]
- Sayago UF, C.; Castro, Y.P.; Rivera LR, C.; Mariaca, A.G. Estimation of equilibrium times and maximum capacity of adsorption of heavy metals by E. crassipes. Environ. Monit. Assess. 2020, 192, 141. [Google Scholar] [CrossRef]
- Yin, M.; Bai, X.; Wu, D.; Li, F.; Jiang, K.; Ma, N.; Chen, Z.; Zhang, X.; Fang, L. Sulfur-functional group tunning on biochar through sodium thiosulfate modified molten salt process for efficient heavy metal adsorption. Chem. Eng. J. 2022, 433, 134441. [Google Scholar] [CrossRef]
- Qin, X.; Zhang, Z.; Yang, T.; Yuan, L.; Guo, Y.; Yang, X. Auto-fluorescence of cellulose paper with spatial solid phrase dispersion-induced fluorescence enhancement behavior for three heavy metal ions detection. Food Chem. 2022, 389, 133093. [Google Scholar] [CrossRef]
- Kaur, J.; Sengupta, P.; Mukhopadhyay, S. Critical review of bioadsorption on modified cellulose and removal of divalent heavy metals (Cd, Pb, and Cu). Ind. Eng. Chem. Res. 2022, 61, 1921–1954. [Google Scholar] [CrossRef]
- Lu, K.; Yang, X.; Gielen, G.; Bolan, N.; Ok, Y.S.; Niazi, N.K.; Xu, S.; Yuan, G.; Chen, X.; Zhang, X.; et al. Effect of bamboo and rice straw biochars on the mobility and redistribution of heavy metals (Cd, Cu, Pb and Zn) in contaminated soil. J. Environ. Manag. 2017, 186, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Zelekew, O.A.; Fufa, P.A.; Sabir, F.K.; Andoshe, D.M.; Gultom, N.S.; Abdellah, H.; Kuo, D.H.; Chen, X.; Devulapalli, G.K. Chromium ion accumulations from aqueous solution by the Eichorinia crassipes plant and reusing in the synthesis of cr-doped ZnO photocatalyst. J. Nanomater. 2022, 2022, 4943844. [Google Scholar] [CrossRef]
- Carreño Sayago, U.F.; Piñeros Castro, Y.; Conde Rivera, L.R. Design of a fixed-bed column with vegetal biomass and its recycling for Cr (VI) treatment. Recycling 2022, 7, 71. [Google Scholar] [CrossRef]
- Wang, Z.; Luo, P.; Zha, X.; Xu, C.; Kang, S.; Zhou, M.; Nover, D.; Wang, Y. Overview assessment of risk evaluation and treatment technologies for heavy metal pollution of water and soil. J. Clean. Prod. 2022, 379, 134043. [Google Scholar] [CrossRef]
- Sayago, U.F.C. Design and Development of a Biotreatment of E. crassipes for the Decontamination of Water with Chromium (Vi). Sci. Rep. 2021, 11, 9326. [Google Scholar] [CrossRef]
- Tabinda, A.B.; Irfan, R.; Yasar, A.; Iqbal, A.; Mahmood, A. Phytoremediation potential of Pistia stratiotes and Eichhornia crassipes to remove chromium and copper. Environ. Technol. 2020, 41, 1514–1519. [Google Scholar] [CrossRef]
- Shoukat, A.; Wahid, F.; Khan, T.; Siddique, M.; Nasreen, S.; Yang, G.; Ullah, M.W.; Khan, R. Titanium oxide-bacterial cellulose bioadsorbent for the removal of lead ions from aqueous solution. Int. J. Biol. Macromol. 2019, 129, 965–971. [Google Scholar] [CrossRef]
- Adigun, O.A.; Oninla, V.O.; Babarinde, N.A.; Oyedotun, K.O.; Manyala, N. Characterization of sugarcane leaf-biomass and investigation of its efficiency in removing Nickel (II), Chromium (III) and Cobalt (II) ions from polluted water. Surf. Interfaces 2020, 20, 100621. [Google Scholar] [CrossRef]
