Chemical Characteristics and Controlling Factors of Shallow Groundwater in the Lower Reaches of Changhua River Basin, Hainan Island, China
Abstract
:1. Introduction
2. Study Area
2.1. Overview of the Study Area
2.2. Hydrogeological Conditions of the Study Area
3. Materials and Methods
3.1. Sample Collection
3.2. Sample and Data Processing
4. Results and Discussions
4.1. Statistical Characteristics of the Main Chemical Indicators of Water
4.2. Chemical Types of Groundwater
4.3. Analysis of Groundwater Chemical Controlling Factors
4.3.1. Water–Rock Model Analysis
4.3.2. Analysis of Ion Ratio Relationship and Source of Main Components
4.3.3. Analysis of Cationic Exchange Adsorption
4.3.4. Analysis of the Impact of Human Activities
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Khan, A.F.; Srinivasamoorthy, K.; Gopinath, S.; Saravanan, K.; Vinnarasi, F.; Babu, C.; Rabina, C.; Prakash, R. Human health risk assessment for fluoride and nitrate contamination in the groundwater: A case study from the east coast of Tamil Nadu and Puducherry, India. Environ. Earth Sci. 2021, 80, 724. [Google Scholar] [CrossRef]
- Beaver, C.L.; Williams, A.E.; Atekwana, E.A.; Mewafy, F.M.; Aal, G.A.; Slater, L.D.; Rossbach, S. Microbial Communities Associated with Zones of Elevated Magnetic Susceptibility in Hydrocarbon-contaminated Sediments. Geomicrobiol. J. 2015, 33, 441–452. [Google Scholar] [CrossRef]
- Mewafy, F.M.; Werkema Jr, D.D.; Atekwana, E.A.; Slater, L.D.; Aal, G.A.; Revil, A.; Ntarlagiannis, D. Evidence that bio-metallic mineral precipitation enhances the complex conductivity response at a hydrocarbon contaminated site. J. Appl. Geophys. 2013, 98, 113–123. [Google Scholar] [CrossRef]
- Jackson, C.R.; Meister, R.; Prudhomme, C. Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. J. Hydrol. 2011, 399, 12–28. [Google Scholar] [CrossRef]
- Huang, G.; Liu, C.; Zhang, Y.; Chen, Z. Groundwater is important for the geochemical cycling of phosphorus in rapidly urbanized areas: A case study in the Pearl River Delta. Environ. Pollut. 2020, 260, 114079. [Google Scholar] [CrossRef]
- Iqbal, Z.; Imran, M.; Natasha; Rahman, G.; Miandad, M.; Shahid, M.; Murtaza, B. Spatial distribution, health risk assessment, and public perception of groundwater in Bahawalnagar, Punjab, Pakistan: A multivariate analysis. Environ. Geochem. Health 2023, 45, 381–391. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Gaillardet, J.; Allègre, C. Geochemistry of dissolved and suspended loads of the Seine River, France: Anthropogenic impact, carbonate and silicate weathering. Geochim. Cosmochim. Acta 1999, 63, 1277–1292. [Google Scholar] [CrossRef]
- Chaudhary, V. Assessment of TDS, Total Hardness and Nitrate in Groundwater of North-West Rajasthan, India. Int. J. Plant Res. 2013, 26, 127. [Google Scholar] [CrossRef]
- Toolabi, A.; Bonyadi, Z.; Paydar, M.; Najafpoor, A.A.; Ramavandi, B. Spatial distribution, occurrence, and health risk assessment of nitrate, fluoride, and arsenic in Bam groundwater resource, Iran. Groundw. Sustain. Dev. 2020, 12, 100543. [Google Scholar] [CrossRef]
- McBean, E.A.; Rajib, M.A.; Rahman, M.M. Improved Sustainability of Water Supply Options in Areas with Arsenic-Impacted Groundwater. Water 2013, 5, 1941. [Google Scholar] [CrossRef]
- Wada, Y.; Beek, L.P.H.V.; Kempen, C.M.V.; Reckman, J.W.T.M.; Vasak, S.; Bierkens, M.F.P. Global depletion of groundwater resources. Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Su, N.; Du, J.; Moore, W.S.; Liu, S.; Zhang, J. An examination of groundwater discharge and the associated nutrient fluxes into the estuaries of eastern Hainan Island, China using 226Ra. Sci. Total Environ. 2011, 409, 3909–3918. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Zhang, G.; Gong, Z. SOTER-Based Soil Water Erosion Simulation in Hainan Island. Pedosphere 2003, 13, 139–146. [Google Scholar]
- Zhou, Z. Appraisal of service function value of Hainan Island water ecosystem. J. Econ. Water Resour. 2005, 23, 11–13. [Google Scholar]
- Luo, W. Agricultural Use of Hainan Water Resourses and Countermeasures to the Development of Water-saving Agriculture. Nat. Sci. J. Hainan Univ. 2001, 19, 256–259. [Google Scholar]
- Lei, G.; Jeffery, C.; Peter, D. The Economics of Groundwater Replenishment for Reliable Urban Water Supply. Water 2014, 6, 1662. [Google Scholar]
- Li, X.; Wu, H.; Qian, H.; Gao, Y. Groundwater Chemistry Regulated by Hydrochemical Processes and Geological Structures: A Case Study in Tongchuan, China. Water 2018, 10, 338. [Google Scholar] [CrossRef]
- Wang, D.; Pei, L.; Zhang, L.; Li, X.; Chen, Z.; Zhou, Y. Water resource utilization characteristics and driving factors in the Hainan Island. J. Groundw. Sci. Eng. 2023, 11, 191–206. [Google Scholar] [CrossRef]
- Chen, H.; Wu, C. Climate Resources of Hainan Island and Their Utilization. J. Qiongzhou Univ. 2003, 10, 83–85. [Google Scholar]
- Dsikowitzky, J.L. Land–sea interactions at the east coast of Hainan Island, South China Sea: A synthesis. Cont. Shelf Res. 2013, 57, 132–142. [Google Scholar]
- Chang, C.R.; Zhu, Z.Q. Distribution Pattern of Silica Concentration in Major Rivers and Their Ground Water in Hainan Province. J. South China Univ. Trop. Agric. 2006, 12, 6–11. [Google Scholar]
- Chen, J.; Wang, Z. Study on Stable Isotopes of Hydrogen and Oxygen in Rain Water, River Water and Groundwater from Hainan Island of China. Sci. Geogr. Sin. 1993, 13, 273–278, 296. [Google Scholar]
- Liu, H.; Zhou, X.; Zhang, Y.; Wang, M.; Tan, M.; Hai, K.; Yu, M.; Huo, D. Hydrochemical characteristics of travertine-depositing hot springs in western of Yunnan, China. Quat. Int. 2020, 547, 63–74. [Google Scholar]
- Zhou, H.F.; Tan, H.B.; Zhang, X.Y.; Zhang, W.J.; Sun, X. Recharge source, hydrochemical characteristics and formation mechanism of groundwater in Nantong, Jiangsu Province. Geochimica 2011, 40, 566–576. [Google Scholar]
- Ren, Z.; Zhou, X.; Yang, M.; Wang, X.; Zheng, Y.; Li, X.; Shen, Y. Hydrochemical Characteristics and Formation of the Madeng Hot Spring in Yunnan, China. Geofluids 2018, 2018, 2368246. [Google Scholar]
- Bouri, S.; Nsiri, M.; Brahim, F.B.; Khlifi, M. Assessment of the effects of anthropogenic activities on the El Arich groundwater using hydrogeochemistry, GIS and multivariate statistical techniques: A case study of the semi-arid Kasserine region, Tunisia. Environ. Qual. Manag. 2022, 31, 261–281. [Google Scholar]
- Ma, J.; Chen, S.; Ding, D.; Zhao, J. Hydrochemical characteristics and groundwater quality appraisal for irrigation uses in the Lan-gan region, Northern Anhui Province, East China. Water Sci. Technol. Water Supply 2022, 22, 686–696. [Google Scholar] [CrossRef]