- Worch, E. Adsorption Technology in Water Treatment: Fundamentals, Processes, and Modeling; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Chen, A.; Zeng, G.; Chen, G.; Hu, X.; Yan, M.; Guan, S.; Shang, C.; Lu, L.; Zou, Z.; Xie, G. Novel thiourea-modified magnetic ion-imprinted chitosan/TiO2 composite for simultaneous removal of cadmium and 2, 4-dichlorophenol. Chem. Eng. J. 2012, 191, 85–94. [Google Scholar] [CrossRef]
- Yahya, M.D.; Abubakar, H.; Obayomi, K.S.; Iyaka, Y.A.; Suleiman, B. Simultaneous and Continuous Biosorption of Cr and Cu (II) ions from Industrial Tannery Effluent using Almond Shell in a fixed bed column. Results Eng. 2020, 6, 100113. [Google Scholar] [CrossRef]
- Teng, Y.; Zhu, J.; Xiao, S.; Ma, Z.; Huang, T.; Liu, Z.; Xu, Y. Exploring chitosan-loaded activated carbon fiber for the enhanced adsorption of Pb (II)-EDTA complex from electroplating wastewater in batch and continuous processes. Sep. Purif. Technol. 2022, 299, 121659. [Google Scholar] [CrossRef]
- Wei, C.; Cheng, X.; Wei, T.; Pang, Z.; Ke, X.; Qin, Z.; Pan, J.; Wei, G.; Qiu, G.; Feng, C.; et al. Enrichment Strategies of Heavy Metal Ions in the O/H/O Process Composed of Biological Fluidized Bed for Wastewater Treatment: A Case Study of Cu and Zn. H/O Process Composed of Biological Fluidized Bed for Wastewater Treatment: A Case Study of Cu and Zn. J. Clean. Prod. 2023, 411, 137334. [Google Scholar] [CrossRef]
- Carreno Sayago, U.F. Design, Scaling, and Development of Biofilters with E. crassipes for Treatment of Water Contaminated with Cr (Vi). Water 2021, 13, 1317. [Google Scholar] [CrossRef]
- Sayago, U.F.; Ballesteros Ballesteros, V. Development of a Treatment for Water Contaminated with Cr (Vi) Using Cellulose Xanthogenate from E. crassipes on a Pilot Scale. Sci. Rep. 2023, 13, 1970. [Google Scholar] [CrossRef]
- Banerjee, M.; kumar Basu, R.; Das, S.K. Adsorptive removal of Cu (II) by pistachio shell: Isotherm study, kinetic modelling and scale-up designing—Continuous mode. Environ. Technol. Innov. 2019, 15, 100419. [Google Scholar] [CrossRef]
- Antonelli, R.; Malpass, G.R.P.; da Silva, M.G.C.; Vieira, M.G.A. Fixed-bed adsorption of ciprofloxacin onto bentonite clay: Characterization, mathematical modeling, and DFT-based calculations. Ind. Eng. Chem. Res. 2021, 60, 4030–4040. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, M.; Gong, Y.; Zeng, E.Y. Efficient removal of mercury from simulated groundwater using thiol-modified graphene oxide/Fe–Mn composite in fixed-bed columns: Experimental performance and mathematical modeling. Sci. Total Environ. 2020, 714, 136636. [Google Scholar] [CrossRef]
- Oliveira, R.F.; Nunes KG, P.; Jurado, I.V.; Amador IC, B.; Estumano, D.C.; Féris, L.A. Cr (VI) adsorption in batch and continuous scale: A mathematical and experimental approach for operational parameters prediction. Environ. Technol. Innov. 2020, 20, 101092. [Google Scholar] [CrossRef]
- Basu, A.; Ali, S.S.; Hossain, S.S.; Asif, M. A review of the dynamic mathematical modeling of heavy metal removal with the biosorption process. Processes 2022, 10, 1154. [Google Scholar] [CrossRef]
- Das, L.; Sengupta, S.; Das, P.; Bhowal, A.; Bhattacharjee, C. Experimental and Numerical modeling on dye adsorption using pyrolyzed mesoporous biochar in Batch and fixed-bed column reactor: Isotherm, Thermodynamics, Mass transfer, Kinetic analysis. Surf. Interfaces 2021, 23, 100985. [Google Scholar] [CrossRef]