- Fan, B.L.; Zhao, Z.Q.; Tao, F.X.; Liu, B.J.; Tao, Z.H.; Gao, S.; Zhang, L.H. Characteristics of carbonate, evaporite and silicate weathering in Huanghe River basin: A comparison among the upstream, midstream and downstream. J. Asian Earth Sci. 2014, 96, 17–26. [Google Scholar] [CrossRef]
- Bo, Y.; Liu, C.; Jiao, P.; Chen, Y.; Cao, Y. Hydrochemical characteristics and controlling factors for waters’ chemical composition in the Tarim Basin, Western China. Geochem. Interdiscip. J. Chem. Probl. Geosci. Geoecol. 2013, 73, 343–356. [Google Scholar] [CrossRef]
- Jun, H.E.; Ke, P.; Pan, X.; Center, W.; Survey, C.G. Hydrochemical Characteristics and Formation Mechanism of Groundwater in Xianning Area. Resour. Environ. Eng. 2017, 31, 196. [Google Scholar]
- Gugulothu, S.; Subbarao, N.; Das, R.; Dhakate, R. Geochemical evaluation of groundwater and suitability of groundwater quality for irrigation purpose in an agricultural region of South India. Appl. Water Sci. 2022, 12, 142. [Google Scholar]
- Huang, G.; Liu, C.; Sun, J.; Zhang, M.; Jing, J.; Li, L. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta. Sci. Total Environ. 2018, 625, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Umarani, P.; Ramu, A.; Kumar, V. Hydrochemical and statistical evaluation of groundwater quality in coastal aquifers in Tamil Nadu, India. Environ. Earth Sci. 2019, 78, 452. [Google Scholar] [CrossRef]
- Matiatos, I. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Sci. Total Environ. 2016, 541, 802–814. [Google Scholar] [PubMed]
- Charfi, S.; Zouari, K.; Feki, S.; Mami, E. Study of variation in groundwater quality in a coastal aquifer in north-eastern Tunisia using multivariate factor analysis. Quat. Int. 2013, 302, 199–209. [Google Scholar] [CrossRef]
- Huang, G.; Sun, J.; Zhang, Y.; Chen, Z.; Liu, F. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Sci. Total Environ. 2013, 463–464, 209–221. [Google Scholar]
- Arias-Estévez, M.; López-Periago, E.; Martínez-Carballo, E.; Simal-Gándara, J.; Mejuto, J.C.; García-Río, L. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 2008, 123, 247–260. [Google Scholar]
- Zhu, G.F.; Pan, H.X.; Zhang, Y.; He, Y.Q.; Xiang, J. Hydrochemical characteristics and control factors of acid anion in Shiyang River Basin. Zhongguo Huanjing Kexue/China Environ. Sci. 2018, 38, 1886–1892. [Google Scholar]
- Zhang, H.; Zhang, Y.; Wu, L.; Wang, W.; Li, X. The distribution characteristics and geological control factors of shallow high-arsenic groundwater in the Hetao Plain, Inner Mongolia, from the perspective of Late Pleistocene–Holocene depositional environments. Environ. Sci. Pollut. Res. 2023, 30, 63305–63321. [Google Scholar]
- Wu, Y.; Gibson, C.E. Mechanisms controlling the water chemistry of small lakes in Northern Ireland. Water Res. 1996, 30, 178–182. [Google Scholar]
- Thakur, T.; Rishi, M.S.; Naik, P.K.; Sharma, P. Elucidating hydrochemical properties of groundwater for drinking and agriculture in parts of Punjab, India. Environ. Earth Sci. 2016, 75, 467. [Google Scholar] [CrossRef]