- Barquilha, C.E.; Cossich, E.S.; Tavares, C.R.; da Silva, E.A. Biosorption of nickel and copper ions from synthetic solution and electroplating effluent using fixed bed column of immobilized brown algae. J. Water Process Eng. 2019, 32, 100904. [Google Scholar] [CrossRef]
- De Sá Costa, H.P.; da Silva, M.G.C.; Vieira, M.G.A. Fixed bed biosorption and ionic exchange of aluminum by brown algae residual biomass. J. Water Process Eng. 2021, 42, 102117. [Google Scholar] [CrossRef]
- Han, X.; Zhang, Y.; Zheng, C.; Yu, X.; Li, S.; Wei, W. Enhanced Cr (VI) removal from water using a green synthesized nanocrystalline chlorapatite: Physicochemical interpretations and fixed-bed column mathematical model study. Chemosphere 2021, 264, 128421. [Google Scholar] [CrossRef]
- Martín-Lara, M.A.; Blázquez, G.; Calero, M.; Almendros, A.I.; Ronda, A. Binary biosorption of copper and lead onto pine cone shell in batch reactors and in fixed bed columns. Int. J. Miner. Process. 2016, 148, 72–82. [Google Scholar] [CrossRef]
- Simate, G.S.; Ndlovu, S. The removal of heavy metals in a packed bed column using immobilized cassava peel waste biomass. J. Ind. Eng. Chem. 2015, 21, 635–643. [Google Scholar] [CrossRef]
Experiments | Diffusion Constant (Kf) (cm/min) EC | Diffusion Constant (Kf) (cm/min) EC1 | Diffusion Constant (Kf) (cm/min) EC2 |
---|---|---|---|
200 (mg/L) | 0.518 | 1.1 | 1.2 |
400 (mg/L) | 0.466 | 1.2 | 1.3 |
Average | 0.51 | 1.1 | 1.2 |
Experiments with 400 mg/L | EC | EC1 | EC2 |
---|---|---|---|
Volume treat (mL) | 900 | 1600 | 1800 |
Break time (Min) | 65 | 120 | 130 |
Adsorption capacity (mg/g) | 7 | 16 | 18 |
qm (mg/g) | Thomas (Kt) (mL/mg∗min) | R2 | Q (mg/g) | |
---|---|---|---|---|
EC | 7.5 | 0.045 | 0.93 | 7 |
EC1 | 17 | 0.055 | 0.99 | 16.4 |
EC2 | 19 | 0.066 | 0.97 | 17.8 |
Reference | Biomass | Contaminate Treated | Capacity (mg/g) |
---|---|---|---|
Present article | EC1 | Cr (VI) | 16 |
Present article | EC2 | Cr (VI) | 18 |
[27] | E. Crassipes | Cr (VI) | 7 |
[36] | EC + Fe | Cr (VI) | 17 |
[37] | Cellulose xanthate | Cr (VI) | 16 |
[44] | A. barbadensis Miller | Ni (II) | 14 |
[45] | Brown algae | Al (III) | 12 |
[46] | Green synthesized nanocrystalline chlorapatite | Cr (VI) | 20 |
[47] | Pine cone shell | Pb (II) | 22 |
[48] | Cassava | Cr (VI) | 14 |
Cost | EC | EC1 | EC2 |
---|---|---|---|
Capacity total (g Cr /kg material) Cost (USD) 1 kg material | 7 3 | 16 4 | 17 5 |
g Cr /(USD) | 2.2 | 4 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayago, U.F.C. Design and Development of a Pilot-Scale Industrial Wastewater Treatment System with Plant Biomass and EDTA. Water 2023, 15, 3484. https://doi.org/10.3390/w15193484
Sayago UFC. Design and Development of a Pilot-Scale Industrial Wastewater Treatment System with Plant Biomass and EDTA. Water. 2023; 15(19):3484. https://doi.org/10.3390/w15193484
Chicago/Turabian StyleSayago, Uriel Fernando Carreño. 2023. "Design and Development of a Pilot-Scale Industrial Wastewater Treatment System with Plant Biomass and EDTA" Water 15, no. 19: 3484. https://doi.org/10.3390/w15193484
APA StyleSayago, U. F. C. (2023). Design and Development of a Pilot-Scale Industrial Wastewater Treatment System with Plant Biomass and EDTA. Water, 15(19), 3484. https://doi.org/10.3390/w15193484