- Helena, B.; Pardo, R.; Vega, M.; Barrado, E.; Fernandez, L. Temporal Evolution of Groundwater Composition in an Alluvial Aquifer (Pisuerga River, Spain) by Principal Component Analysis. Water Res. 2000, 34, 807–816. [Google Scholar] [CrossRef]
- Megan, M.; Joshua, V.; Josué, M.; Thomas, H. Economic Feasibility of Irrigated Agricultural Land Use Buffers to Reduce Groundwater Nitrate in Rural Drinking Water Sources. Water 2014, 7, 12–37. [Google Scholar]
Component | Detection Limit/mg·L−1 | Component | Detection Limit/mg·L−1 |
---|---|---|---|
COD | 5 | K+ | 0.07 |
5 | Na+ | 0.03 | |
Cl− | 0.007 | Ca2+ | 0.02 |
SO42− | 0.018 | Mg2+ | 0.02 |
NO3− | 0.016 |
Eigenvalue | pH | DO | ORP | TDS | TH | K+ | Na+ | Ca2+ | Mg2+ | Cl− | HCO3− | SO42− | NO3− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Minimum value | 6.61 | 2.52 | 34 | 40 | 0.22 | 0.3 | 5 | 4 | 3 | 4 | 6 | 1 | <DL |
Maximum value | 8.01 | 7.22 | 102 | 958 | 4.87 | 120 | 274 | 129 | 634 | 342 | 585 | 281 | 163 |
Median value | 7.17 | 3.24 | 74 | 282 | 1.49 | 8.4 | 32 | 37 | 16 | 39 | 103 | 28 | 31 |
Mean value | 7.15 | 3.64 | 72 | 334 | 1.66 | 16.6 | 46 | 43 | 18 | 62 | 145 | 40 | 44 |
Coefficient of variation | 1 | 0.89 | 1.03 | 0.84 | 0.89 | 0.5 | 0.69 | 0.85 | 0.87 | 0.63 | 0.71 | 0.7 | 0.71 |
PH | DO | OPR | TDS | K+ | Na+ | Ca2+ | Mg2+ | Cl− | SO42− | NO3− | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
PH | 1 | |||||||||||
DO | −0.100 | 1 | ||||||||||
OPR | −0.070 | 0.318 ** | 1 | |||||||||
TDS | 0.052 | −0.013 | −0.060 | 1 | ||||||||
K+ | −0.117 | 0.061 | 0.102 | 0.323 ** | 1 | |||||||
Na+ | 0.207 * | 0.086 | 0.027 | 0.797 ** | 0.094 | 1 | ||||||
Ca2+ | 0.136 | −0.052 | −0.174 | 0.842 ** | 0.221 * | 0.545 ** | 1 | |||||
Mg2+ | 0.120 | −0.139 | −0.158 | 0.802 ** | 0.142 | 0.564 ** | 0.726 ** | 1 | ||||
Cl− | 0.137 | 0.120 | 0.012 | 0.837 ** | 0.169 | 0.834 ** | 0.686 ** | 0.598 ** | 1 | |||
0.372 ** | −0.116 | −0.062 | 0.655 ** | 0.160 | 0.700 ** | 0.604 ** | 0.665 ** | 0.515 ** | 1 | |||
SO42− | −.270 ** | 0.123 | −0.011 | 0.567 ** | 0.255 * | 0.387 ** | 0.579 ** | 0.406 ** | 0.397 ** | 0.141 | 1 | |
NO3− | −0.155 | −0.024 | −0.047 | 0.295 ** | 0.421 ** | 0.099 | 0.179 | 0.258* | 0.136 | −0.083 | 0.155 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhang, L.; Pei, L.; Li, X.; Yang, Y.; Chen, Z.; Liang, L. Chemical Characteristics and Controlling Factors of Shallow Groundwater in the Lower Reaches of Changhua River Basin, Hainan Island, China. Water 2023, 15, 3508. https://doi.org/10.3390/w15193508
Wang D, Zhang L, Pei L, Li X, Yang Y, Chen Z, Liang L. Chemical Characteristics and Controlling Factors of Shallow Groundwater in the Lower Reaches of Changhua River Basin, Hainan Island, China. Water. 2023; 15(19):3508. https://doi.org/10.3390/w15193508
Chicago/Turabian StyleWang, Dun, Lizhong Zhang, Lixin Pei, Xiwen Li, Yamin Yang, Zeheng Chen, and Linde Liang. 2023. "Chemical Characteristics and Controlling Factors of Shallow Groundwater in the Lower Reaches of Changhua River Basin, Hainan Island, China" Water 15, no. 19: 3508. https://doi.org/10.3390/w15193508
APA StyleWang, D., Zhang, L., Pei, L., Li, X., Yang, Y., Chen, Z., & Liang, L. (2023). Chemical Characteristics and Controlling Factors of Shallow Groundwater in the Lower Reaches of Changhua River Basin, Hainan Island, China. Water, 15(19), 3508. https://doi.org/10.3390/w15193508